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Motivated by recent experiments on ultrathin continuous superconducting films,
we study the dependence of T, and A (for zero temperatures) on the film
thickness d. Using field-theoretical methods, we express the Coulomb interac-
tion in terms of a fluctuating potential, and the fluctuation correction to the
free energy (in one-loop approximation) is determined. Based on the standard
dirty-limit expressions for the response functions, we find T, and A by a
numerical investigation of the gap equation. Generally, we find that the decrease
of T. and A vs. d™' is quite similar, but depends sensitively on both the
large-wave-vector cut-off and the strength of the interaction. In particular,
however, for a strong interaction (Coulomb interaction), the order parameter
is more strongly suppressed than the critical temperature, which is due to
long-wavelength fluctuations of the phase and the potential,

1. INTRODUCTION

During the past decade, extensive experimental and theoretical efforts
have been devoted to the study of low-dimensional (in particular, two-
dimensional) metallic systems in the presence of disorder. (For some recent
reviews, see Refs. 1-4.) Many studies have especially concentrated on the
weak localization regime, i.e., k-l > 1, where kr is the Fermi wave vector
and [/ the mean free path, in which a perturbative treatment, starting from
the metallic side, can be applied.

In this context, the influence of disorder and Coulomb interactions on
superconductivity in two (and one) dimensions is of considerable interest.
In fact, it was shown experimentally’™’ that the critical temperature and the
zero-temperature order parameter are dramatically reduced upon decreasing
the film thickness d of a homogeneous superconducting film toward a few
A. Quite remarkably, the decrease of T, and A(T =0) is very similar.” A
further reduction of T, as well as an increasing width of the superconducting
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transition, is found when the one-dimensional limit is approached.® Up to
now, only few theoretical attempts toward an understanding of this behavior
have been made.”"’

As an example, and in order to introduce the relevant parameters of
the problem, let us briefly discuss some results for the decrease of the
transition temperature of a thin superconducting film, 8T, = T, — T,,, where
T., is the corresponding bulk value, in the regime d=<§;;, here &=
0.36 - (vel/ T.)"/? is the dirty limit coherence length extrapolated to zero
temperatures (typically, &~ 100 A). A simple dimensional analysis shows
that, for 6T,« T,

]I‘l( Tc/ TcO) == 3Tc/ Tc{) = -'Ap; pP= RD/RO (1)

where Ry =(od)™" is the sheet resistance, Ry=h/(2¢)*=6.45kQ the unit
of resistance, and A a ““constant of order unity.”* As is well known, classical
fluctuations of the order parameter'® give a result of the form of Eq. (1),
with A=[7{(3)/2%"]1In(p~"); however, the logarithmic dependence on p
is practically quite unimportant, and the slope of 67T, vs. R calculated in
this way turns out to be about a factor of ten too small compared with the
data.’”’ Including the leading contribution from the Coulomb interaction,
the following asymptotic result has been obtained:* "

A=(24m)"" In’(ayy,) (2)

which holds for In y,, » 1, where y,, is related to a large-wave-vector cutoft
G bY ¥m = BDql,/27kT..T Equation (2) is in good agreement with experi-
ment, provided one chooses g,, ="', and adjusts the parameter a. Though
the dependence on the cutoff is “only” logarithmic, it should be noted that
a typical value is In(ay,,)=7,...,8, i.e., A=5,...,7, leading by a linear
extrapolation of Eq. (1) to a destruction of superconductivity at R~ 0.2R,.
Experimentally, however, the magnitude of the slope 87,/ R, is found to
decrease with increasing R, such that T, goes to zero at a somewhat higher
value,™® or such that T, saturates when the limit of about one atomic layer
is approached.” The former behavior was explained by Finkel’stein'® on
the basis of a renormalization group analysis.

However, we wish to emphasize that two important questions arise in
connection with the results of Refs. 10-13 (in contrast to Refs. 9 and 14),
which are related to the fact that two-dimensional systems are considered;
actually, in these articles, the critical temperature relative to the critical
temperature of the clean system is determined, i.e., 67, = T.(I)— T.(o0), in

*Note that R/ Ry=[whN(0}Dd] ™" = 6= /k%ld, where N(0) is the density of states at the
Fermi surface (for one spin), and D the diffusion coefficient.

1Ovchinnikov® found a minus sign in this expression, which we believe not to be correct (see
Section5).
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which case g,, ="' appears to be the natural cutoff. By appropriate iden-
tification of R, the results are applied to what is actually measured, namely
the decrease of T, as a function of the film thickness, d, relative to its bulk
value, at the same mean free path. In the latter case, which we address in
this paper (see also Ref. 9), in the inverse of the film thickness is the relevant
cutoff, namely g, ~d~’. As is evident already from Eq. (2), with this
interpretation the slope (~A) actually becomes small for d = &,. Second, a
quantitative analysis of the decrease of the critical temperature, as well as
the decrease of the zero-temperature order parameter, has not been given.

The above remarks indicate the questions we intend to discuss in this
paper. Our analysis will be based on the path integral formulation of the
theory of superconductivity,”’® in which the electron-electron interaction
is taken into account in terms of a fluctuating potential.”’** Thus, by
expanding around the saddlepoint (which is equivalent to usual BCS
theory), it is possible to calculate in a systematic way higher order corrections
to the free energy functional. Since we consider the Gaussian (one-loop)
approximation, these “fluctuation corrections” are given in terms of the
various response functions, which can be easily calculated within standard
dirty limit theory.>**” As it turns out, this approach is closely related to the
one of Ref. 9. Here, in addition, a detailed numerical investigation of the
gap equation, close to T, as well as for zero temperatures, will be given.
To be explicit, we emphasize that we are considering homogeneous super-
conducting films; in contrast, in granular films, other remarkable phenomena
have been found recently.”®

In the next section (Section 2), we describe the path integral formulation
of the theory, which allows in a straightforward way the determination of
the fluctuation corrections to the free energy functional, as well as (upon
differentiation) the corresponding corrections to the gap equation. The
decrease of the critical temperature, in particular its dependence on the
electron-electron interaction strength, is discussed in Section 3. In Section
4, we present the results for the suppression of the zero-temperature order
parameter, and we give some concluding remarks in Section 5. Finally,
some technical details are presented in the Appendices. In particular, we
discuss in some detail: the question of the cutoff; the derivation of the
response functions; a number of analytic results close to the critical and
zero temperature; and the connection between response and correlation
functions.

