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Quantum vortex dynamics in granular superconducting films
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We study the quantum (zero-temperature) dynamics of vortices in a granular film, which we mod-
el as a square lattice of superconducting grains, weakly coupled by Josephson junctions. The model
takes into account the capacitance to the ground and between nearest-neighbor grains, as well as the
special features related to the tunneling of quasiphrticles. Starting from the general model, we
derive and discuss difFerent approximate models. We investigate the dissipation in the motion of the
vortices, which results from excitation of acoustic modes and particularly, of quasiparticles.

I. INTRODUCTION

Recent experimental studies on granular superconduct-
ing films' and arrays of Josephson junctions have stimu-
lated renewed interest in the quantum mechanics of a sys-
tem of Josephson-coupled superconducting grains.
While it was suggested long ago that in the case in which
the capacitance of a Josphson junction is very small,
quantum fluctuations of the phase difFerence become im-
portant, an interesting additional feature has emerged
only recently, namely that the capacitance may be strong-
ly modified by virtual tunneling of quasiparticles. In
fact, based on this idea, a mean-field analysis supports
the experimental findings' that the low-temperature be-
havior of the film depends crucially on the parameter
a=Ro/Rtv, where Ro=mA/2e =6 45 kQ .is the quan-
tum of resistance, and Rz the normal-state resistance.

Motivated by the above-mentioned experiments, we in-
vestigate in this article various aspects of the dynamics of
vortices in the quantum regime, with emphasis on dissi-
pation which is due to coupling to acoustic vibrations,
and due to the creation of quasiparticles. We study the
simplified model, in which the grains form a two-
dimensional square lattice, and are only weakly coupled
such that the magnitude of the order parameter can be
assumed fixed. In this case, the phases IgtI are the
relevant variables, where 1=(l„l ), 1 being integers, la-
bels the lattice site. Taking into account, as a matter of
introduction, for a moment only the charging energy and
the Josephson coupling, the quantum mechanics of the
system is determined through the following Hamiltonian:

~0 2 g Ql( )I, l'Ql' +J 2 cos((bi+@ Al ) ~

1, l' l, p

where EJ is the Josephson coupling energy and p, =(1,0)
and (0,1). Furthermore, C ' is the inverse of the capaci-
tance matrix. In the following, we take into account only
the capacitance to the ground (c) and between nearest
neighbors ( Co ); thus, the only nonvanishing elements are
Ct t=c+4Co and Ct i+„=—Co. [Note, however, that
(C ')t » is of long range. ]

Clearly, the eigenvectors of 8 are plane waves,
exp—(iq 1), a.nd the eigenvalues are given by

C(q) =c +2C& g [1—cos(q p)] . (1.2)

Note that C(q)=c+Coq for small q. In addition, the
charge and phase operators are conjugate variables, such
that

(2e) '[Qt kt]= t&t—t, (1.3)

As a direct consequence of this relation, it follows that

(1.4)

corresponding to Josephson's relation.
However, a description in terms of a Hamilton opera-

tor is not convenient for the problems we wish to discuss,
but rather the formulation which employs path-integral
methods. In particular, it has been found that quasipar-
ticle tunneling can be included in the (Euclidean) effective
action in a compact way. Especially, note that for
zero temperature and in the adiabatic limit (ih'to ((b„see
below), an important consequence of quasiparticle pro-
cesses is the modification of the nearest-neighbor capaci-
tance, such that CO~CO+Cqz in (1.1); also, for small
junctions, we may have the inequality C() &&Cqp Some
of our results explicitly rely on this limit.

In Sec. II we describe the model which is based on the
results of Refs. 5—7 for single junctions. DifFerent ap-
proximations are discussed: The adiabatic limit of low
frequencies, the continuum limit in which in addition the
phase difFerences are assumed to be small, and the linear
medium approximation, in which the junctions not
traversed by a moving vortex are considered a linear
medium. Accordingly, the remaining sections are organ-
ized as follows. In Sec. III we present the results for the
continuum limit including, in particular, the notion of
the mass of a vortex, its damping due to the coupling to
the acoustic vibrations of the system, and the dynamic
modification of the vortex-vortex interaction. In Sec. IV
the linear medium approximation is investigated in detail,
revealing in particular that the quantum dynamics of a
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single vortex for small velocities is close to the dynamics
of a free particle for the parameters under consideration
(c Cp « C~„, a —1 ). On the other hand, for velocities
comparable to the gap frequency, or in the presence of a
finite subgap conductance, the creation of quasiparticles
leads to strong dissipation, which is considered in Sec. V.
Finally, the results are summarized and discussed in Sec.
VI. We remark that earlier works describing some as-
pects of vortex motion are Refs. 10—12; also, the limit
a )& 1 has been treated in Ref. 13, which is based on sirni-
lar methods as employed here.

II. DESCRIPTION OF THE MODEI.S

The models to be considered are based on the assump-
tion that the magnitude of the order parameter of the sin-

gle grains 6 is a fixed quantity, independent of any super-
current How. In addition, we assume that the grains form
a two-dimensional square lattice with lattice constant
a =1, where each lattice point is occupied by a grain, and
the links between lattice points correspond to (identical)
Josephson junctions. Each grain has a capacitance c to
the ground, and the capacitance between neighboring
grains is C, which is in general the sum of a geometrical
and a contribution due to quasiparticle tunneling
C Co +Cqp In order to introduce the parameters of
the model, we note that the Josephson coupling energy is

(at T =0) related to the gap by the relation (IJ is the crit-
ical current of a single junction)

EJ =AIJ/2e =ah, /2, (2.1)

where a =Rp/R)v, RN is the normal-state resistance of a
single junction, and Ro the unit of resistance. In addi-
tion, we have the relation Czz =3e a/166, for zero tem-
perature. Note that C can be much larger than Cp( =c)
for suSciently small junctions.

The relevant variables of the model are the phases of
the order parameter I/i I, where l labels the lattice site.
The model in its general form is given in terms of the Eu-
clidean (imaginary time) action as follows:

S =So+S~ +S~+ST, (2.2)

where

Sp=
2 g f dr m(t)t+Mp g(P, +„(t,)'—

1

+2EJ g [1—cos(Qt+„—Pt )] . (2.3)
P

Here, we introduced m =fi c/4e2, Mp=fi2Cp/4e, and
P=(kT) '. The contributions to the action denoted by
Sz and Sz, which are related to the tunneling of quasi-
particles between neighboring grains, are given by

SA ~ f st)d f sI) A( rT )
Si) p p 8 (r—r')

I,jl,

hP( „(r) cr Let)t „(—r')
2

(2.4)

where fact)t „(r)=ct)t+„(r) Pt(r), and o—=+1(—1) in

Sz (Si) ). In the following, the limits of integration, which
become ( —~, + ~ ) in the limit of zero temperature, will
be omitted for simplicity. The kernels A(r), B (r), for an
ideal junction' and for T =0, can be expressed in terms
of modified Bessel functions as follows:

2

2e
3afi
646

(2.7)

Finally, Sz. is the contribution due to a uniform transport-
current (say, along the y direction) Iz., given by

'sc'
2g

ST fg f «(0t+(p, ))
I

(2.8)

Q2

mA

(2.5)

In particular, the Fourier transform of A (r) is related to
the normal current I„(co)by the following relation:

dco' 2co'
A (co)=

2% Q) +Qj 2e
(2.6)

2 (co) —A (co=0)= —2Mqzco, 8(co)=2M co /3,

Since for an ideal junction I„(co)=0 for ~fico~ &2h, we
have for small frequencies

where f =AIT/2e. In order to clarify different features
of the genral model, it suffices to study various approxi-
rnations, which are introduced in the remainder of this
section.

