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The coupling between the charge-density wave condensate, and the quasiparticles and
normal electrons, due to long-range Coulomb forces is investigated within the framework
of the kinetic theory, for finite temperatures and in the presence of impurity scattering.
The temperature dependence of the parameters, which enter the phenomenological equa-
tions for the transport in CDW systems, is determined. In the absense of normal electrons,
a strong enhancement of the damping and the velocity of the phase mode is found
for low temperatures, which is due to the freezing out of quasiparticles.

1. Introduction

Though many years of experimental and theoretical
investigations® have established that the unusual phe-
nomena found in many quasi-onedimensional con-
ductors at low temperatures are related to the forma-
tion of a charge-density wave (CDW) state, the ques-
tion of the transport in these systems is still an open
one. In particular, the controversy between explana-
tions based on a quantum approach, or on a classical
model, seems to be unsettled [3-5]. Furthermore, re-
cent experiments [6-10] have revealed that there is
a rather strong coupling between the CDW conden-
sate and the remaining free carriers, namely the quasi-
particles which are excited thermally across the
Peierls gap, and other normal electrons (from those
parts of the Fermi surface which do not participate
in the formation of the CDW state). A possible expla-
nation for these results invokes the long-range Cou-
lomb interaction: The charge fluctuations associated
with the motion of the CDW are screened by quasi-
particles and, since the number of quasiparticles is
strongly temperature dependent, a strong increase of
the CDW viscosity results upon lowering the temper-
ature [11].

In fact, it is well-known [12-13] that long-range
Coulomb forces have a drastic effect on the phase

! Some reviews are given in [1]; see also [2]

mode at zero temperatures (in the absence of normal
electrons): The (acoustic) phason becomes an optic
mode if the Coulomb interaction is taken into ac-
count. Considering finite temperatures, on the other
hand, the phason velocity is found to diverge with
decreasing temperature [14-17], a feature which has
been used [18, 19] to explain the strong temperature
dependence of several quantities in KCP.

In this article, I wish to investigate the effect of
the long-range Coulomb forces within the framework
of the kinetic theory [14, 20, 21], ie. by explicitly
considering the coupling between the CDW conden-
sate, and the thermally excited quasiparticles and/or
normal electrons. The derivation of the kinetic equa-
tions, which has been discussed in detail in [21], starts
from microscopic theory and utilizes the concept of
so-called quasiclassical Green’s functions, i.e. Green’s
functions which have been integrated with respect to
the magnitude of the momentum. The equations rep-
resent a rather general approach to the dynamics of
CDW systems, and they are equivalent to microscopic
theory, as long as the variation in space and time
is slow compared to the atomic scale. As a special
feature of the momentum integrated Green’s func-
tions, these quantities turn out to be normalized
which allows to define quasiparticle distribution func-
tions. Furthermore, various scattering processes can
be included easily [21]. Note also that in the limit
of well-defined quasiparticles, the kinetic theory as
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discussed here can be related to the more familiar
transport equation studied in [22].

In this paper, I will concentrate on the derivation
of the (temperature dependence of the) parameters
entering the phenomenological equation of motion
for the phase of the order parameter [11]. Long-range
Coulomb forces are taken into account by coupling
the equations to Poisson’s equation, which corre-
sponds to the RPA approximation for the Coulomb
interaction. In particular, impurity scattering is in-
cluded, thereby generalizing earlier results from mi-
croscopic theory [15, 16], especially to the most im-
portant hydrodynamic regime in which the frequency
is small compared to the scattering rate (see also [17]).
It turns out to be straightforward to recover the above
mentioned results, and to discuss their range of va-
lidity.

This article is organized as follows. In the next
section (Sect. 2), T briefly review the kinetic theory,
concentrating on the low-frequency long-wavelength
limit (to be specified below). The results, in the pres-
ence of Coulomb forces, are presented in Sect. 3. In
the final section (Sect. 4), the results are summarized,
and the relation to experiment is discussed.