2. THEORETICAL FORMULATION

The present theoretical formulation is based on the path integral rep-
resentation of the microscopic theory and proceeds in close analogy to Refs,
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17-20 (see also, for example, Ref. 21). Applying the standard Hubbard-
Stratonovich procedure, we rewrite the (attractive) electron-phonon interac-
tion as well as the Coulomb interaction by introducing a complex order
parameter field A(x), x = (r, ) and a real potential field ¢(x), respectively.
Then the partition function is given as follows:

B

Zs=1r,," {J DADA*DST, exp— J' dr ?’Keﬁ(r)} (3)

0

where (Ai=k=1) 8 =1/T is the inverse temperature, T, is the time ordering
operator, and the trace is over the electron operators. The effective Hamil-
tonian is given by

Hog=H i+ Hog+ H g (4)

where % contains the standard kinetic energy as well as the (random)
impurity potential, and #%; and % depend on the order parameter and
the potential field, respectively. Explicitly, we have

%§ﬁ= —1i J d3}‘ A’B(X)lfll(l')lﬂ?(r)‘*“h.&

+N(0)A™! f d*r |A(x)] (5)

where A is the dimensionless electron-phonon coupling constant.
Furthermore,

?ffﬁzij dz’rp(r)é(X)-*‘%J d’ro(x)V'd(x) (6)

where p(r) is the charge density operator, and V™' =—V?/47 is the inverse
of the Coulomb interaction. Note that ¢ has been introduced such that i
appears in the first term of (6) in order to have a standard Gauss integration
with respect to ¢—otherwise, analytic continuation procedures must be
employed, however, with the same final result. Furthermore, we will also
consider a local interaction, in which case V(r —r) = v,8(r—~r),and V"' - v
in Eq. (6).

In the next step, we perform the trace with respect to the electron
operators, with the result that the partition function is written as

Zs= J DADA* D exp— Sl A, A¥, $] (7)
where the effective action is given by

JB J 3 [ \f-‘i\‘?‘ 1 -1 } A—1
Sg=1| dr | d’r| N(0) +36pV ¢ |—trin G (8)

0 A
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Here, tr indicates the trace with respect to space and (imaginary) time and
with respect to the 2x2 Nambu space. The inverse of the matrix Green’s
function G is given by

G =Gy +[iA—iep118(x —x') (9)
where
Galz{"&' 1¢3—[~m+uimp(r):‘l} S(X_xr) (10)
2m
and
" 0 A
A= [A* O} (11)

The present formulation has the considerable advantage that much of
the essential physics is already captured by the saddle point of the effective
action, and that higher order corrections (“‘fluctuation corrections’’) to the
free energy functional can be calculated in a straightforward and systematic
way. This is easily illustrated by applying standard field-theoretical methods:
We consider a slight generalization of Eq. (7), and introduce external fields
n(x), n*(x) such that

Z[n, n*]=J D*ADp e Sen epr- dx{qA*+n*A] (12)
Clearly, we have relations like
8
Q) ==— Wi, 7%] (13)
n

where W =1In Z, etc. In the next step, we perform a Legendre transformation
such that A=(A), ¢ =(¢) appear as the independent variables; the corre-
sponding potential, which we denote by I', is defined through the relation

(A, A*, (g)z-( dx [n*A+nA*]- W (14)

where 1, ™ are functions of the new variables, in principle to be computed
through Eq. (13) and similar relations. (Of course, we could easily include
an external field generating ¢-correlation functions. This has been omitted
to simplify the notation.) In any case, we now have the relation

- (15)

Finally, to determine the state of thermal equilibrium, we consider n = n* =
0; in this case, we may choose A to be real and ¢ =0, having in mind, of
course, the appropriate impurity average.
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As an illustration, consider evaluating (12) by the saddle point approxi-
mation. Then we find I to be given by I'y, where
. AP
To=SealA, A%, ¢ =0]= | dx N(0)

T_Uln G (16)

which for time-independent A is easily identified with the BCS free energy
divided by T. For example, one finds the gap equation from

oI A 4
0= aA:= N(0) == iGi(x, x) (17)
by noting that (£, =p*/2m —u)
é(x X) TZJ &p [iw?;— &, +iAF ]! (18)
= —liwTy—
t] = (27?)3 3 p 1

Performing the momentum integration, d’p/(27)° > N(0) d¢, one obtains
A

iém(x, x)zN(O)WTE’W (19)
which leads to the standard result:
A A
—Xz T Z' (w2+A2)1/2 (20)

Note that the frequency sum has to be restricted to |w|<wp, where wp is
the Debye frequency.

In the next step, we demonstrate how higher order corrections to the
free energy can be calculated in a systematic way. In particular, the next-to-
leading order corrections arise from a quadratic expansion of the effective
action around the saddle point (one-loop approximation), and are com-
pletely determined by the various response functions of a superconductor,
which can be calculated easily in the dirty limit (see Appendix B).

