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1 Introduction

Since the proposal by Josephson! in 1962 that a tunnel Junction, i.e.
two superconductors weakly coupled through an oxide harrier, should show
a zero-voltage supercurrent due to the tunneling of Cooper pairs, this sys-
tem has been studied with unending enthusiasm. In particular, initiated by
Leggett,® the last decade has seen a remarkable activity in a field which is
often called Quantum Mechanics of Macroscopic Variables;® experiments on
small Josephson junctions at low temperature are found to be in excellent
agreement with theoretical predictions.

As a matter of introduction, recall that the relevant variable for a tunnel
junction is the order parameter phase difference ¢, whose classical dynamics
is determined by the following equations:

hg =2eV . CV 4 V/R+ Iysing = Ir, (1)

where V., C. R, I;, and It denote the voltage, the capacitance, the resistance,
the critical current, and the external current, respectively. Alternatively:

Mé +ne = -dU/d¢ . (2}
Here the potential is given by
Ulgy = ~Ejcoseg — f ¢ (3)

where E; = kl;/2e is called the Josephson energy, f = hfr/2¢, M = (h/2e)7C,
and n, = (A/2x)- Ro/R: Ry = nhj2e® ~ 6.5k} denotes the unit of resistance.

Leaving aside for a moment the dissipative term. it is clear that the above
equation can be “derived” from the Hamiltonian

Ho = Q°/2C + Ulp) (4)
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by imposing the commutation relation [Q, ] = —2e -4, where @ is the charge
difference across the junction. Phenomena related to the fact that @ and
¢ have, in principle, to be considered operators and not classical variables,
become experimentally accessible in small junctions and for low temperature.
More precisely, define the charging energy Ec = €®/2C and the parameter §
by
57 ~ {(Ap)) ~ (Bc/ENM?, (5)

which also appears as exponent in a typical WKB calculation; note that E;
is the potential barrier, and hwy ~ { EcEs)'/? the characteristic frequency. In
the sixties, typical parameters have been such that § ~ 10%, which allowed
indeed to treat ¢ as a classical varible. However, very recently,® (networks
of) tunnel junctions have been deviced with § ~ 1; thus it can be expected ~
and is observed ~ that quantum phenomena are very pronounced in such a
system.

Of course, given a classical equation like (2), it is not possible to derive
the correct quantum mechanics of . In particular, note that R7* is often a
sum of two contributions, namely

R™'=R'+ Ry, : (6)

where R, is the strongly temperature dependent resistance due to quasipar-
ticle tunneling, and Rq denotes an external shunt resistor. In order of mag-
nitude, one has

R(T) ~ Ry -exp(A/kT) , (7

where Ry = R(T.), and A is the magnitude of the superconducting gap,
taking the two superconductors to be identical for simplicity. As it turns
out, in the presence of dissipation, the theoretical formulation proceeds most
conveniently within the path integral formulation.® As a result,”® an effective
action is derived which contains, besides a term which follows from H,, two
additive contributions describing the shunt resistor’ and the quasiparticle
tunneling,® respectively. While the former leads to a quadratic form, it is
found that the latter has an important 4rx-periodicity,® which reflects the fact
that the microscopic process is the tunneling of single electrons,!® in contrast
to the continuous change of the charge in the presence of an external shunt.
Note also that ¢/ R, is the low frequency limit of a more general expression,?
which incorporates the creation of quasiparticles for frequencies w > 2A/h.

In the following chapters, I wish to discuss some aspects of the low
temperature behavior of a two-dimensional network of Josephson junctions,
mainly based on the appropriate generalization of the Hamiltonian (4). In
particular, I wish to pursue the dual description in terms of vortices, which is
known to be adequate in the classical limit.!? Most of the material to be pre-
sented is based on a recent publication with Albert Schmid, in which further
details and references can be found.!?

2 Description of the Model

I consider a system of weakly coupled superconducting grains which form
a two-dimensional square lattice. The relevant variables are the phases {o},

where [ = (i_,1,) labels the lattice sites (the lattice constant is taken to be
unity), and the corresponding charges {Q}:

[Qrivpl = —2e-idp; . ®)
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The Hamiltonian of the network is given by (f = 0)

Mo = 33 Qr(€ ™)z Q — Br 3 cos (oryz = 00) (®

Lp LE
where 7 = (1,0) and (0,1); C denotes the capacitance matrix. Its Fourier
transform in the long wave-length limit is given by

C(d) =co +C&®, {10)

where ¢y and C denote the ground and nearest-neighbor capacitance, respec-
tively. In passing, I remark that C is the sum of a geometric (Cy) and a
quasiparticle part,® namely

C=Cy+Cypp, Cp=23ae’/16A, (11)

where I defined « = Ry/Ry as a dimensionless measure of the coupling be-
tween the grains (which is not a measure of the dissipation in the junc-
tions). For example, E; = aA/2 in the low temperature limit. For distances
large compared to the lattice spacing, the Coulomb interaction in real space
(r = [ = I'|) follows from (10) to be given by

C7Hr) = (2rC) ™ - Ko(r /), (12)

which identifies A = (C/¢y)*/? as the screening length. Thus peculiar features
can be expected in the limit ¢, = 0, which means in particular A > N, where
N is the size of the system (assuming N? grains). For the junctions described
in Ref. 5, however, X is presumably of the order one, i.c. the Coulomb
interaction is of short range.