(i) The adiabatic limit (/iI). In this limit, it is as-
sumed that the temporal variation of the phases is slow
compared to the gap frequency b, /fi, such that we may
expand the difference in (2.4) according to

hP( „(~) b,Pi „(r')=h—P( „(i' r') && 1 . — (2.9)

&s a result, if we in addition also neglect S~ (see below)
the action in this limit is given by So, however, with the
replacement Mp~M Mp+Mqp,

where the quasiparticle mass Mqp is given by S "=S()(M()—+M) . (2.10)
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(ii) The continuum limit (CL). In addition to (i), we
assume that the spatial variation of the phases is small,
such that differences can be replaced by gradients accord-
ing to

(2.1 1)

in Ref. 13, is based on the assumption that the only non-
linear elements in the system are the junctions which the
vortex under consideration is supposed to traverse in its
motion. We define the phase differences relating to the
nonlinear elements (see Fig. 1) as

Thus we obtain the following expression:

Sc"=
—,
' f

deaf

d 1[m/I+M(VQt) +Eg(V/I) ] . (2.12)

(iii) The linear medium approximation (LM). This ap-
proximation, which is an extension of the one discussed

0n 4(n, 1) 0(n, o) (2.13)

and approximate the action of (2.2) by S~So +S',
where Sz is the action given in (2.2) but excluding the
linear elements. Thus

SoLM = g fdr[ ,'Mcg „—+Ez(1 —os'„) fP„]—

—g fdrdr' A (r r')c o—s
P„(r) P„(r')—

2

P„(r)+P„(r')+8 (r 'r )cos
2

(2.14)

The Josephson elements of the medium are taken into account approximately in S, which is chosen as follows:

S'=
—,
' g f dr mP(+ g'[Mc(bg(„) +EJ(bg(„) ] —

—,
' g' fdrdr'(A B), ,bg—(„(r)bg(„(v') .

I

(2.15)

Here the prime in the summation indicates that for l„=O,
we have to omit p. =(0, 1). Note that we introduced the
parameter EJ, which will be determined below. Further-
more, the transport current can be omitted in S', as
shown by the subsequent analysis, at least as long as it is
constant in space and independent of time.

Following closely the method described in Ref. 13, we
derive an effective action which contains only the phase
differences I P„ I of the nonlinear elements, with the result

H„(r)=P 'g f H(q, co)e

with the following result:

H(q, co) =1/G (q, co) (M"a) +EJ—),
where

M"co =Moto —
( A —A o 8„)/2, —

(2.18)

(2.19)

SLM SLM +SLM0 1 (2 16) and

where Sc is given in (2.14), and

S, =—,
' Q fdrdr'P„(r)H„„(r —v')P„(r') .

n, n'
(2.17)

G(q, co)= f sin (q'/2)/P(q, q', co)

with

(2.20)

The kernel H„„.(v —r ) is most easily given in its
Fourier representation,

(-2,2);;

t

+(M"co +E ) sin + +sin
2 2

(2.21)

)( )(
A considerable simplification is achieved in the limit
m =0, in which case (Hc:Ho) we obtai—n the follow-
ing expression:

Hc(q, co) =h (q)(M" c+oEJ ), (2.22)

FIG. 1. Small portion of the square lattice of superconduct-
ing grains; the links are to be identified with Josephson junc-
tions. In the linear medium approximation, the links indicated
by a cross, i.e., the phase differences P„=P~„,~

—PI„O, across
these links are taken into account exactly. All other links are
considered a linear medium.

1/2

h (q) =sin 1+sin + +sin2
2 2 2

(2.23)

Note that in the adiabatic limit (fico((b, ), we have
M =Mo+ 2M /3.

Finally, for finite m, we write H =Ho+AH, where AH
in the limit of small frequencies,
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co ((c =E—J/m, co ((EJ/M,
is given by

H(q, u)= —mc 4(1+h )2J dq' 4sin (q'/2)
277 C02+ Co

2
q

(2.24)

D -'y'=(m —MV')a, (a„y') . (3.7)

later, we will impose at once the condition g e =0,
which means charge neutrality.

Inserting the ansatz (3.5) and (3.6) in Eq. (3.2), we ob-
tain a linear inhomogeneous equation for P

where

co =4c [sin (q/2)+sin (q'/2)]

is the spectrum of the medium, and we omitted a con-
stant which ensures that hH (q, co=0)=0. [Ps] = io—i(m +Mq )D [B,P ]q (3.8)

Some care has to be exerted in handling the right-hand
side of (3.7) since generally partial derivatives on P can-
not be interchanged. Nevertheless, one finds that in
terms of Fourier transforms, the solution of Eq. (3.7) is
given by

III. THE CONTINUUM LIMIT where

~q =(cq) /[1+Qo (cq)2], (3.1)

where QO=EJ/M, and c =Ez/m. Thus co is linear in q
for small q (acoustic part), and it approaches Qo for large
q (optical part); note, however, that only the optical part
survives the limit m =0. An interesting feature of the
vortex dynamics to be discussed below is the dissipation
(even at T =0) which results from the coupling of the
vortices to the acoustic modes.

In the following we wish to construct an effective ac-
tion for the vortex positions. In a first step, we investi-
gate the classical equation of motion for the phase

t'ai

j.
Since S "is a quadratic form, we find that

D '/=0

In this section we explore the consequences that follow
from the action S " of the continuum limit as given in
(2.12). Let us first note that the spectrum of small ampli-
tude oscillations (which correspond to spin waves in a
planar model) is given by

[B,P jz= pe (q„y —
q . x )e (3.9)

where the potential is given by

+ V(r; —r. )], (3.11)

Eventually, we obtain the effective vortex action
A [r (r)] by evaluating S for the ansatz (3.5) and (3.6)

A [r (r)]:S[P (—r)+P, (r)] . (3.10)

In order to gain transparency, we will concentrate in
the following on two simple cases.