As an example, consider fluctuations of the magnitude of the order
parameter. Thus we replace, in the effective action, A by A+ 8A", where
8A" is real, and expand S.y in second order. This gives

(845
A

52 = J. dx N(0) —{trIn(G 1 +isALF NP (21)

where the notation implies that the second-order term should be taken in

the last part of this expression. As a formal device, write this term as
g A ! A

J dsa—str In(G '+ie- 8A%7)=| detr(G. - iBA"F) (22)

0 0
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Here, G. denotes the Green’s function in the presence of the perturbation
(e- 8A%), and has to be computed linearly in dA". Thus, we may easily
perform the e-integral, giving

s@= | N D u(6 s AT @)

Furthermore, we introduce the quasiclassical Green’s function, i.e., the
Green’s function integrated with respect to the magnitude of the momentum,
and averaged over all directions, according to

aN(0)g(r, 7, 1) =iG(r, 1, 7, 7') (24)
such that*

Ly2
S5 =N() } ax (O T fgr, o041 |

= N(0) j dx SAY (A7 — y5a)8A" (25)

where the longitudinal response function x5, has been introduced (see
Appendix B). The integration with respect to A is straightforward, leading
to the fluctuation correction to I' which is given by

FAA=% Sp ln(A“l -X{ia) (26)

The evaluation of phase and potential fluctuations proceeds similarly, with
the final result

F=r0+rﬂ; I‘ﬂ=FAa+rad}+F¢¢& (27)
where (see Appendix B for the definitions)

Ta=3SpIn{(A 7 = xZa) +2° N(0)xag (V7" = Xp0) " Xoa} (29)

In these equations, Sp is to be identified with ¥, . Equations (26)-(29) are
the central results of this paper, on which the subsequent analysis will be
based. As mentioned above, to investigate thermal equilibrium states, it is
sufficient to take A to be real and spatially homogeneous, and ¢ =0. Then
the fluctuation corrections to the gap equation are obtained from (27) by
(ordinary) differentiation with respect to the order parameter. The response
functions, as determined within the dirty limit theory, are given in Appendix
B. At this point, we remark that we are working exclusively within the BCS
approximation, i.e., we neglect the energy dependence of the phonon self
energy (we return to this question in the discussion).

*Note that tr, is the ordinary trace over 2 X2 Nambu matrices.
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From a diagrammatic point of view, the fluctuation corrections to the
thermodynamic potential are best characterized as ‘‘string of bubbles”
diagrams, which contain in each bubble all nonintersecting impurity lines.
However, differentiation with respect to the order parameter is not so easily
visualized, so we remark that the resulting contributions to the gap equation
can also be derived as follows (using longitudinal fluctuations for illustra-
tion; see also Fig. 1). In the first step, we imagine that we calculate the
second order corrections to Gorkov’s #-function, i.e., the off-diagonal part
of the Green’s function. Second, we average with respect to the fluctuating
fields, e.g., &A% thereby introducing the correlation functions,
(BAT8ATY~(A"'—x54) 7", i.e., a “string of bubbles,” which is shown in Fig.
1 as a curly line. Finally, this contribution is inserted into the gap equation,
represented by connecting the open ends by a phonon Green’s function,
which, in the present approximation, is reduced to a single dot.

Fig. 1. Graphical representation of the fluctuation
corrections to the self-energy. (a) correction to the
Green'’s function in second order in the fluctuating
fields; (b} averaging with respect to the fields; (¢)
contribution to the self-energy; the wavy line denotes
the phonon propagator, which reduces to (d) a dot
in the BCS approximation,

(d)
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3. THE CRITICAL TEMPERATURE
3.1. Order Parameter Correlations above T,

Before establishing the equation for the critical temperature of a thin
film, we briefly discuss the order parameter response and correlations for
T> T, ((A)=0). In this case (see Appendix C), we have yi,= x5, and we
will omit the superscripts 7T, L for simplicity. The order parameter correlation
function is related to the response function as follows (Appendix E):

N(OXT(888A%))g0,=[A7" = xas(g, wo)]™' (30)

where §A=8A"—i8A”, and wo=27Tm denotes the Matsubara (Bose)
frequency. Defining T, the critical temperature of the bulk system without
fluctuation corrections, by the relation A~ =In(1.13e,/T,), we find the
following result:

2
AW!”XAA=IH%+¢(%+W)“¢(‘%) (31)
where ¢ denotes Euler’s psi function; note that this quantity, for w,= ¢ =0,
equals zero for T = T,, the usual BCS approximation. After analytic continu-
ation, wy—=> —iw +0, and for 8T =T - T,, w, Dg’« T,, we find the following
expression which is well known from the (simple) time-dependent
Ginzburg-Landau theory:

8T =
A = x> —t+—[—iw+ Dq’ 32
Xaa T, 8To[ q°] (32)
At this point, it is instructive to briefly recall the formalism outlined
in Section 2. In particular, we remark that the order parameter correlation

function is given by [see (12) and (13)]
5y 8
8n, B, 8n¥
where arguments x, y, x = (r, 7), etc., have been included. On the other hand,
from (15), we obtain "
T  &m,
SA,8AY  B8A,
This relation, in fact, defines the exact response functions; the above
approximation follows by replacing I' by I’y [Eq. (16)]. Furthermore, it

follows immediately that for homogeneous and time-independent A, we
have the relation

(T.(8A,8A%) = Wi, n*] (33)

Yalx, y) = =NO[AT'8(x—y)—xaalx—»]  (34)

[9T/8A%]aco= VBy2(g =0, w,=0) (35)
where ¥ = ofd is the volume, and & the area.
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3.2. Determination of T.