2. Review of the kinetic theory
2.1. The kinetic equations

In this section, I give a brief review of the kinetic
theory [14, 21] in the limit of low frequencies and
long wavelengths such that @ <4, wg; vy g <4, where
o and q are the external frequency and wave-vector,
respectiviey, 4 is the magnitude of the order parame-
ter, w, the characteristic phonon frequency, and vy
the Fermi velocity.? Under these conditions, it is pos-
sible to consider variations of the phase of the order
parameter, y, only, and to linearize the kinetic equa-
tions with respect to small deviations of the distribu-
tion functions f* and fT from equilibrium: f“=f,
+6 X, where f, is the Fermi function, while f7=0
in equilibrium. In addition, the impurity scattering
rates (t; 1: forward scattering, t, *: backward scatter-
ing) are also assumed to be small compared to 4.
Concentrating on the one-dimensional case, the fol-
lowing Boltzmann-like transport equations have been
derived ((E91) and (E92)):

Ny (—iwd fF+ivp g fT)=0, (1)
Ny (—io fT+ive g8 f5)+24Ng fT

1 Ny Fo.a1(®
e (G @

2 Units are such that A=k =1. Also, I will refer to equations given
in [21] as, for example, (E91): This denotes Eq. (91) of [21]

Note that § f* and f7 are functions of the energy
E, w, and ¢, and I sometimes use an obvious mixed
notation; for example ¥, ,= —iwy,,,. Also, N; de-
notes the (normalized) BCS density of states, and

NE=N,+iwdgR,/2 3)

where N, and R, are related to the regular (retarded
and advanced) Green’s functions (see (E 53)). For the
present discussion, the approximation

2ANS = (42 Ny/E*) - (—iw+ Ny /1) 4)

will be sufficient, for &2=E?>—A4?>0; l/t1=1/7,
+1/21,. The physical meaning of § f* and f7 will
be transparent when considering the expressions for
the charge-density and the current ((E 89) and (E90)):

p=2N(O)e[fdEN, & f*—3vp 1], 5
J =2N(O)vpe[fdEN, fT+11] ()

where N(0) is the normal-state density of states at
the Fermi surfaces (for one spin; N(0)=(rvg) ' in
one dimension). Thus 6 f* and fT describe variations
of the density (and the energy), and the current (and
the energy current), respectively. Also, I defined

Y=(i—vi 1" —2evp 6)/2 ™

where & is the electric field.

The quasiparticle distribution function, more pre-
cisely, f¥, is coupled to the equation of motion for
the phase via a kind of time-dependent Ginzburg-
Landau equation, namely (see (E87)):

mp ji+(1=Y)(i—v} ' —2evp §)=44 | dENg f".

)

Here my,, the ratio of the Frohlich mass to the electron
mass, is given by mp=44?/Aw}, where 1 is the (di-
mensionless) electron-phonon coupling constant.
Note that (8) does not contain the impurity pinning
potential, which can be obtained by other techniques
(see, for example, [23]).

2.2. Some results

An inspection of the transport equations reveals a
special feature which is due to the neglect of inelastic
scattering processes. Clearly, Eq. (1) leads to the rela-
tion @-8 f¥=vy q-f T, which means that the quasipar-
ticle charge is conserved for each energy: In the ab-
sence of inelastic processes, there is no communica-
tion between different energies. Furthermore, the rhs



of (2) can be considered as a drive term for the distri-
bution functions, and it consists of two contributions,
~1, and ~y. Obviously, (1) and (2) can be solved
for fT, and inserted into (8) to yield the equation
of motion for the phase, and into (5) and (6) to express
the charge-density and the current in terms of the
phase and the electric field. The result is written as
follows:

4A[dENS fT=—a-2¢—b-j/z, )

and

i X‘_UZ Xr/ e .

F

where a, b, 0,,, and pu,, are relatively complicated
w, g, T dependent expressions which, however, can
be calculated by a single integration with respect to
energy. Defining 2 (E) by

A l=—iwN [1—(vp q/w)*]+N3/t,+24Ng. (11)
I obtain the following results (note that because of

the density of states, N;, the integration is over the
range E2> A? only):

(o2 L o (=5g) maear(y) o
and
(o) § as(-52) EX(0)

where oy=2¢e”vr1,/7 is the normal state dc conduc-
tivity. Clearly, the quantities a, b, 6,,, and p,, charac-
terize the quasiparticle effects in the dynamics of the
charge-density wave.