From the Hamiltonian (9), the corresponding Euclidean action S, is de-
rived in the usual way.® Due to the extended nature of the vortices to be
studied below, especially in the quantum regime, it is sufficient (for some
purposes) to consider the continuum limit, which is defined by the approxi-
mation

Prez—er= (i Ver. (13)
Henceforth, I replace fl)y 7. Defining in addition m = h%co/4e?, the action is
given by
1 2 . 2
So=: /dT/dzr[m¢- + M(V$) + E,(v¢)~] ) (14)
Note that for finite temperature, the r-integration is restricted to 0...43,

B = (kT)™!, with periodic boundary conditions (see also Refs. 9 and 10). In
addition, the external current contribution is

ST=-]dr/d2r(f-V)¢. ) (15)

Finally, the dissipative contribution corresponds to a term in the action which
is nonlocal in time; note that in the continuum limit, the special features of
the quasiparticle part are not apparent. The result is

2

Sp = -18- /d;‘dr' /lizl' Afr =) [Vga(v"',"r) - V7, r')] {16}
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Here [ also neglected an unimportant contribution;!? 4,(r —r') is given by

ha, 1

72-—(7'—7")2

Afr—-1)= (17)

with a, = Ro/R (recall that 5, = (A/27)a,). The above expressions apply in
the continuum limit, in the adiabatic limit of small frequencies (hw < 2A),
and for low temperature. The total action

S=5,+Sr+Sp (18)

is the basis of the following considerations (except for some final remarks).

Ignoring vortices for a moment, it is obvious that the response and the
fluctuations of the system are characterized by the quantity

-1 _fp-t, ! 2
D7) = [D, +2A,V]ﬁw (19)
= mw? + [Il/Iw'2 +E1+n,]w|]q2 s

from which the “spin-wave” dispersion wy,

(cq)?
1+ (cq)?/wi’

2
wi =

(20)

is easily identified. Here I defined ¢* = E;/m and (hwy)? = 8E;E¢; note that
A = c/wq, and that w; = wy for m =0 (A = ).

3 Statics and Dynamics of Vortices

The transformation to the vortex picture is achieved by separating from
(7, 7) a contribution which incorporates explicitly the vortex configuration.

Thus I put
: w=p" +p° (21)

and choose Y to be the appropriate solution of V2p" =0, namely

Viz oy - v~ 9(7)

e~ (T,T) = ;e‘, arctan :;(T) ) (22)
where 7j{r) = (z;{7),y;(7)) is the center of the jth vortex. Note that ¢V is
a multiple-valued function, which increases by 2we; (e; = +1) as one goes
around the jth vortex; e; will also be called the charge of the vortex, and I
umpose at once the charge neutrality condition, £je; = 0. Inserting the ansatz
(21) into the equation of motion, D~y = 0, I obtain for the spin-wave part
©7 the following linear inhomogeneous equation:

D% = (m - MV?)32pY (23)
which leads to

‘qu,u = —iw{m 4 Mq?) D;,, [B,.(pv]il,_, . (24)
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Inserting the total ¢ into (18) leads to an effective action in terms of the
vortex coordinates {7;}, which I denote by A (and A, etc.). The following
-relations are useful:

[VWV]Q‘ = 27 Z e; (qu ;qt)e—iq‘w’; ; (25)
3 q

0¥ = 2mi Y ey LY —Bo%i i (26)

: q

i

In addition, it is clear that in some expressions a large wave-vector cutoff is

necessary, for example, as in the following quantity (see below):

V(7)) = E; / i}(a’ﬁ ~1)e~9/% (27)
q
where g. = (2r)!/? as required by the original lattice model. Correspondingly,

/dzq—» /dzqe_'/‘h = 2mq? = (2r)* . (28)

For the sake of transparency, [ present the main features by concentrating on
simple cases.

(i) m=0(X =o00)

In this case, in which the spin-wave spectrum has only an optical part,
it is possible to neglect ¢°. With ¢ ~ ¢V, it is straightforward to derive the
following results:

o=} [ar[m3F + S eV = 7)) (29)

b

Ar = —QWZCJ' /df(fvl‘j - f2;) (30)
Ap = Z eie; / drds’ A,(r — ')y F(Fi(r) - 75(r")) (31)

Here the vortex mass is given by M = 2x2M, V(7) is the (logarithmically in-
creasing) interaction potential familiar from the classical limit,!* and I have
taken the external current, represented by f= (fz» fy), to be space indepen-
dent. Furthermore, F(7) is given by

4G 14 (1 +27r2)2/2
—— = ] e,

FO=-1g, "2 2 (32)

Ignoring the dissipative term Ap, (29) and (30) correspond to the following
equation of motion: -

M#;=F - 2me;ix f, ‘ (33)
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where £ = (0,0,1), and F;, representing the force due to the other vortices, is
of the standard form:!®

—~ . '
Fi=—e; E ej(VV)r_i_r_’_ = —2rFje;Z % (thv) . (34)
i
Here the prime, (V¢VY, indicates that the ith term has to be omitted in
(22); also, I used the large distance result, V(7) ~ —~2rE;Inr, to arrive at the

last equality. Note that a vortex moves perpendicular to the total current
(external plus the current due to the other vortices).