To determine the critical temperature of a thin film, we consider
the potential I'TA, A*, ¢] for homogeneous and time-independent states;
thus, we may choose A = A* and ¢ = 0. Consequently, T, is determined from

[VBN(0)]7'(3T/a8%) 5= =0 (36)

which is equivalent to y,(g =0, w,=0) = 0. From this relation, by introduc-
ing I'=T,+T14, we find

In(T./ To) = —[ VBN(0)]™'(8T'a/04%) (37)

where A =0 is understood after differentiation. This equation contains T,
which is not desirable. Thus, we define the bulk value of the fluctuation
correction I's and the difference fﬁ =Tq—Tg; more precisely, I'g is given
by Egs. (26)-(29), where the summation over the perpendicular wave-vector
component (say, g,) is replaced by an integration in the usual way. Thus
we find

T, T. (a
In

- 9AZ

. N\ F“) (38)

T=T,

where T,, is the critical temperature of the bulk material, for the same
parameters, in particular for the same mean free path, as the corresponding
film. Furthermore, the difference Iy is approximately evaluated by taking
g. =0 and by restricting the parallel wave vectors such that qﬁ < g2,, where
g =d ™", which is valid in the regime d < & (see Appendix A). We empha-
size again that we find it not to be correct to identify the cutoff with 7",
the inverse of the mean free path (note that I”'>d™"). Clearly, it is con-
venient to introduce a dimensionless variable y = Dg*/2%T,; thus, the
prefactor [#N(0)dD] ™' = Rn/ R,= p arises in a natural way.*

As an important point, we stress that in the present formulation, the
fluctuation contribution I'; contains the response functions as calculated
without fluctuation corrections. Clearly, an extension of (38) into a self-
consistent formulation is adequate, analogous to what was done by
Schmid;'® however, the most important correction concerns the wo=g =0
part of the response, which has to be corrected such that {compare to (31)]

(1 ]wol"*”qu

T
/\_I_XAA"IH'YT‘f“'f/ ‘i"‘ anT )“‘ﬁ‘(%) (39)

<

to ensure that the singular behavior of, e.g., the order parameter fluctuations
or the coherence length is at the correct critical temperature, namely T..

*Note that y,, = Dg2, /27T, = (4/ 77} &/ d)>.
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However,the above prescription introduces the usual logarithmic diver-
gence (for D =2) into the calculation of T, from the classical (w,=0) order
parameter fluctuations. Introducing a long- wavelength cutoft Yes and for
8T.=T.— T.o< T.o, this contribution is given by'®

(5T./ To)™* = ~[7¢(3)/25°]p In y2*  (40)

where {(3)=1.202.... In fact, the long-wavelength cutoff can be justified
by noting that, in addition to the shift of the critical temperature, there is
also a smearing of the transition, with a width (relative to 7,) given by’
= qrp/32, as estimated from the fluctuation contribution to the conduc-
tivity. Thus, we are led to exclude small wave vectors, namely g° < 7./ £,
which gives y. = p/8«. From a slightly different point of view, this procedure
is also equivalent to calculating, e.g., the temperature dependence of the
order parameter for temperatures outside the critical region (where the
present theory is applicable), and determining T by extrapolation into the
critical region (which is found to be much smaller than the shift of T,).

3.3. Results

From Eq. (38), the fluctuation shift of the critical temperature is easily
determined. Quite generally, we consider two cases, a short-range interaction
(case I), which physically can be justified by considering the capacitative
interaction with a metallic counterelectrode, as well as the long-range
Coulomb interaction (case II). Note however, that for realistic parameter
values, the Coulomb interaction is the dominant contribution. Explicitly,
we define

(I} Vi(g)=vy; (I1) Vu(g)=2wnd/q (41)

Note that the 2D form of the Coulomb interaction has to be used (since
qg<d~"). As a convenient dimensionless measure of the strength of the
interaction, define the parameter ¢, = [2¢*N(0) V,(q)]17}, n =1, 1L Thus we
find, for the above-mentioned example, ¢;=A%g/dx,, where Are is the
screening length and x, is the distance to the counterelectrode. Below, ¢;
will be considered a parameter, in order to demonstrate the dependence
on the strength of the interaction. Furthermore, we have the following
relation:

(I1) 311*2)&7‘1«‘?/65 (WA F/dgo)ywz (42)

where y = Dg*/2%T, as introduced above. Note that &,, and thus the large-y
cutoff y,,=0.41(&/d)*, depends on the actual critical temperature. As
typical parameters, applicable to the lead films of Ref. 7, we estimate / =4 A,
giving p(d =1)=0.5 (i.e.,, for extremely thin films). In addition, &=
&(T.0) =100 A, leading to y,, = 10°p*T,,/ T., where the numerical factor is
proportional to (£e0!)’pt
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Quite generally, it is convenient to rewrite (38) into the following form:
In(T.o/ T.) = pA (43)

We brieﬂj{ discuss the dependence of A on the parameters. Case I: For
fixed ¢;, A depends explicitly on p through the classical contribution as
discussed above, and on p and T, through y,, ~p°/T.. As an illustration,
the y,, dependence is shown in Fig. 2, where A= ﬁ(p =0.1, y,,) is given.
Evidently, A increases with increasing y,,, and with increasing strength of
the interaction (~c¢y'). For the present range of parameters, the dependence
of A on y, is slightly weaker than the asymptotic result,”> A~In’y,,.
" (The asymptotic behavior is easily confirmed with the results of Appendix
C, by taking into account the contribution from potential fluctuations in
the regime 27T, < |wo|« Dg’). From a practical point of view, an approxima-
tion to A with a third-order polynomial in In y,, is entirely sufficient. For
case II, on the other hand, we note the very small prefactor on the right-hand
side of Eq. (42); thus, the Coulomb interaction is practically identical* to
¢;=107%, which in turn is, on the scale of this plot, identical to ¢;=0.