As an illustration, I consider o,, and y,, in more
detail, and especially in the hydrodynamic regime
where the frequency is small compared to the elastic
scattering rate. Actually, because of an extra density
of states factor multiplying 1/7, and 1/7, it is sufficient
to require (r, is assumed to be of the same order
as t,) that wt<(T/T)*?. Then Eq. (13) simplifies to
the following one:

o [ gp( ) € io
oy % OE ) &+ A4%t,/t —iw+D(E)¢*

(14)
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where I defined the (energy-dependent) diffusion con-
stant, D(E), by the relation (Dy =03 1,):

OE\?  |E|-¢
D(E)_DN (56) éz_l_AZ,L.Z/T'
A similar expression holds for y,,, which differs from
(14) only by an additional factor N; under the integral.
Considered as a function of the wave-vector, or more
precisely of x=Dy g*/(—iw), o,, is a decreasing func-
tion for increasing x, with ¢,,(x=0)=0,, and a,,
~gy Y/x for x - o0, where Y=Y(T) is the Yosida
function®. As a reasonable interpolating formula, 1
propose to replace D(E) by a constant, D, such that

0,00 (—iw)/(—iw+Dg?) (16)

where D is chosen such that the correct limit is ob-
tained for x—co, leading to the relation D=
Dy-(oy/oy)/ Y. The temperature dependence of these
quantities, as well as of uy=p,,(x=0), is shown in
Figs. 1 and 2. For completeness, I summarize the re-

(15)

1.

Fig. 1. Temperature dependence of Y and Z/Y, where Z = py(t =1,).
The dashed line indicates the behavior of Z close to T, (see Eq. (18))
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Fig. 2. Temperature dependence of 6o/0y, D/Dy, and uy/Y, for 7,

:’[2

3 The paramagnetic susceptibility of an ideal superconductor, rela-
tive to its normal state value, was found by Yosida [24] to be
given by this function, now commonly denoted Y
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sults which are obtained analytically for T~ T, and
for T<T,:

(i) Closeto T,:

oo/oxy~D/Dy~1—k,-4)2T, (17a)

where, with k,=(t,/t—1)" %3, k, is given by

k1:1+kz-%(~g—arctgk2). (17b)
Furthermore,

1—po = (rA/4T) (z,/7)2. (18)

For example, for 7, =7, (i.e. 7,/1=23/2), one finds
ky~231,and 1 —puy>~0.96-4/T,.

(ii) Low temperatures:

o/on=4(t/t;) (T/4)e™ 4T, (19)
po=(t/12) @ T/4)" e~ 417, (20)
D/Dy=2(2/m)''? (c/r) (T/4)**. 21

Note that for the special case 1=1,, ji, agrees with
the function Z(T) defined earlier (see (E104)), and
that u,=2Z(T) is also recovered in the collisionless
regime [22]. Remarkably, in these cases, the quasipar-
ticle distribution function, f7, is similar to the one
discussed in connection with the branch imbalance
in superconductors [25] (see also [21]).

Finally, the second term in the square bracket and
the last term in Eq. (10), can be combined to the rela-
tion

j=0,,-E+(e/n)-v-} (22)
where v is related to g,, and g, , in an obvious way:

1 Ogp T2 22,2
v=1 ,u,”,+GN —iw(w vE 4°). (23)

Thus, from the above results, one finds v~1—7Y in
the static limit (@ — 0), while v~ 1 — pu, in the opposite
case (g — 0). Note also that, from the continuity equa-
tion, the charge-density is given by p=g4-j/w.

2.3. The phase mode

Returning to the equation of motion for the phase,
it is evident that (8) and (9) can be combined to the
following equation:

i—c2y +yi=2e*vs & (24)

where c?, e*, and y (which are functions of @ and
q) are given by

2 ex 1— 1-
c_2=i= Y+a o Y+a 25)
vg € mp+l—Y+a mp
and
b/t b/t
bl b 26

T mp+1—Y+a  mg

The last equality in (25) and (26) holds for all tempera-
tures, provided m2=m.(T=0)> 1, except in a small
region close to T,, given by T,— T; ~ T./(m?)%. [How-
ever, all results have also been derived under the as-
sumption 4-t>1.] This is justified by noting that
in the hydrodynamic limit, Eq. (12) simplifies to the
following one:

= ( afo) N, 421,/ i 20

= [ ae(-Z : .
¢ _{Od 0E] &2+ 4?1,/ —iw+D(E)q*

In particular, this leads to the relation a,=a(q=0)
=Y—pg; thus ag~1—puy~A4/T, close to the critical
temperature.