Case (i) M&0.;m =0. From Eq. (3.7), it follows that

[P ] „= icoM(—Mco +EJ) '[B,P ]q„.
Evaluating the expression (3.10) in the limit of small fre-
quencies Mcu &&EJ, we obtain

A [r,(r)]=—,
' Jdr g e, e)[JNp(r, —r,, )r, r',

where

D '=( —m+MV )d, EJV—
which corresponds in Fourier representation to

(3.3)
V(r) =Ez J (e''i' —1)e

= —2nEJint —,'[1+(1+2mr )' ]j (3.12)

D =mao +Mao q Jq (3.4)

We separate from P& a contribution which incorporates
explicitly the vortex configuration. Thus

The additional factor in the integrand above provides a
large wave-vector cutoff q, =(2')'~ which is required by
the lattice model. Concerning the kinetic energy, we find
that

0i =6'+Pi (3.5) ~x ~x ~y

E (3.13)
where P is a unique function of space and time, and we
choose P to be the appropriate solution of the static
equation of motion, V P =0. This means that

l —yi(r)
P& (r) = g e.arctan

J
I l —x (r)x J

(3.6)

where r (r)=[x.(r),y (r)] is the time dependent center
of the jth vortex. Note that P is a multiple-valued func-
tion; it increases by 2me-, where e =+1, as one goes
around the center of the jth vortex. For reasons of simi-
larity with the Coulomb gas problem, we will call e- the
charge of a vortex; in order to avoid an infinite energy

where the expression

JR=2m. M (3.15)

can also be obtained by a direct argument' if one recalls
that the area of a Brillouin zone is equal to

This expression decreases rapidly -~r~ with distance;
thus, we retain only the term where r=0, i.e., where j =i.
This means that

A [r.(r)]=—,
' Jdr JR gr, . + g e;e V(r; —r ), (3.14)
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f d q ="2mf dq q exp( —
q /q, ) =2mq, = (2ir)

0

Note that the action (3.11) with the mass tensor given
by Eq. (3.13) is invariant under Galilei transformations.
Thus, there is no background or a medium which exerts a
force on a moving vortex.

Case (ii). m&0;M =0. Quite generally, the evaluation
of (3.10}is simplified by the fact that [VP ]q is perpendic-
ular to [VP ] . Therefore,

G(di, r)=7r Icl1lln[clr l+(b, +c 1 )' ]

( g2+ 2p )1/2
I (3.20)

G(h, r)=mEJ D e '" (e' q —1) .
q

Suppressing detailed arguments, we only state that in
its original form (except for an additive function of r)

A [r (r)]= A&[r (r)]+ A„[r (r)], (3.16)
(3.21)

where the local contribution is given by relation (3.14)
with At=0. On the other hand, the nonlocal contribu-
tion is of the form

A„[rj.(~)]=—,
' g e;e fd~d. r'F(i;, r, r; r);r—r')—,

(3.17)

a a d,. a a (3.22)

we have

For the sake of simplicity, a large-q cutoff has been omit-
ted.

It is possible to simplify the expression (3.17) consider-
ably if one exploits the fact that terms in the form of a to-
tal time derivative do not contribute to the action. Since

where r, =r,.(r) and r) =r (r'). Specifically, the in-
tegrand is given by

F, =r; r, f„(h,,),r —r')

+ Ii, .h, I Ii 6, I
1

dVd7 d7 Bv
G(r, —r), ~—r')cl

d1-' a~

3 8i G—,G (3.23)
Br, 87 87

X[f (6; ;r r') f. (I—; ;r r')—], . —(3.18)

1
, G(h;r), fy = —— G(h, r), (3.19)

where 6 is given by

where I,, =r; —r . Furthermore, the functions f can be
calculated according to

and we may add the right-hand side of Eq. (3.23) to the
integrand of Eq. (3.17) without changing the action. This
means that we may replace Fj of Eq. (3.18) by

F;~ =r;.i~(f„+.f~)—,G .
a'

(3.24)
87.87'

Note that the second time derivative of G contains a local
contribution o:5(~—~') which cancels completely the
logarithmic interaction of AI[r (r)]. Thus, the action of
Eq. (3.16) is found to be equal to

1 mEJ r, (r).rj(r') +c
& [r, (r)]=— g e, e, f d~dr'

I [r;(r) r~(r')] +c (—~—r') I'~ (3.25)

For a static configuration r, (r) =0, we may integrate with respect to the time difFerence (r r') and we—recover
~I [r& (&)]™oreinteresting, however, is the fact that the full dynamic form of the action (3.25) includes a contribution
w»ch represents dissipation. In particular, we obtain from the region

l r; —r.
l

&&c lr —7
l

~ ~

~D[r;( )]= ge, e, fdrd '
~—7'

I,J

(r, —r, )'
(3.26)

Considering the fact that the Fourier transform (in the
sense of a distribution) of

l
r

l

' and
l r l

3 is equal to
2»l~l ' »d —ai ln lcol ', respectively, we may write

rj(co) =arm

lanolin

1
(3.28)

~D[r;(r)]=2 ge, e, f lcolU(co}[r, ]„[r,]2'

where the quantity

(3.27)

means a frequency-dependent friction. According to the
classification of Ref. 16, the dissipation implied by the re-
lation (3.28) is subohmic; this feature is connected with
the fact that the vortices are coupled to a tmo-
dimensional system of acoustic vibrations. Note that the
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relation (3.28) is correct in logarithmic accuracy for
~co~~0. The response of a single vortex to a driving
force is considered in detail in the next section.

We emphasize that the action (3.25) is not invariant
under Galilei transformations, as it is already implied by
the appearance of friction. This may be surprising since
the basic form S of Eq. (2.12) is even invariant under
Lorentz transformations (for the case we are considering
here, M =0); note, however, that we have imposed impli-
citly the condition that P&(r) should vanish for ~1~~ ~
and ~r~ ~ ao. In this connection, we wish to mention that
the viscosity above may also be considered to represent a
time-dependent mass n m ln(c

~
r

~
). Suppose that there is a

single vortex which starts moving at r=0 and ~=0 with
velocity v. Then, a disturbance 5&(& will propagate such
that roughly

5/I —v ( —l, l„)/1 for 1 ~c r
and zero elsewhere. Hence, we obtain a kinetic energy

JIt(z)= g Jbt( k)c os(2m kz)
k=0

(4.3)

U(z)= g uk[cos(2mkz) —cos(m.k)] .
k=1

We find the following results:

JK(k =0)=1.10X2n. M,
At(k = I ) /JIt(k =0)=0.45,

ui -0.087EJ .

(4.4)

(4 5)

that, neglecting initially the dissipative contribution re-
lated to AH, the effective action is given by

Ao[x]= fdr[ ,'J—It(z)z + U(z) —2mfz], (4.2)

where

Ek;„=—J d l(5$() = U In(c~r~) (3.29)
Furthermore, higher Fourier components are found to be
sma11

which essentially agrees with the contribution AD as
given by Eqs. (3.27) and (3.28).