Of course, Eq. (43) is also easily solved for T,(p), with the results
shown in Fig. 3. As an important feature, we note the weak dependence on
p fort p<0.1, which is due to the dependence of v, on the thickness,
followed by a close to linear decrease. We have confirmed that these results
are independent of small changes of the numerical factors in y. = p/87 and

Fig. 2. The quantity A {see Eq. (43)] vs. y,, for
L (a) ¢,=0, (b) ¢;=1, (¢} ¢,=107", (d) ¢, =107,

| |
2 3 curve (d) is practically identical to the one for
1 10 10 10y,

the Coulomb interaction.

*Note that the g - 0 singularity (for the case of the Coulomb interaction), which seemed to
lead to unphysical results in Ref. 14, is not present in the consistent treatment of phase and
potential fluctuations [as given by Egs. (28} and (29)].

+Of course, the sharp wave-vector cutoff may become unreliable for too small p, say, p = 0.03.
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" {a) -

1 TR R Y Y
o 1 2 3 409 0.2 6 10 14 p

Fig. 3. (A) The critical temperature T, relative to the bulk value T,, vs. p = R/ R, for the
same parameters as in Fig. 2. (B) T,/ T, vs. p for (a) ¢; =0, (b) ¢;=10°, (c) ¢, =10, (d) c;—l
Note the difference in scale compared to (A).

inc; =4x1073(yT./ T.o)"/*. Onthe other hand, Wﬁﬁng VY =YX 10°p*T,o/ T,
we find for strong interactions (¢;=107%, Coulomb) a kind of scaling
relation:

T.(p, v)=T.(y**p, 1) (44)

which we have confirmed in the range 0.25 < y <2. Note that in Figs. 2 and
3, we have chosen y=1.

4. THE ORDER PARAMETER (T =0)

Clearly, it is straightforward to apply the present formalism at zero
temperature to calculate the suppression of the order parameter A of a thin
film. The frequency summation is replaced by an integration in the usual
way, and the equation analogous to (38) is found to be given by

A -1{_ 2 -1
In (A—o) = -[N(0)d] ( 5 Tdl rﬂ) - (45)

Here, A, is the order parameter of the corresponding bulk system, and I
denotes again the fluctuation correction to the potential relative to its bulk
value. Similar to the discussion in connection with Eq. (39), the present

scheme has to be extended (at least partly) into a self-consistent one, which
for T=0 is equivalent to

XAx > Xaa — 8% (46)
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after differentiation with respect to A in (45), where the constant 6% has
to be chosen such that yi,(we=q=0)—A""'—8%=0. Taking (46) into
account, we have

Xaa—A > JTE (47)

where J "L is defined in Appendix D. This procedure is also motivated by
considering the spectrum of phase fluctuations (see below).

As a technical remark, we introduce dimensionless variables x = w,/ 24,
y = Dg?/2A; then the y cutoff is given by y¥ = Dgq?,/24, such that y¥(A,) =
1.78y,.(T.,), where the BCS relation A,=1.76T,, was inserted. We thus
have, for the same parameters as above, y¥ =(1.78 x10*)p?A,/A and ¢ =
3x1073p(A - y/Ay)"2. Of course, at zero temperatures, a long-wavelength
cutoff is not necessary.

4.1. The Phase Mode

As an illustration, we consider briefly the collective mode connected
to fluctuations of the phase and the potential, in the limit of small frequencies
and long wavelengths. Defining the quantity (see Appendix E)

H=(r - ‘XZA)( v -X¢¢)1;232N(0) + XaeXon (48)
we find for x, y« 1
H=(my/2+x){1+[2*N{(O) V] "} —x? (49)

After analytic continuation, i.e., defining %~ = % (w,- —iw +0), the collec-
tive mode is determined by %® =0, with the following result:

w?=wADg(1+¢,)/c, (50)

with 5 =1, II for the short-range and the Coulomb interaction, respectively
[see (41) and (42)]. Note that, from wAD = wA7v}/3, the standard fourth
sound velocity is identified, namely c;=wAD=(n,/n)vy/3, where n,
denotes the (dirty limit) superfluid density. Clearly, for the short-range
interaction (case I), ¢;' corresponds to the Landau parameter F, of Fermi
liquid theory. Finally, for the Coulomb interaction (case II) we have
¢ =2A%rq/d such that w ~ g/, the usual result for two dimensions. (The
case of a very thin wire is discussed in Ref. 29.) Clearly, for three dimensions
(or g» d "), the frequency of the mode is shifted to the plasma frequency.

4.2. Results
In analogy to (43), we rewrite (45) into the following form:
In(Ay/A)=pB (51)
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Considering first case I, it is clear that B is a function of the cutoff yi only.
The results of a numerical evaluation, which is more lengthy than the
previous one, since the response functions have to be calculated numerically,
are given in Fig. 4. For easy comparison with Fig. 2, we put y;, = 1.78y,,.
The general behavior in both figures is quite similar, though there are
differences in detail, which are related to the stronger influence of long-
wavelength phase and potential fluctuations at zero temperatures. In par-
ticular, from the results of Section 4.1, it becomes apparent that B~ —In ¢,
in the limit ¢;~> 0. Consequently, B is larger than A for small y}, if ¢ is
small (strong interaction). Furthermore, we find that, for the relevant range
of y.., an excellent fit can be given for B with a second-order polynomial
in In y%, reflecting the fact that the increase is weaker as compared to that
of A for large y,,. Finally, note that for ¢;=00 [curve (a)], B is about a
factor two smaller than the corresponding A, though A does somewhat
depend on the special choice in Fig. 2 (namely p=0.1 in the classical
contribution). The numerical error in Fig. 4 may be up to a few percent.
For case II (Coulomb interaction), we write ¢y in the following form:

e =3%x107y*y'? (52)

where ¥* = p(A/A,)"%. Thus, considering B = B(y}%, v*), it is clear from
the above discussion that B~ —In v* for y*— 0. It turns out, however, that
for most values of p and A to be considered, a typical value is y*~0.1;
B(y%,,0.1) is also shown in Fig. 4 (dashed line).