The quantity b, entering the “viscosity” vy, is given
by an expression which differs from (27) only by an
additional factor N; under the integral. In order to
determine the velocity and the damping of the phase
mode, in the limit g — 0, I expand b with respect to
q as follows:

b(g—0)xby—b;-Dy¢*[(—iw)

which leads to

YAYo A +by -vF A" /me (28)
where vo=y(q=0) is discussed briefly below. Thus,

in the limit g —0, the phason velocity is found to
be given by

qg—-0 Z2=— (29)

where the full denominator was included for comple-
teness. In particular, the phason velocity increases
with increasing temperature,* and is proportional to
47! in the region T,—T;<T,—T<T, This is in
strong contrast to the static limit, where

2
0w-0: HE=—— (30)

4 Close to T;, one finds by (1 — p1p)/2



Fig. 3. Temperature dependence of the square of the phason velocity,
normalized to the zero temperature value, in the static (w=0) and
dynamic (g =0) limit, for m$=10% and 7, =1,

In this limit, ¢} decreases (weakly) with increasing
temperature, to the value [15] ¢2~0.66-c2(T=0) for
T- T.. At low temperature, of course, the standard
result ¢§ = c2T( =0)=v3/(1 +my) is obtained. For illus-
tration, the temperature dependence of the phason
velocity is shown in Fig. 3, where I have chosen m
=102

Finally, the damping constant y, (which is given
explicitly in (E95)) describes dissipation due to the
scattering of thermally excited quasiparticles at im-
purities. Therefore, y, is strongly temperature depen-
dent, and decreases ~exp(—A4/T) at low T. In order
of magnitude, one finds

1 {A/4Tc

NmF 7, {(4/T)e "

ALT

4> T. 3

Yo

In this expression, I have omitted logarithmic correc-
tions which arise from a divergence in the integral,
for £2—0, which can be handled by introducing a
finite linewidth in the density of states. Note, in partic-
ular, that y, increases ~A4~! for T,— T, < T,—T<T,,
with yo~15 ! for T.— Ty ~ T,— T'(as an order of mag-
nitude estimate). I wish to remark at this point that
an additional damping mechanism, namely phason-
phason scattering, which results in a somewhat
weaker temperature dependence of the damping con-
stant, was studied in [26].

3. Long-range Coulomb forces

Before taking into account the effects of the long-
range Coulomb forces, I briefly discuss the extension
of the results of the previous section to quasi-onedi-
mensional situations. First of all, the transverse dis-
persion of the phase mode is taken into account by
the replacement c?0%—c282+c2V? in (24), where
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¢, (<c) is of the order of the phonon velocity, and
I have chosen the CDW wave-vector to be along the
X-direction. Consequently, & — &, in (24), too. Second-
ly, the current is generalized as follows:

i=j-X+e, & (32)
where?

J=04p 6xtjcows Jeow=evp N(0)-v-§ (33)
is the current due to the CDW and the quasiparticles
which are excited thermally across the Peierls gap,
and the last term in (32) describes the effect of normal
electrons, i.e. electrons from those parts of the Fermi
surface which are not affected by the CDW transition.
The quantities v(q,,w) and o,,(qg,, w)/oy have been
discussed above; furthermore, N(0) is the (3-D) den-
sity of states, and oy =n, e t,/m, where n, is the den-
sity of Peierls electrons.

Following the standard procedure, long-range
Coulomb forces are taken into account by adding
Poisson’s equation:

V-(&—&)=4n(p+p*) (34)

where & is the (externally controlled) spatial average
of the electric field, and p is the charge density related
by the continuity equation to the current in (32). For
completeness, I also included 4np*= —&*3d, &,,
where ¢* describes virtual excitations across the
Peierls gap [12, 13]. It is found that the standard
zero temperature result [12, 15, 16], namely &*
=w2/6 4%, where w, is the Plasma frequency, follows
from the quasiclassical approach [21] by considering
higher order terms (in the sense of the gradient expan-
sion) in the equations given above.

Defining 68 =&—&, and putting 6&=—F ¢ in
an intermediate step, the following relation between
the phase and the electric field is found:

{*[1+4nid/w] +e*q2} 86,
= -—4nevy N(0)-v-q2 (35)

where 0y =y —¥; X is the spatial average of the phase,
and ¢ is defined by

6=q-6-9/q° =[q:(6,,+0,) +q10,,1/q° (36)

where ¢, and o, are the parallel and perpendicular
components of &,. Combining (35) and (24) I thus
obtain the following equation of motion:

ityi—ct V2 y— 0% x=2e*v; &, (37)

5 Note that §/2p can be identified with the CDW velocity
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where &, , is given by (g3, =8ne* N(0)):

o
[N

—1+ Q%‘F'V

c *(1+4nid/w)+e*g?’ (38)