Eventually, we discuss qualitatively the case where M
as well as m are different from zero. As a rule, the acous-
tic vibrations implied by a finite value of m dominate at
large distances in time and space. For instance, one finds
that the long-range logarithmic interaction is perfectly
canceled at large distances ~r;

—
r~~ &)M/m. Further-

more, for large-time separations ~r —r'~, the action is still
given by (3.25). This means that the dissipative contribu-
tion (3.27) is not changed. Thus, the most important
consequence of a finite M seems to be the effective mass
Jlt —see Eq. (3.15)—of a vortex. Of course, if M/m is
very large, say, of the order of the sample dimension,
then it seems possible to set m =0, and to take the action
as given by Eq. (3.14).

IV. LINEAR MEDIUM AFPROXIMATIGN
(ADIABATIC LIMIT)

JR(k =2)/A(k =1)=0.08,
u2/u, =0.06,

and can be neglected. These results differ by about 10%
from the results of Appendix A, which we believe is not a
significant difference. Strictly speaking, we also find that
in (4.2), f should be replaced by f[~0+s.

,cos( 2viz)
+ . . ]; however, since lro-0. 997, and v&-0.09, we ex-
pect this modification to be negligible for all practical
purposes. Note also that the critical current, i.e., the
current at which the potential barrier vanishes, is given
by I, =0.1IJ.

In order to define the vortex coordinate x, we choose
z =z(x) such that

Jhf, (z)z =PLx (4.6)

where A, is independent of x, which leads to the relation
given in (A10). From the above results, we find
A, = 1.07 X 2n M, and also

A. EB'ective action of a single vortex
z(x) =x —0.036sin(2n. x)+. . . (4.7)

In order to derive the effective action in terms of the
vortex coordinate, we insert an appropriate ansatz P„(x)
into S" ([P„I) of (2.16), which we consider in the adia-
batic limit. For simplicity (compare also Appendix A),
we consider the following variational ansatz:

AD[x]=S, ( IP„(x)I )

,' f dude-' 8'(z, z', r —r'), (4.8)

Finally, we consider in more detail the dissipative con-
tribution to the action, which is given by inserting (4.1)
into S

&
of (2.17). Thus we obtain

n —z(x)
P (x)=m. —2 arctann b

(4.1) where z =z(x, ), z'=z (xz ), and Wis given by

where b is a variational parameter, and z(x) is deter-
mined below. Within this ansatz, EJ can be determined
by minimizing the potential Eq. (A2) with respect to b,
which gives b =b(EJ ) after averaging over a unit cell.
Turning the argument around, we choose EJ such that
b =

—,', with the result EJ=0.73EJ, which is about 10%
larger than (A5). After these preliminaries it is clear

8'= g J P P sbH(q, r —r')

—iqz +i (q —g)z'Xe

where

P~ =(2'/q)exp( —~q~/2),
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and g =2mXinteger denotes a reciprocal lattice vector.
Neglecting umklapp processes, which enter (4.9) through
g&0 and z =z(x), and in addition considering small ve-
locities such that b,„=x,—x& «c ~r —r'~, 8' is found to
be given by (omitting unimportant terms)

pyz g x~x~
fV(b, , r v'—)=m(4 ) y(r —r')~ (4.10)

2 —2
17k 7T oo ddt 2

& +
AD[x]= co ln,

oo CO

/x /' (4.1 1)

which corresponds to regularizing (4.10) for short times
through the replacement

'[1—exp( —Irl /ro) ],
where ~0 =2~c simulates the original lattice structure.
Clearly, this result is in agreement with the one obtained
in the continuum limit [compare to (3.27)], since only
small wave vectors are important.

B. Quantum dynamics of a Vortex

In order to discuss the quantum mechanics of a vortex
in the presence of an external current, we start by consid-
ering m =0. For this case, the Hamilton operator corre-
sponding to the effective action discussed above is clearly
given by

where

7 ( '7) Idq hH ( q, r ) = ( m l2 ) ~
r —r'

~

and we integrated by parts in the last step. In Fourier
representation, we thus obtain the following result:

r

have e(fin)=2Ec, such that (4.13) can be expressed as
follows:

EG/e(An ) =0.05'/Ec . (4.14)

2fou(t)-
m lnt

(4.16)

This result follows by noting that for g", we may use the
following expression:

ln[( i co+0)r—o]
'Q~ l 607' f77

l CO'To
(4.17)

where the denominator is introduced to remove the un-
physical zero of ln( icoro)—in the upper half of the co

plane. Then one finds (JR=0)

However, a finite m introduces the possibility of dissi-
pation due to decay into acoustic vibrations, which is de-
scribed (for small frequencies) by the contribution to the
action given in (3.27) and (4.11). Since this contribution
is quadratic in the coordinate, the (real-time) equation of
motion for x(t) or u (t):—(p(t) ) /JNis im, mediately found
to be given by

Xtu(t)+ f dt'ri"(t t')u(—t')=2~f(t) . (4.15)

As is evident from (4.11), the long-time behavior is dom-
inated by the dissipative contribution, related to
ri (t t'); no—te that

rl (co)=i)(co~ —ic0+0) .

For example, considering a constant force which is
switched on at t =0, i.e., f (t)=foO(t), the leading be-
havior for large times is found to be given by

A =P /2'+ U(x ) —2mfx (4.12) u (t)=(2foro/m)[v(t/ro, 0) v(t/ro, 1)—], (4.18)

EG/e(fire) =0.4MEJ/A = 10 a (4.13)

which is very small' for a-1; here and in the following,
we also assume M=M =3aA' /646, . Thus we find the
surprising result that the periodic potential almost does
not affect the motion of a vortex; in particular, the dy-
namics for small momenta (and m =0) is analogous to
the dynamics of a free particle, i.e., the vortex, more pre-
cisely, a wave packet constructed out of the plane wave
eigenstates, is freely accelerated by a constant force. The
irrelevance of the lattice structure rejects the quantum
nature of the vortex as an extended object: In fact, com-
paring as an estimate the localization energy e(p -A/5x)
with the potential in (4.12), we find 5x =4/a. Note also
that, in terms of the charging energy E&=e /2C, we

where Af =2m M, and

U(x)=u, cos(2~x), u, =0.1EJ .

(The precise numerical factors are not important. ) Ignor-
ing in a first approximation the potential, the spectrum is
that of a free particle, e =p /2'. Furthermore, the
periodic potential induces a gap in the spectrum near the
zone boundaries, which in our units are at +m, given by
EG = u „which has to be compared with e(p =A'm ); thus

where v is the function defined in Ref. 18 (see also Ap-
pendix B).