The features discussed are clearly reflected in the final result, shown
in Fig. 5, namely A/A, vs. p. Similar to T.(p), the dependence on p for
small p is weaker than linear, followed by a linear decrease, and then a

10

Fig. 4. The quantity B [see Eq. (51)] vs. y,, 1
{(y¥ =1.78y,,) for the same parameters as in

Fig. 2, and for the Coulomb interaction 0
{dashed line; see text).
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Fig. 5. The zero-temperature order parameter A
relative to the bulk value A; vs. p for the same
parameters as in Fig. 2 (a-d), and for the
0 i 2 .3 4 P Coulomb interaction (e).

regime of decreasing magnitude of the slope. While the small-p behavior
reflects again the thickness dependence of the cutoff, the behavior for
A =0.3A, is related to the weaker dependence on y7, for large y¥ compared
to the calculation of T,, where the linear decrease persisted. Note also that
there is a clear difference between ¢;= 1077 and the Coulomb interaction,
which reflects the increasing importance of long-wavelength fluctuations,
as discussed above. Comparing A/A, with T,/ T.,, we find that for the
Coulomb interaction, A/A, is more strongly suppressed with decreasing
film thickness (increasing p) than T,/ T, by about a factor two for p ~0.2.

5. DISCUSSION AND CONCLUSION

In this paper, we have used the path integral formulation of the
microscopic theory of superconductors to derive the fluctuation corrections
(one-loop approximation) to the free energy functional. Based on the
standard dirty limit expressions for the response functions, we thus have
been able to determine the leading corrections to the gap equation. In
particular, we applied these results to calculate the decrease of the critical
temperature, and the (zero temperature) order parameter, of a very thin
film (d < &). We emphasize again that we have determined T, (and A) of
a film relative to its bulk value T, (and A,), and not the dependence of
the critical temperature (and the order parameter) on the mean free path
(for example). The latter question is, in general, the more difficult one (see,
e.g., Ref. 30).

As a consequence of calculating difference quantities as described, the
large-wave-vector cutoff is given by the inverse film thickness, leading to a
weaker than linear decrease of T, and A vs. R~ d ™~ for R« Ry= h/4e’.
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Quite generally, we find the decrease of T, and A to be roughly of the same
order, and superconductivity is found to be strongly suppressed (for fixed
d) by increasing the strength of the (repulsive) interaction. For the physically
relevant case of the Coulomb interaction, we find that long-wavelength
phase fluctuations play an important role at zero temperature, such that
A/A, is smaller by up to a factor two than T,/ T, for the same thickness.
The results have been summarized in Figs. 3 and S. '

In applying the present theory in the regime T,« T,,, A< Ay, it turned
out to be important that, for the relevant range of parameters, the depen-
dence of A [see (43)] and B [see (45)] on the cutoff is actually weaker than
the asymptotic behavior, Eq. (2). In particular, the flattening off of A is
directly related to the fact that B is proportional to In*(y%) only. Note that
a similar behavior was found by Finkel’stein™ in his calculation of T, by
including higher order corrections via a renormalization group calculation.
It is not clear how these corrections can be included in our formulation.

Returning to another question alluded to in the introduction, we note
that Ov_t:hinnil«:ev9 actually found an increase in the critical temperature
due to potential fluctuations; in magnitude, however, his expression is equal
to the one given by Eq. (2). This result, which we believe is not the correct
one, becomes understandable when working consistently with the path
integral formalism as described in Section 2. In fact, there is a subtle
difference between the auxiliary field ¢ introduced to decouple the electron-
electron interaction and the electric potential ¢ = i¢ (& is also introduced
in Appendix B). Working consistently with the auxiliary field, and taking
into account the results for the correlation functions given in Appendix E,
we have explicitly (for A— 0) worked out the correction to the gap equation
by calculating the second-order correction to the off-diagonal Green’s
function. The result, which is identical to the one following from Eq. (38),
differs by a minus sign from the one in Ref. 9 [Eq. (7)] in the terms
proportional to the ¢-A and the ¢-¢ correlator.

While different theoretical questions could be settled, comparison with
experiment’ is less satisfactory in detail. In particular, the experiments
seem to indicate a very sharp initial drop of T, vs. Ry, which we cannot
confirm; however, it may be problematic to identify the measured To*
with T,,. Furthermore, the experiment’ also shows that T. approaches a
constant for R~ 0.5R,; for this value, however, the limit of one atomic
layer is approached, for which the present theory certainly is problematic.
In addition, while A/ T, is roughly constant experimentally,” we find that
A is suppressed more strongly than T,; it is just a speculation that strong
coupling corrections may be of importance for the lead films investigated.”

Finally, we emphasize again that in the present formulation of the
theory, we restricted ourselves to the BCS limit, i.e., we did not take into
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account the energy dependence of the self-energy, thereby ignoring, e.g.,
the linewidth in the density of states. This is partly motivated by the
experimental result’ that the density of states remains sharp although T,
and A are strongly suppressed, but also by an investigation of a phenomeno-
logical model based on the idea of pair-breaking due to fluctuations of the
supercurrent.”’ This model, which gives corrections to the gap equation
similar to those due to paramagnetic impurities, but extending over a
frequency range of the order of the gap, leads to the conclusion (at T =0)
that the reduction of the order parameter is much larger than the smearing
of the density of states (see, however, Ref, 32). This result also becomes
clear by comparison with the effect of paramagnetic impurities (local in
frequency), where the decrease of the order parameter and the “smearing”
are of the same order. However, from this model, we have not been able
to determine the decrease of A quantitatively. On the other hand, it should
be noted that pair-breaking due to current fluctuations apparently gives a
good explanation for experimental results concerning the linewidth of thick
films.>' This, we believe, is also an interesting aspect, which we leave for
future investigation.