From this equation, and considering the static limit
(w — 0) in which case one has the relation

lim q*6/(—iw)=2e*[N(0)- Y+ N,(0)] (39)

where N,(0) is the normal electron density of states,
the renormalization of the phason velocity is easily
determined. Taking into account that v(w=0)=1-Y,
I find the following result:

, 1+«
Y+o

_N,(0)
=Ny

~2

(40)

Here, in addition, the long wave-length limit (g*
+e*q2 < g3 (Y +a)) is considered. Of course, Eq. (40)
is in agreement with the results of [15]. Remarkably,
the phason velocity increases upon lowering the tem-
peratures, in a rather dramatic way if « is small, to
the value & =c2-(1 +a)/a for T—> 0. (See [18] and [19]
for a comparison with experiment.) Of course, (40)
becomes incorrect in the absence of any screening
(T=0 and «=0), where the acoustic phase mode is
shifted to a finite frequency [15, 16], as follows imme-
diately from (38). ,

- On the other hand, in the dynamic limit w> D g2
(but nevertheless w <47 (o, +0,)/e%), the effect of the
screening current is best described in terms of an effec-
tive damping constant. Using v(q,=0)~1—pu,, and
(g, =0)/vE~(1 — po)/mg, 1 obtain the following ex-
pression:

+(1_#0)2 . On (41)

=’}) .
o MpT, 0'0‘*‘“;.]1*"11%1/‘13

Combining (41) with (31), T conclude that the damping
due to the screening currents 1s small close to the
critical temperature, since m21,7,~ T,/4, while
m2 7,(§—7y,) ~ 1. On the other hand, assuming for sim-
plicity that there are no normal electrons, one finds
for T<T.: ‘

Loov_ @ (42)
mpT, 0o 4mmpoy,

Y~

where oy/oo>(4/T)(z,/47) exp(4/T). As an impor-
tant point®, § increases upon decreasing the tempera-
ture, and §~o; L.

$ This result was first obtained by Sneddon [11], while the corre-
sponding increase of the phason velocity was first discussed by Arte-
menko and Volkov [14]

In summary, neglecting for simplicity any normal
carriers, but taking into account the expression (16)

for a,,, the equation of motion is thus given by

FHv—clVE g +70)—20; x=2e*vp &, (43)

where

Note that ¢?/j~D in the low temperature regime.
Under the conditions specified above (g>+e*q2
<47q?é/w), the electric field can be determined di-
rectly from the charge neutrality condition, which in
the absence of normal electrons leads to the relation

G0 0&,=—evp N(0)-v-(63—D32dy). (45)

As an important result, it is thus confirmed that the
damping and the velocity of the phase mode (for finite
wave-vectors) is strongly enhanced at low tempera-
tures, due to long-range Coulomb forces, provided
the concentration of normal electrons is small.

4. Discussion

In this article, T have presented a detailed discussion
of the coupling between the CDW condensate, and
the thermally excited quasiparticles and normal elec-
trons, in the long-wavelength low-frequency limit.
Within the framework of the kinetic theory, which
1s based on the equation of motion of the quasiclassi-
cal Green’s function,” it is straightforward to deter-
mine the parameters entering the equation of motion
for the phase of the order parameter, in the presence
of impurity scattering and for all temperatures. The
Coulomb forces are taken into account by adding
Poisson’s equation which can be reduced, in the limit
considered, to the condition of charge neutrality. The
results confirm the hydrodynamic approach [11], and
also illuminate and extend the investigations of the
microscopic theory [15, 16]. Recently, the microscop-
ic theory of the combined effect of disorder and Cou-
lomb interaction has also been studied in great detail
[17]. T emphasize again that in the absence of normal
electrons, the inclusion of (diffusive) screening cur-
rents leads to a strong enhancement of the phason
velocity and the damping constant, in the low temper-
ature limit. In particular, the damping is found to
scale with the inverse of the low-field quasiparticle
conductivity, o, , and thus increases ~exp(4/T).