On the other hand, for m =0, we have

u (t)= (2n fo/Xf)t;
thus we conclude, for mm (&At, that the velocity in-
creases linearly in time for

t & r, =roexp(AA. m),

and slightly weaker for larger times. Note that from
m &M follows the inequality ~&~10 ~0, and also that

-(2b) M/m. Of course, the above results differ
significantly from the so-called Ohmic dissipation, where

q„ is independent of frequency, in which case a constant
force results in a constant velocity; in contrast, note that
from (4.17) we have Reil„= ~co

~
me /2 for coro && 1.

C. Static vortex-vortex interaction

Finally, in order to make further contact with the re-
sults of the continuum limit, we determine the static
vortex-vortex interaction within the linear medium ap-
proximation. Using the ansatz

P„([x;])=g In —2e;arctan[2(n —x,. )]J (4.19)
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we have to evaluate [see (A2)] 0, b(q) =K, (q/2)+Ko~(q/2)+m. h (q)e '~'/q (5.3)

V([x;[)=U([P„(x&,x2, . . . )J) (4.20)

which has two contributions, V= V&+ V2, related to the
two terms on the rhs of (A2). Specializing to a vortex-
antivortex configuration, i.e., taking i = 1,2 in (4.19) only,
and (for example) e, = + 1, e2 = —1, V, and V2 are easily
evaluated provided we replace the sum over lattice points
n by an integration (which corresponds to neglecting Um-

klapp processes). In this approximation, V depends only
on the difference 6,2

=x
&

—x2, with the following results:

and

~~2
2

V, (b, ,2) =2mEJ
1+6,2

(4.21)

V~(b, ,2) =4~E~ f h (q)e '~'sin
- dq

—oo
(4.22)

where h (q) is given in (2.23), and we added a constant to
ensure that V, (0)= V2(0) =0. In particular, we find the
following limiting results:

The adiabatic limit results are recovered from (5.1) by
putting x„—x,. =x(r r—'), and expanding for small x,
which leads to the following result for the mass of a vor-
tex:

Tf. =Tf,„+JTt =1.05X2m M, (5.4)

1/2

a.'+ Sd =~ 2l~„l —'E
z 1+z (5.5)

0, —0 =(2z/l~ I)&(z) m', (5.6)

where JKd =(4m+2m/3)M and JR =6.10M are the
direct and the medium contribution, respectively. This is
very close to the above adiabatic-limit result, though we
have taken into account presently Sz, but neglected Um-

klapp processes. Note that the contribution from Sz is
negative and contributes only 5% to (5.4).

The direct contribution to 9', b, related to K, and Ko,
is easily evaluated for all values of 6„,with the following
result:

b, i2 &&1: V(b, ,2) =9.61Eqb, ,2, (4.23)

b.»»1: V(b, ,z)=2mEJlnlb, zl . (4.24)

where the factor 9.61 is close to the m. obtained in the
continuum limit [see (3.12)], and

z =(b,„) /[1+(b,„)],
and E and E denote the complete elliptic integral of the
first and second kind, respectively. In particular, note
that for l b,„l

» 1

Note that for large 6,2, V& is negligible, and also that E&
(instead or EJ ) appears in (4.24).

a.'=ad = —2l~„l . (5.7)

V. aKVOND THE ADIABATIC LIMIT

In this section we wish to investigate the special
features of the quasiparticle dynamics, which are
reflected by the appearance of the trigonometric func-
tions in Sz and Sii [see (2.4)], as well as by the charac-
teristic time dependence of the kernels A (r) and B(r).
For simplicity, we take m =Mp =0.

A. Linear medium approximation

1. Single vortex

The effective action of a single vortex follows by insert-
ing the ansatz (4.1) into S" given in (2.16). In addition,
we neglect Umklapp processes such that z~x immedi-
ately. As a result, the action contains a static
contribution —the tilted periodic potential —which has
been investigated in Sec. IV A and a quasiparticle contri-
bution, which is of the following form

Aq~[x)= —f d~d~'[A(~ ~')Q, (x,—x+)—

In this limit, the medium contribution is negligible, in
contrast to the adiabatic limit. We emphasize that (5.7) is
a consequence of the nonlinear dependence on the phase
differences, and easily follows by noting (for example)
that

f dn —1 —cos
P„(x„)—P„(x~ )

2
(5.8)

Im A "(co)=(ih'/2e)I„(co), (5.9)

where A (co) = A (co~ —iso+0). As an illustration, we
consider the case where a finite-subgap conductance is
present in a11 junctions, such that

Im A (co) =gaia, co/~

Furthermore, for 5„))1,the argument of the cosine,
considered as a function of n, is approximately zero for
n 5x+ and n ~x„and = —m in between; thus
9, = —2(x,—x,. ). Obviously, this argument also applies
to g'„.

Concerning the physical interpretation of the kernel
A (r r'), we rema—rk that [see (2.6)]

where

+B(~ r')Qb(x, x, )],— —

and

&, i, (h )=f (e —1)Q, b(q)

(5.1)

(5.2)

for small frequencies firn &&6, where a, =R o /R„'R,
denotes the subgap resistance. In this case, it is sufficient
to consider the classical equation of motion (in real time),
which follows by standard analytic continuation from
(5.1). Quite generally, and including the external force,
we find the following equation:
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+B"(t t—')0,'(x, x—, )]=2nf, (S.10)

(&)

LI L

where the prime denotes differentiation with respect to
the argument. In particular, assuming f to be time in-
dependent, we may choose x, x, =—U(t t'). —Also, since
B is found to be negligible (which even holds for an
ideal junction), the inobility p=u/f is easily calculated
from the relation

(b)

2l QA QV g g =27T (5.11)

with the result p '=0.55XAo;„as long as Av «2A.
Note that the medium contributes almost S0% to the rhs
of this expression and that

O. 55=JR(k =0)/4n M,
where Af(k =0) is given in (4.5).

On the other hand, for ideal junctions, ' the quasi-
particle current is zero for A'co & 2b, (for T =0), leading to
exponentially small dissipation if the classical equation
(5.11) is applied,

f=(4ab, /n )exp( 2b, /fiu) . —

Thus —classically —strong dissipation sets in when the
voltage in the junction just being traversed by the vortex
is of the order of 2A. However, the classical result is, at
best, only qualitatively correct. In fact, we expect dissi-
pation actually to be zero as long as the vortex energy is
smaller than 2b (see also Appendix C), and strong dissi-
pation to set in at a velocity given by JRU /2=26„ i.e.,
iriu =25/i/a (see also Sec. VI).