APPENDIX A. THE LARGE-WAVE-VECTOR CUTOFF

An important concept in evaluating the sum over wave vectors in
restricted geometries is the calculation of difference quantities. To be
specific, consider a film of thickness d, and let the parallel dimensions be
sufficiently large to allow for the usual replacement of the sum by an integral.
Thus, one encounters expressions like

d’q
(27)?

K@=23 [ LLng+a) (A1)

where ¢°=g%+q> and q, =2mn/d, n=0, =1, .... The interesting quantity

is the difference AK = K(d)— K(0), i.e., the value of K relative to the
bulk value. Applying a standard formula, we note that

x(d)ségk(qgﬂL q§)=Lf§;coth(%) h(q®-z%) (A2)

where C is a contour enclosing the poles of coth(dz/2). Considering a
simple example, namely h=(q’+q2)”", we immediately find Ak =
k(d)—k(c0) to be given by

_1 94\ _
Ak _Zq [coth( 5 ) 1} (A3)
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i.e., Ak =(dg*)™" for qd « 1, equal to the g, =0 contribution of (A2), while
Ak is exponentially small for gd >» 1, Ak =g~ ' exp(—qd). This leads to the
prescription

1 d’q
AK == h(g?
K qu2<qi(2W)2 (47) (A4)

where the cutoff is given by g, = d . Of course, we have in mind situations
where d < &,, where &= (vgl/ T.)"/? is the coherence length. An inspection
of the results of the main text, in fact, shows that the above example, for
géo> 1, is quite representative, though we actually encounter expressions
of the form h~In*(qg*+ q2)/(g°+ q%). Nevertheless, it is easily seen by an
appropriate deformation of the contour that the difference Ax is again
exponentially small for g > d ', justifying the assertion made above.

APPENDIX B. LINEAR RESPONSE OF A
DIRTY SUPERCONDUCTOR

A detailed investigation of the linear response of a superconductor,
starting directly from Gorkov’s equations, has been given by Schén® in his
study of the propagating collective mode. Here we briefly summarize (and
slightly extend) his results, and indicate their derivation in the dirty limit.

In the dirty limit, 7.7« 1, it is most convenient to consider the equation
of motion for the quasiclassical Green’s function

(0, ' 1) =— f EP w0’y p.) (B1)
W' r)= w';
g 0}, ] ‘?TN(O) (277)3 0), s p)

which has the following form:***
{[(0$3+ iﬁ‘*‘a, §]}ww' == D{[V, g[v, g]]}ww' (Bz)

Here, D = v7/3 is the diffusion constant, U= ed i,  is the electric poten-
tial, w and ' are Matsubara frequencies, and we use the shorthand notation

{AB},. .= T Y, A(w, 0")B(o", ') (B3)

Note that the quasiclassical Green’s function is normalized according to
{88} uur = (1/ T)8,0 1 (B4)

and that

~ [0 A
A-—:[&*‘ o] (BS)
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In a state of equilibrium, taken to be spatially homogeneous, we may choose
A to be real, and the solution of (B2) is given by

g =af+p7, oC+p=1 (B6)

where a=w/ W, B=A/W, W= (0>+A%)"2

We consider now the linear change of the Green’s function due to a
perturbation of wave vector q and frequency w,. Then &= §'®’ + 8¢ where
8¢ = 88w, w' = w — w,), and we write

s¢=a’1+b"%+a 5+ b4, (B7)
In addition,
A->A+8AF—isAT (B8)

such that A" are real, and connected with magnitude and phase variations
of the order parameter. Since the L and the T parts are decoupled, it is
straightforward to calculate the various components of 82. For example,
there are relations like

a T IA(UQ

bT T WW'+we' +A?
where W' = (w'>+ A?%)"/2, Finally, we introduce response functions according
to the following relations:

(B9)

aTY bh=x5.8A" (B10)
aT Y bT = xI,6AT + xs,ed (B11)
. X _ -
sz%aTz)(M aa’"{%-u}w (B12)
Note that the linear change of the charge density is related to a” by
8p=—2mieN(0)TY aT ~2¢*N(0) (B13)

justifying the square bracket expression in (B12). We obtain the following
results:

WW'+ we' F A?

T(L) _ ; (-} B14
Xaa~=mTY, WW'(W+ W'+ Dg?) (B14)

V A&)O
ey, = B15
Xso = "Xea=7TL WW'(W+ W'+ Dg?) (B15)

2.2
S C S — A"w (B16)

2¢°N(0) S WW(W+ W'+ Dg*)(WW' + o'+ A%)
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Here, Y| indicates that the sum has to be restricted to |w,| < wp, Where wp
is the Debye frequency. In addition, it follows directly that

Xag ™ A (XAA XAA) : (B17)

and after a slightly longer calculation

X‘f)d” WW' &)0),
_Xee g, T
2¢2N(0) 2(xas = xsa) = ZWW(W+ W'+ Dg?)