7 Further applications of the quasiclassical equations are given in
[27]

(44)



For a discussion of the consequences of these re-
sults for the CDW dynamics, it is of course essential
to include (in the incommensurate case) the pinning
due to impurities in the equation of motion, (43). For
easy reference, I have summarized the weak pinning
limit results in the appendix. I remark that such an
equation gives a hybrid description of the effect of
impurities, since the coefficients in the equation of
motion have been determined by the standard impuri-
ty averaging technique, while on the other hand, the
pinning force depends on the actual impurity configu-
ration. Nevertheless, I expect that such an equation
of motion should give an adequate description of the
dynamics, provided one accepts the assumption that
a classical description is possible at all. Of course, the
classical equation has been analysed in great detail.®

Returning to the strong temperature dependence
of the damping constant and the phason velocity, 1
remark that in the weak pinning limit, the characteris-
tic length, field and frequency (Lo, &, w,) scale with
the phason velocity as follows: Ly~ c?, &,~c¢~ 2%, and
wo~c¢~*. Thus, as a consequence of the renormaliza-
tion of the phason velocity, one should expect a
strong temperature dependence of these quantities.
On the other hand, note that in the strong impurity
pinning case, L, is determined by the average distance
between impurities, and the results of [17] also indi-
cate that @, is not renormalized. However, it has to
be emphasized that the leading contribution to the
large field CDW current is not affected by the screen-
ing currents, provided the impurity pinning can be
treated perturbatively [11]. (In contrast, the next to
leading order contribution is strongly modified {11].)

As mentioned in the introduction, recent experi-
ments [6-10] have shown quite unexpected features
which may be related to the screening mechanism
discussed above. Most notably, it has been found that
the (strongly temperature dependent) low ficld
conductivity is also the relevant parameter for the
large field CDW conductivity, the latter being mea-
sured, e.g. in K, 3,0M00;, at fields as high as about
30 times the threshold field [9]. Both quantities show
a temperature activated behavior, with a characteris-
tic temperature of ~10° K, and increase by five
orders of magnitude between 25 and 125 K (for this
compound). This result suggests that the distortions
of the CDW remain undiminished, even for very large
fields, such that the renormalized damping constant
() effectively determines the viscosity, in contrast to
the prediction of the classical model. The threshold
field, on the other hand, is only weakly temperature
dependent [9], which indicates that pinning is due
to strong impurities. Furthermore, computing the

8 A very limited selection of papers are Refs. 28, 22, 4, 29

419

characteristic time scale, 7,, from the relation 7,
=5/(2e*vp &,) (note that the over-damped limit is
adequate), into which the measured high-field value
of the damping constant (as well as &) is inserted,
gives good agreement with 7, as measured in the low-
frequency regime [8, 9] (see also [10]). For the latter
measurements, it seems to be clear that the renorma-
lized damping constant is the relevant quantity.

While these experimental results, as well as results
concerning interference phenomena and mode lock-
ing [3] have been interpreted as strong support for
the quantum tunneling model [5], another explana-
tion invoking very strong impurity pinning has been
offered recently [30]. Though the apparent impor-
tance of long-range Coulomb forces in the semicon-
ducting materials has brought new elements into the
discussion about the transport mechanism in CDW
systems, it is presently only a hope that this question
can be settled in the near future.

It is a pleasure to thank L.K. Hansen, K. Maki, and H. Smith
for interesting discussions.

Appendix

For completeness and for easy reference, I summarize
in this appendix some well-known results about the
characteristic scales (length, frequency, electric field)
in the equation of motion for the phase of the order
parameter, in the presence of weak impurity pinning.
Coulomb cffects are ignored for simplicity. I start
from (24), generalized to include the perpendicular
dispersion and the impurity pinning [23] (compare
also [4, 11, 28, 297]):

A+yi—c? 07 x—ci V7 x=2e*vp 6.+ py Re[£(r) ']
(Al)

where §, is proportional to the CDW amplitude, p,,
and given by

~ _ 2py  8pyg 44 _wé
pl_mFN(O)_ano_/lmF—— A

(A2)

where ¢ and ny denote the Fermi energy and the
equilibrium electron density, respectively. In (A1), (r)
is a complex random Gaussian field, and describes
the impurity potential for large (+ Q) momenta. The
average of ¢ is chosen equal to zero; furthermore,
the correlations are given by (&> =(&*&*> =0, and

L EEP=[27N0) 7] -6(r—T).

The equation of motion, (A1), is brought into a di-
mensionless form according to the following steps:

(A3)
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(i) Scale the transverse coordinate: r,-(c/c,)
-r,.

(ii) Introduce dimensionless coordinates, r/L,
-1, and a dimensionless random field, Z=K - &, such
that

&) Z*(r)>=8n-3(r—r). (A4)
The requirement (A 4) leads to
K2=167?N(0)1,-c3 [3/c% (A5)

The characteristic length, L,, usually called the Fuku-
yama-Lee-Rice length, is determined from the condi-
tion j,/K =c?/I1%. Of course, w,=c/L, can be identi-
fied as the impurity pinning frequency.