2. Multiuortex conftguration

Some of the above results are easily extended to a mul-
tivortex configuration by inserting the ansatz (4.19), gen-
eralized to time-dependent coordinates, into S" . Con-
centrating on the quasiparticle contribution and on the
term derived from S~, we find the following expression:

A~~[Ix;I)= —fdrdv' A (~ ~')Q, (Ix,. ], Ix—I ), (5.12)

N

9, = —2 g L:— 2L*, —
j=l

(5.13)

where Lj=y2~ —y21, [see Fig. 2(a)]; note that this ex-
pression is independent of the charges I e; J.

where x;:x;(r), x =x—;(r') on the rhs of this equation.
Clearly, 9, is a (translational invariant) function of the
2N coordinates xi . xN xi xN where X is the
number of vortices plus antivortices. From the above ar-
gument, 9, is easily determined in the limit where all
differences, x; —x, x, —x', and x —x' are much larger
than the lattice spacing. Define the variables y&, . . . ,yzN
such that y &

denotes the smallest, y2 the next to smallest,
etc., of the coordinates x, , . . . , xN. Then we find, in the
indicated limit,

FIG. 2. {a) Three vortices and/or antivortices along a line;
the dots indicate the six coordinates x&,x&,x3,xl, x2,x3. The
total length of the strings connecting pairs of points is given by
L*=Ll+L2+L3. {b) Generalization of {a) to the two-
dimensional case. Clearly, the total length of the bold lines L
is smaller than the ' length of {for example) the string
configuration given by the dashed lines.

B. Many vortices in the general model

The above results, in particular (5.7) and (5.13), reAect
a remarkable feature of the general (nonadiabatic) case,
which is qualitatively different from the adiabatic limit.
Formally, this is related to the appearance of the factor 2
in the trigonometric functions in S„and Ss [see (2.4)];
thus it is essential to keep in mind that a "string" is at-
tached to each vortex coordinate, such that the phase
difference changes by 2m when crossing the string. Con-
sidering the times ~ and ~' to be fixed, and returning
briefly to a single-vortex configuration with ri=ri(r),
ri =ri(~'), it seems clear that the string can be chosen to
be the straight line connecting ri and ri, and that
0, b

——2
~ r, —r'i

~
is the appropriate generalization of

(5.7), resulting from integrating along the string
(~r, —ri~ &)1). In addition, it appears natural to extend
this result to X vortices, in which case we have to consid-
er the 2% coordinates r&, . . . , rN, r'„. . . , rN, with the fol-
lowing result:

A~~[Ir;I]=2f dade' A(r r')L*(ri, . . , .—, re) . (5.14)

Here I.* is the total length of the strings, determined by
connecting pairs of the 2X coordinates by straight hnes,
and taking the configuration of minimal length [see Fig.
2(b)]. Note that (5.14) holds in the limit where all
differences are large compared to the lattice spacing and
again is independent of the charges.

VI. DISCUSSION

In order to simplify the discussion, we concentrate on
the case m «M. In a first approximation, neglecting dis-
sipation, the response of a vortex is determined by the
Hamiltonian given in (4.12), and thus corresponds to the
motion of a particle in a (weak) periodic potential. By
analogy, we thus expect Bloch oscillations for small fields
f«f ' and almost free acceleration for f )&f', where

E2
G

8 fe(A' n. )
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(2mft p ) /. 2Jkf, ,=26,

which leads to

t z =(EAt, )' /qrf =(3a/32)' fi/f,

(6.2)

(6.3)

the vortex energy exceeds 2A, which opens the possibility
of quasiparticle creation, mainly in the junction just being
traversed by the vortex. [Note that v = u ( tq~ )

=2(b, /Jkt, )'~ implies a local voltage ~26, (for a —1).]
To describe the quasiparticle creation process in detail,
which we do not attempt here, one has to employ the full
nonlinear action as given in (5.1), or the corresponding
Hamiltonian (see Appendix C). We expect that at t =t
the velocity is almost instantaneously, i.e., within a time
interval of the order of fi/6, reduced to zero, after which
the acceleration starts again. Thus the time dependence
of the velocity is of a saw-tooth form, with the charac-
teristic frequency 2qrlt; also, the time average is given

by
' 1/2

m.ftqp

At

' 1/2
16 25
3a A'

(6.4)

is defined such that the standard Zener tunneling proba-
bility is given by I' =exp( f '—/f).

However, one has to keep in mind that the adiabatic
limit Hamiltonian is, strictly speaking, only applicable in
the regime Atv ~26„ i.e., for momenta not too close to
the zone boundary. While the (subohmic) dissipation due
to the decay into acoustic vibrations introduces only
small (logarithmic) corrections to the time dependence of
the vortex velocity —see (4.16)—the possibility of quasi-
particle creation leads to a drastic modification, which
can be seen as follows. Consider rt"—:0 in (4.15), and im-
agine that a constant force is switched on at, say, time
zero. Then the vortex velocity increases linear in time,
u (t) =2qrf t /JM, , with the corresponding increase in vortex
energy. Thus, after the characteristic time tqp defined by
the relation

Of course, we assumed that the vortices move indepen-
dent of each other, in order to arrive at (6.6) and (6.7).

In contrast, in the presence of a finite-subgap conduc-
tance, the vortex velocity is proportional to the applied
current (for Ru /a &(2b.):

0.55a, livia =f '. (6.8)

(a /2qrg )aA' u/ a=f (6.9)

if one uses the (arbitrary) length scale a, for convenience.
As before, a=Ra/Rz, where Rz is the normal-state
resistance of the continuous film, and g denotes the
coherence length. Thus the viscosity due to a finite-
subgap conductance is of the same magnitude as in a con-
tinuous film if a, -a(a /g) .

A more general interpretation of the results obtained in
this paper is as follows. The starting point, or the origi-
nal problem, is the investigation of the model given in
(2.2), which involves path integration with respect to all
phase variables (Pi(q. )] with a weight proportional to
exp( —S/iii). The idea then is to rewrite this problem (ap-
proximately) in terms of vortex coordinates (r;(q.)], such
that exp( —A /i') is the appropriate weight, which is as-
sumed to contain the essential physics of the original
model. Though the "new" formulation is again of great
complexity, it ~ay open the way for new insights into the
"old" problem.