(B18)

Comparing these results with the more general ones from Gorkov’s
equations,” we find the above results to be valid in the regime wor <1,
q<I7!, where [ = ver is the mean free path. :

APPENDIX C. RESPONSE FUNCTIONS, T=T,

Here we give some specific results close to the critical temperature.
Considering first the order parameter response functions, we define

1.1
x5l =In ;O)D-%- |kl (C1)
such that
A WW + ww' A2 1

IT{L)= T [ (-} ______} 2
T Ww(wsw'+Dg) W (€2

and introduce m =|wy|/27T, y = Dg*/2%T. Then we find, for A=0,

1+m+y

I=1"=yG)-¢ (7) (C3)

where ¢ is Euler’s psi function. In addition, we also encounter the correction
to I+ 17 in order A%, which is calculated to be given by

0 y fl1tm+y ,
27727*251.5 (I*+ Ir)lmo:yzm — [;p (T) -3+ m):k (C4)
where ¢ is the derivative of the psi function.
The coupling between order parameter and potential is already linear
in A. Thus the following expression is sufficient (m # 0):

A N 0 1 1 1
e [w (2222 g |-y m-ydi} s
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Finally, x,, is easily calculated in the normal state, with the standard result
' 2

Dq
_a=—2¢° ™ Cé
Xoola=o=—2e"N(0) \wo|+ D’ (Ce)

Furthermore, the contribution ~A? is given as follows (m 7 0):

27T 9 ,
+““§:ﬁw(%+m)

26?N(0) 9A Xoslamo= 2m
! [w(l+m+y)+w<%+m)-—zw<%)]

+ 2
2(m+y) 2
1 1+m+y 1
sy (F5) -vem)
1

mey) [¥G+m)—y¢(3)]

T— [w(w)—w(.%m)] 7)

m?—y* 2

APPENDIX D. RESPONSE FUNCTIONS, T =0

In the regime of low temperatures, T - 0, the frequency summation in
(B14)-(B16) must be replaced by an integration and, in general, the various
functions cannot be calculated analytically. Defining, in this case, the
dimensionless variables x = |w,|/24 and y = Dq’/2A, some results are easily
derived for small x, y and for x=0 and y=0, respectively. Again, we
consider first the order parameter response functions, and define

2
x5y =In %*—J” (D1)
such that
1{™ WW' + we' A% 1 ]
W=2] d e D2
! ZL,O "’[WW’(W+ W+Dg) W (b2)
Then we find the following results:
( 1 ™ )
m (E—arcsm y) for y=1
JT(x=0,y)=-y: 1 (D3)
Wln[y+(y2"1)”2] for y=1

Furthermore, JX(0, y) is related to J” as follows:
2

~1 T
TEHO, y) =22 5T (0, y) - = D4
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On the other hand, for y =0,

J7(x,0)= -m%i-;ﬁ In[x +(1+x2)"?] (DS)
and
= (%0 (D6)

From these results, it is straightforward to verify that, for small x, y,

P ) =Ty b
- (D7)
JHny)=—1=gy -5+

Note that there is no mixed term ~xy in J”, which reflects the absence of
dissipation in the phase mode at zero temperatures. On the other hand, for
x,y>1,

JT(O,y)‘*-ln?.y_——[any 4
(D8)
TT(x, 0)”-1n2x+ [In2x 4

while for the longitudinal response

JH0, y)=—In 2y—--—+ s(In2y+3)+--
2y (D9)

1
JH(x,0)=—In 2x—§(1n Ix+Y 4.

Of course, the leading contributions in the limit of large x, y are in agreement
with the corresponding limit of (C3), since the gap is unimportant in this
regime.

Finally, from the relation (B17), which is valid for all temperatures,
corresponding expressions for y,, follow. In addition, we note that, for
y=0,

Xoo (%, 0)=2e’N(0)J"(x,0)/x” (D10)
giving, for x« 1, ‘
Xoo(X, 0)=—2e’N(0)[1-2x%/3+- -] (D11)

Furthermore, we find the following relation, which is valid for all x, and
y—>0:

I+ (Xas) I: ( -%QX—%)- } =—yH(x) (D12)

H(x)=1+x)"2E(r) (D13)
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Here E(r) is the complete elliptic integral, and r = x/(1+ x>)"/2. Note that
H(0)==/2, while H(x>»1)=x.

APPENDIX E. CORRELATION FUNCTIONS

The correlation functions are related to the response functions in the
usual way. For a concise summary of the results, define

y{‘”'(A-I“XKA)(V'i“X¢¢)/232N(0)+Xa¢)(¢a (E1)

where it is understood, here and in the following, that all functions depend
on wave vector q and frequency w,. Then we have the following results:

AN(OXT.(SA" ANy = (A" = x5a)™" (E2)

Clearly, the magnitude (longitudinal) fluctuation does not couple to the
phase (transverse), 8A7, and potential, 8¢, fluctuations. Furthermore, we
obtain

AIN(OXT,(8AT8AT)=(V "~ x44)/[26*N(0) %] (E3)
2N(OKT.(88"e8))=ixag/ X (E4)
2e’N(OXT(8684))=(A"" = x1s)/ ¥ (E5)

Of course, for temperatures above the critical temperature, (E5) reduces to
the standard expression, namely

(T(8684))=(V "= xp5) ™" (ES6)
where ‘
X6 = —2€’N(0)Dg?/ (|wo| + Dq”) (E7)

These results follow directly from the second-order contribution to the
effective action, which, for longitudinal fluctuations, is given in Eq. (25);
note that we put A=A+8A"—iSA”, and ¢ = ¢ + 8¢, in general. Then we
find, for the contribution relating to phase and potential fluctuations, the
following expression:

T T
S& = N(0) J dxdx’(i?qb)xw’(x, x') (i‘; )x' (E8)
where
Wi=A""~xda (E9)
Wy = (V' = x40)/2¢* N(0) (E10)
Wl2x_iXch> (E11)
Wi = —ixea (E12)

Clearly, we have ¥#(q, wy) = det, W(q, w,).
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