(iii) Define a dimensionsless time according to
w32 t/y —t (which is most useful in the limit y> w,).

As a result the equation of motion has the follow-
ing form:

Mj+j—V?y=6,/6,+Re[(r) "] (A6)

where M =(y/w,)?, and &,=w3/2e* vy is the charac-
teristic field. One obtains the following result for the
characteristic length:

Lofvp 1, =167 N(0) c1 - c*/(vg 3)
=167(vg/d 1) (c, c/v7)*.

In obtaining the last equality, I used N(0)
=(nvpd?) !, appropriate for weakly coupled chains,
where d? is the area for one chain. Note that Ly~1,
~(ftimp) "', the standard weak pinning result. For an
order of magnitude estimate, I use values which may
be appropriate for NbSe; at low temperatures [31]:
N(0)~45x10%/(eV-cm?®), c~3x10%cm/s, c2
~0.1c% woe~50K, A~100K; this gives L,
~10-vp1,.

Finally, I wish to comment briefly on some aspects
of the static correlations of the phase. More precisely,
let yo(r) be the solution of the linearized equation
of motion, in the static limit and for &, =0:

—V?xo=Re[£X)].

Clearly, xo(r) has a Gaussian distribution, with corre-
lations given by

I ()= <{[xo(r) — %0 (0)]*>
_3 d®q 1—cos(q-r)
- TEI (271:)3 q4 :

(A7)

(A8)

(A9)

Thus I (r)=|r|, which also motivates the above choice
of the characteristic length. As shown by Efetov
and Larkin [32], the same result also holds for the
solution of the non-linear equation, —VZ?y=

Re[&(r) exp(iy)]; this result can also be nicely demon-
strated [33] by path integral (“supersymmetric”)
methods.® The latter method, however, clearly dem-
onstrates that in performing the average over the ran-
dom field, in fact all solutions of the equation of mo-
tion are taken into account with equal weight. On
the other hand, it has been emphasized by Villain
[35], that the correlation function of the lowest energy
solution increases only logarithmically with distance,
between two and four dimensions, implying a power
law decrease of the order parameter correlations. The
two methods are compared in detail for a simple ex-
ample in [36].

Presently, I believe it is not clear whether the prob-
lem underlying this discrepancy is important, for ex-
ample, for a calculation of the dynamic properties
of CDW systems in three dimensions; it nevertheless
indicates possible dangers in a perturbative treatment
of disorder. Unfortunately, other methods [37-39]
are applicable for the onedimensional case only.

References

—_

. Monceau, P. (ed.): Electronic properties of inorganic quasi-one-
dimensional compounds. Vol. I: Theoretical; Vol. II: Experi-
mental. Dordrecht, Boston, London: D. Reidel Publishing Com-
pany 1985; Griner, G., Zettl, A.: Phys. Rep. 119, 117 (1985);
Krive, I.V., Rozhavskii, A.S., Kulik, 1.0.: Fiz. Nizk. Temp. 12,
1123 (1986) [Sov. J. Low Temp. Phys. 12, 635 (1986)]

2. Proceedings of the Yamada Conference on Physics and Chemis-
try of Quasi-One-Dimensional Conductors: Physica 143 B (1986)
3. Thorne, R.E.,, Tucker, J.R., Bardeen, J.: Phys. Rev. Lett. 58, 828
(1987)
4. Coppersmith, S.N., Littlewood, P.B.: Phys. Rev. Lett. 57, 1927
(1986)
5. Bardeen, J.: Z. Phys. B — Condensed Matter 67, 427 (1987)
6. Zhang, X.J., Ong, N.P.: Phys. Rev. Lett. 55, 2919 (1985)
7. Ong, N.P,, Zhang, X.J.: In Ref. 2, p. 3
8. Cava, RJ., Littlewood, P., Fleming, R.M., Dunn, R.G., Rietman,
E.A.: Phys. Rev. B33, 2439 (1986)
9. Fleming, R.M., Cava, R.J,, Schneemeyer, L.F., Rietman, E.A,,
Dunn, R.G.: Phys. Rev. B33, 5450 (1986)
10. Tucker, J.R., Lyons, W.G., Miller, J.H., Jr., Thorne, R.E., Lyding,
J.W.: Phys. Rev. B34, 9038 (RC) (1986)
11. Sneddon, L.: Phys. Rev. B29, 719 (1984)
12. Lee, P.A., Rice, T.M., Anderson, P.W.: Solid State Commun.
14, 703 (1974)
13. Lee, P.A., Fukuyama, H.: Phys. Rev. B17, 542 (1978)
14. Artemenko, S.N., Volkov, A F.: Zh. Eksp. Teor. Fiz. 81, 1872
(1981) [Sov. Phys. JETP 54, 992 (1981)]