As the simplest example in the present context, recall
the considerations concerning the continuum limit (Sec.
III), and especially for M=0. The form of the action
(2.12) for this case —see also Ref. 8—suggests a three-
dimensional notation. Thus defining (again, we choose
a =1) x=(l„,l~, cq. ), the corresponding gradient V' and
the magnetic field h=V'P, the action (2.12) is written as
follows:

In this case, since n, a «1, moving vortices give only a
small correction to the voltage. Note that (6.8) is of the
same form as the result one obtains for the motion of a
vortex in a continuous film, where '

which implies that the vortex travels the distance
= b, /qtf during one cycle (in units of the lattice constant).
Note that the average velocity is independent of the ap-
plied field (of course, we have f ((Ez), and consequently
the dissipated energy is linear in f, namely

(6.5)

S~ fd xh
2c

Also, the result (3.25) transforms into

J 3 3 g)(X) )(X )A~ x d x
/x —x'/

(6.10)

(6.11)

hE /b t =Iz.6 la =(26 lt ~ )n „,
if found to be given by

(6.6)

eA'a =qr(A b, /At, )'~ a n, =( 83a/)'~ a n„26 . (6.7)

In order to determine the corresponding electric field 8,
we remark that the energy dissipated per unit area and
time is given by I&@la, where a is the lattice constant.
(Note that the total current is I„,=I+X/a, where X is
the linear dimension of the film. ) On the other hand, as-
suming that N„vortices are present, the vortex area den-
sity is n, =N, /X . Thus the electric field, as determined
by the relation

where we defined j=(p, j/c), with p and j denoting the
ordinary charge density and current of the Coulomb plas-
ma. Note that V-j=0 corresponds to the continuity
equation in the particle system and that VXh=2m. j,
P' h=0. Thus A [j] is of the same form as the magnetos-
tatic energy of unimodular linear currents (in three di-
mensions) fiowing along the trajectories of the vortex
centers, and path integration is to be understood with
respect to all possible current configurations.

From the continuum-limit results, it also seems to be
evident that the model Hamiltonian (1.1), for T=O and
M =0, is in the same universality class as the classical
three-dimensional XY model. Vfe thus expect a continu-
ous phase transition from an ordered to a disordered
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state upon increasing fi /m (note that E, =e /2c
=ih' /8m), at a critical value (fi /2m)"-EJ, character-
ized by the well-known exponents. On the other hand, as
a function of temperature, the transition is of the
Berezinskii-Kosterlitz-Thouless type, with kT, -EJ (at
least for large m). In fact, recent Monte Carlo simula-
tions have clarified various aspects of the phase dia-
grarn, demonstrating in addition a reentrant behavior
(from normal to superconducting to normal) as a function
of T and, quite unexpectedly, a first-order transition
within the superconducting region.

The zero-temperature phase boundary has been studied
within mean-field theory, with the result that the or-
dered region of the phase diagram is enlarged by increas-
ing M, i.e., the nearest-neighbor capacitance; it is an open
question, however, whether there exists a phase transition
(for m =0) at a finite value of M. Finally, we wish to
mention a recent suggestion that local quantum Auctua-
tions are able to destroy the global phase coherence, such
that there is no superconducting region in the phase dia-
gram at all. In particular, it is asserted that in the ab-
sence of (Ohmic) dissipation, global phase coherence is
destroyed independent of the dimensionality of the sys-
tem. We doubt, however, the validity of the arguments;
rather, we believe that correlation functions of the form
(exp[i((((& —P(.)]) for large distances ~l

—I'~ are only
weakly affected by the above mentioned Auctuations.
(These fluctuations, in the vortex picture, can be inter-
preted as vortex rings. ) Also, the Monte Carlo results
show a well-developed superAuid density for low temper-
atures and not too large charging energy, contrary to the
claim of Ref. 25.

In conclusion, the equilibrium properties as well as the
response to an external current of granular films and net-
works require further investigations. We believe that the
vortex picture employed in this paper is a useful concept
to investigate (at least some of) the questions discussed
above.

APPENDIX A: STATIC VORTEX SOLUTION
WITHIN LM

h„= —(2qrn ) (A3)

Equations (Al) are solved numerically by working with a
finite system of N lattice sites, with X ranging from 200
to 3200, though excellent results are obtained by consid-
ering N =400 and 800 and extrapolating to infinity. By
symmetry, the vortex center is in the middle of the unit
cell, to which we attache the coordinate x =

—,'. Of
course, the solution depends on the parameter EJ, which
is determined by imposing the geometrical condition

(A4)

From this condition, we find EJ to be given by

EJ = (0.6681+0.0002)Eq (A5)

6U = (0.2035+0.0002)EJ (A6)

which is very close to the value 0. 199E& of Ref. 11, where
the two-dimensional static vortex solution was deter-
mined. Thus we obtain (up to a constant) the following
approximation for the potential:

U(x) =0.102EJ(1+cos(2qrx)) . (A7)

Similarly, we calculate the x-dependent mass of the vor-
tex A, (x), which we define by

n
(A8)

coax
JN(x) =M,

n

where

which is slightly larger than the value (2/qr)EJ of the
simpler model of Ref. 13. The other symmetry point,
corresponding to a maximum of the potential, i.e., the
vortex center being on a link, is identified with x =0, and
the solution for this case is calculated by imposing

0(x =0)= ~r. In particular, the potential barrier

b U = U( [$„(0)I ) —U( I P„(—,
'

) I ),
is found to be given by

In this Appendix we discuss the static vortex solution
within the linear medium approximation, as given by
(2.14) and (2.17). The vortex solution is determined from
the equations (for all k)

(A 1)

in the limit of small 5x, with the following result:

At(x) = g A, (k)cos(2m. kx),
k

(A9)

where

U(IP„I)= EJ icos(t(„+ g (t—„h„
n n, n'

(A2)

where Af, (k =0)=1.026X2qr M, and PL(k =1)/JR(k
=0)=0.583. Higher Fourier components are found to
be negligible. From (A9), the vortex mass can be calcu-
lated from the relation

under appropriate boundary conditions for
~
n~ ~~, e.g.,

+ =0, $„„=2'.Note that h„, which is the
Fourier transform of h (q) [see (2.23)], has the following
properties;

i 2f dx&PL(x) =0.98X2m M .
0

(A10)

The numerical results for the vortex solution can be ac-
curately represented by the following expression:

h„o=(n.+ 1)/rr,

and for n~+~,

g h„=0,

where

iq(ne—x)y
7r

—~2m
(A11)
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s'8 q —plql(1+
I I)q

= (A12)

APPENDIX 8: THE FUNCTION v(x, a)

Here we discuss the asymptotic behavior of the func-
tion' v(x, a), or more precisely of the difFerence
b v(x) —=v'(x) —v(x), where v(x) =v(x, O); note the rela-
tion v'{x,a)=v{x,a —1). From Eq. {10)of Ref. 18, we
find the following expression:

b,v(x) = dt (1+t)e
0 t ~+lnt (B1)

The parameters P and y are chosen in order to fit the
numerical solution for x =

—,', in particular to pro-
duce the correct value for n = 2 and n ~~, with
the result P=0.63 and y =0. 81. Note that
)'q (q)= lql/2+q /4+ . . for small q, corresponding to
P„=[1+2(P—y)]/n for n ~ co.

the object. In the following we will work in the Matsu-
bara technique, and we assume that the objects are bo-
sons of very low density (so that this assumption is
without consequences). Accordingly, we choose the
chemical potential g (( kT—, and introducing the Matsu-
bara frequencies m„=2+Tn, the Green's function is in
zeroth order given by

&o(k, ~. )= .
2

im„—ek+g '

One may convince oneself without difFiculty, that the di-
agramatic form of the perturbation expansion is the same
as in the case of electron-phonon interaction provided
that one associates 2)o and 8 with a straight and wavy
line, respectively.