15. Nakane, Y., Takada, S.: J. Phys. Soc. Jpn. 54, 977 (1985)

16. Nakane, Y., Wong, K.Y.M,, Takada, S.: In Ref. 2, p. 219

17. Nakane, Y., Takada, S.: J. Phys. Soc. Jpn. 57, 217 (1988)

18. Hansen, L.K., Carneiro, K.: In Ref. 2, p. 216

19. Hansen, L.K.: Ph.D. thesis, University of Copenhagen, 1986 (un-

published)

® Apparently, this has been known for some time: See the remark
on p. 805 of [34]. Explicitly, the proof has been given in the appen-
dix of [19]



20. Artemenko, S.N., Volkov, A.F.: Zh. Eksp. Theor. Fiz. 80, 2018
(1980) [Sov. Phys. JETP 53, 1050 (1981)]

21. Eckern, U.: J. Low Temp. Phys. 62, 525 (1986)

22. Rice, T.M., Lee, P.A., Cross, M.C.: Phys. Rev. B20, 1345 (1979)

23. Eckern, U, Geier, A.: Z. Phys. B — Condensed Matter 65, 15
(1986)

24. Yosida, K.: Phys. Rev. 110, 769 (1958)

25. Schmid, A., Schén, G.: J. Low Temp. Phys. 20, 207 (1975)

26. Takada, S., Wong, K.Y M., Holstein, T.: Phys. Rev. B32, 4639
(1985)

27. Artemenko, S.N., Volkov, AF.: Zh. Eksp. Teor. Fiz. 87, 691
(1984) [Sov. Phys. JETP 60, 395 (1984)];
Artemenko, S.N., Volkov, A.F., Kruglov, AN.: ibid. 91, 1536
(1986) [ibid. 64, 906 (1986)]; in Ref. 2, p. 146

28. Sneddon, L., Cross, M.C,, Fisher, D.S.: Phys. Rev. Lett. 49, 292
(1982)

29. Matsukawa, H., Takayama, H.: J. Phys. Soc. Jpn. 56, 1507
(1987);
Matsukawa, H.: ibid. 56, 1522 (1987);
Matsukawa, H., Takayama, H.: Jpn. J. Appl. Phys. 26, Suppl.
26-3, 601 (1987)
Bleher, M.: Solid State Commun. 63, 1071 (1987);
Bleher, M., Wonneberger, W.: Z. Phys. B — Condensed Matter
71, 465 (1988)

30. Tucker, J.R.: Phys. Rev. Lett. 60, 1574 (1988);

421

Tucker, J.R., Lyons, W.G., Gammie, G.: Phys. Rev. B38, 1148
(1988);
Lyons, W.G., Tucker, J.R.: Phys. Rev. B38, 4303 (1988);
Tucker, J.R., Lyons, W.G.: Phys. Rev. B38 (to be published)

31. Sridhar, S., Reagor, D., Griiner, G.: Phys. Rev. Lett. 55, 1196
(1985)

32. Efetov, K.B,, Larkin, A.I: Zh. Eksp. Teor. Fiz. 72, 2350 (1977)
[Sov. Phys. JETP 45, 1236 (1977)]

33. Eckern, U, Kree, R.: Unpublished

34. Dotsenko, V.S., Feigelman, M.V.: I, Phys. C16, L803 (1983)

35. Villain, J.: Z. Phys. B — Condensed Matter 54, 139 (1984)

36. Engel, A.: J. Phys. Lett. 46, 409 (1985)

37. Feigelman, M.V.: Zh. Eksp. Teor. Fiz. 79, 1095 (1980) [Sov.
Phys. JETP 52, 555 (1980)]

38. Feigelman, M.V., Vinokur, V.M.: Solid State Commun. 45, 595
(1983); ibid. p. 599; ibid. p. 603

39. Wonneberger, W., Gleisberg, F., Hontscha, W.: Z. Phys. B -
Condensed Matter 69, 339 (1987)

U. Eckern

Institut far Theorie der Kondensierten Materie
Universitit Karlsruhe

Postfach 6980

D-7500 Karlsruhe

Federal Republic of Germany