Let us consider again the action A where, for sake of
simplicity, we retain only the most important term.
Then, Ivz(q)l = Q, (q) is independent of A, , and roqz is in-
dependent of q. In particular [see (2.6)]

dt e
b, v(x)—

o t qr +ln (t/x)
(B2)

By the substitution xt~t, it becomes apparent that for
large x, the dominant contribution is given by

6'(q, cv„)= —29, (q) A (co„),
dA(co„)=f 2 2

I„(co') .
CO +COn

(C4)

From this expression, the asymptotic behavior
Av(x) —[lnx ] ', x ~ ao, easily follows by standard
methods, and we also conclude that v(x, O) —v(x, 1)
-x /lnx in the same limit.

APPENDIX C: A POLARONIC OBJECT

Adding a kinetic energy, we write the action A [see
(5.1)] of a vortex interacting with quasiparticle as fol-
lows:

A[x(q. )]=—,
' f dq. %ox (q. )

However, the expression for A (co„),as it stands, is mean-
ingless since I„(co)cc ro for Idol ~ m.

This feature excludes a straightforward perturbation
expansion. For instance, we have worked opt the self-
energy in first and second order; and each order required
additional interpretations if one insisted on obtaining
finite results.

On the other hand, it appears that the mobility of the
object can be calculated without difhculties. I.et us intro-
duce a perturbation by a vector potential A (q ) such that
A represents a time-dependent but spatially homogene-
ous force. Then, the mobility (in Matsubara frequencies)
can be written as

+-,' f drdr' f "q @(q;r r)—
Xexpiq [x (q. ) —x (q-')] . (Cl)

p(~„)= 2 1+ g(to„)
2

co„JRo on o
(C5)

Alternatively, this action can be thought of being derived
from a Hamiltonian where an object interacts with the vi-
brational degrees of freedom of an environment,

H=p /ZJRo

+ & f q Ivy(q)e'q g'qg+ [I~qgl +~qxlg'qp, l ]I2n

(CZ)

where

y(co„)=f dq e "'«
T, p( )qp( )0»,

0

and where

dkn0= e
27'

is the density of the objects.
In zeroth order, we have

(C6)

(C7)

provided that one choose the coupling vq(q) and the fre-
quencies cu & such that

y lv&(q) I'« T,g„( )g„( ') »

2qr5(q +q')—A'(q,'r q') . —
It is instructive to ascertain some properties of the per-

turbation expansion for the Green's function 2)(k;r) of

g' '(rv„) = —T g f k2)o(k, co„,)2)o(k, cv„,—co„)k =0 .
dk
2'

n'

(C8)

In first order, there are three diagrams (see Fig. 3). Obvi-
ously, the two self-energy diagrams diverge as well as the
vertex-correction diagram. However, after having done
the frequency summations, we obtain for the total sum
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dk dq d~ 2kq 0 (q }2co'l„( co') /2e
+(1)(~

(2m)' co (e„—e„+co )[(ek —e„+co ) +co„]

1 coX —coth +coth
4 2T 2

ek —
q 0+~

coth —coth (C9)

which is finite. Let us now take the limit g—+ —~, T~0, where it follows that

dq dco' II„(co')/eel &.(q}q'
y' "(co„)= —4n,

(2m. ) ( I
co'

I
+e~ )[( I

co'
I + e~ ) +co„]

(C10)

The analytical continuation is easily done by letting co„~—iQ+0.
Consider now the case where there is a gap co in the spectrum of the environmental oscillators I„(co)=0 for l col & cos,

and where Q, (q) differs from zero only for small-q values such that effectively e «co . Then, we obtain

i d~ I.(m')/2e dq, ~2y"'(0)= 4n —f "
, f Q, (q)q'= 4n—(M ) X 1.10 (Cl 1)

1

( i Q+0—)(At,0+At, )
(C12)

which corresponds to free acceleration of the object.
Note that At = 2m' X l. 10M' agrees with the quasi-
particle-induced mass of a vortex as defined by Eq. (5.4),
except for minor changes due to differences in the model.

As pointed out in the Introduction, for small junctions
At, o/Af, =MD/M =COIC «1, and first order pertur-

where the factors in the parenthesis correspond to the
two integrals. Inserting the result (Cl 1) in the expression
(C5), we obtain in the limit Q~O

p( i Q+ 0—)= ( 1 —Xt/At, o)
1

iQ+—0 Jko

3/2
COp2m.a

}i/2 2

(C13)
A (co„)=f n [5(co'—coo) —5(co'+coo)] .

d co 2'
CO +CO„

Above, cop is the frequency of the optical phonons and a
the dimensionless coupling constant. In the present case
A (co„) exists, and we may calculate the self-energy from
which we obtain an eff'ective mass At, * which is in lowest
order given by At, /JRO= 1+a/6.

We may also calculate the correction to the mobility.
Inserting the expression (C13) in relation (C10), we obtain

bation theory is insum. cient. It seems that the adiabatic
approximation in the Lagrangian formulation allows a
comprehensive approach even in the case of strong cou-
pling. However, it is not clear whether the condition
IQI «co is sufficient and whether it is also necessary to
satisfy e =q /2JRO «co, perhaps in the very much
milder form q /2[A(, 0+At, ] «cos. Note that the milder
condition is marginally satisfied in the vortex problem.

For a comparison, let us also consider the "large" pola-
ron. The Hamiltonian in the form (C2) has been set for-
ward by Frohlich, and later Feynman ' established the
effective action of the type (C 1}. As before, we may
present the "environmental" Careen's function in the
form (C4) where we have to set, however,

)
2'7T(x cop

3/2

(0)=-
(2A1,0)'~ (2m. )3 [ +coeo]

(C14)

We recognize that presently, it is not possible to neglect
e in the denominator; this is an important difference in
comparison with the vortex problem. Evaluating the in-
tegral, and inserting the result in Eq. (C5), we obtain

p( —i Q+0) = 1
(1 —a/2)

( —i Q+0)JN0

FIG. 3. Diagrams contributing in first order to y(co„); com-

pare (C9).
1

( —i Q+0)AID(1+ a/2) (C15)
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Again, we find the mobility of a free object; however, the
transport mass Af,„=Jko{1+a/2) differs from the
eftective mass AL*.

Of course, free acceleration is specific to the case where
there is a gap in the environmental excitation spectrum.
In this case, the zero-temperature limit is meaningful.

On the other hand, a freely accelerated object may easily
reach higher velocities where the response is nonlinear.
However, it seems that the nonlinear response of a
strongly coupled polaron poses an almost intractable
problem.
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