In order to derive the dissipative contribution to (33), analytic continua-
tion procedures are required.® Here I give only the final result, which follows
from (31), namely

M7 +2e,-ze,~/dt' Al(t ¢ (VF)rqosmer = (35)
i

where Af(1~1') is the Fourier transform of A%{w) = A,(w — —iw+0). Retaining
only the term : = j, and in addition expanding for small distances, [ find

M+ a o= ..., (36)

where 7 is given by i = 27°y, = whe,, which is not unexpected in view of the
result M = 2723/,
(i) M =0, n,=0

In this case. it is rather ciunbersome to follow the above procedure. How-
ever, it is obvions from (14) that the problem is symmetric with respect to
space and time (for zero temperature), which allows for the following elegant

argument.’® Delining & = (x,y,cr), the corresponding gradient, V, and the
“magnetic field” h = V. the action (14) can be written as follows:

Sy = [;—CJ iz (i) (37)

Also, introdnce the charge and the current density by

p= Y eSF-F), J= 3 e - ). (38)

3 i

Thus the continuity equation 8,0+ V - 7 = 0 transforms into V -j = 0, where
= (p,;/c). Finally, it is obvious that

Dlp=0 — V- h=0. (39)

Choosing k such that V x k& = 2xj, it follows from the analogy with the
magnetostatic problem that 4, is given by

to= T [ gy HELIEY, (i
C —

=

By
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In terms of the vortex coordinates, this result reads

A(r) )+ &

A=Y [ e s

The expression (40) is particularly appealing since it is of the same form as
the magnetostatic energy of unimodular line currents (in three dimensions)
flowing along the trajectories of the vortex centers. I only remark that some
progress in the description of the phase transition of this model, which is
expected to be of the 3D-XY type, in terms of vortex loops has been made
recently.l?

Of course, for a static configuration, i.e. #7;(r) independent of r, one may
integrate with respect to time and recover the potential given in (29). More
interesting, however, is the fact that (41) also includes a contribution which
represents dissipation in the vortex motion due to decay into spin-waves. In
particular, taking again the i = j term and expanding for small velocities,
I73(r) — 7;(+')] < ¢}r — 7'|, one obtains after Fourier transformation!?13

o =3 5 [ 52 lnfe) ) (42

where n(w) = mm|w|In(1/|w|) means a frequency dependent friction (which is
called subohmic since n(w) — 0 for w — 0; this feature is connected with the
fact that the vortices are coupled to a two-dimensional system of acoustic
vibrations). [t turns out, however, that the friction represented by 7{w) is
weak in the sense that it leads only to logarithmic corrections to the [ree
acceleration of a vortex by an external current.!?

({#H) M =0, n, £0
I wish to remark that, in all cases, the evaluation of A can be simplified by
the fact that [Vy%); is perpendicular to [Vy"};. Concerning the dissipation
related to 7,, it follows from (19) that a characteristic frequency can be
defined by
hw, = hE;/n, = 2rEj/a, = rAa/a, . (43)

Assuming that « = Ry/Ry > «,, it seems possible to expand the result (24)
with respect to n,. In particular, it follows that the expression ¢ + ¢*(Vy5)?
has only a correction in second order. As a result, the contribution ~ 5, to A
is precisely given by (31), and A, retains the form given in (41) in this order.

Finally, I briefly discuss the case where both M and m are different from
zero. As a rule, it seems that the acoustic vibrations implied by a finite
value of m dominate at large distances in space and time. This means that
the most important consequence of a finite M is the effective mass M of a
vortex. Besides the kinetic energy term in (29), the effective action is thus
given by (41), (30), and (31), at least as long as a, is small. A particular
case is the limit in which X = (M/m)'/? is larger than the sample dimension.
Then it is possible to put m = 0 and take A, as given by (29). Presumably,
the last case is mostly of theoretical interest.
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4 Vortex Dynamics in Other Systems

Without going into great detail, ] summarize in this section the classical
equations of motion which are often used to describe vortex dynamics in
superfluid *Helium and in superconductors. In order to simplify the notation,
I denote the coordinate of the vortex under consideration by 7y(t), and define
%" to be the local superfluid velocity at 7y, however, excluding the velocity
field of this particular vortex. Also, es = 1 is the sign of the vorticity and,
having especially films in mind, d is the film thickness, and p, the superfluid
mass density integrated across the film; finally, m* denotes the Helium mass
and twice the electron mass, respectively.

(i) Superfluid Helium Films

The equation of motion is obtained by balancing the Magnus force against
the viscous drag due to interactions with thermal excitations and with the
substrate (see Vinen,!® and also Ref. 18):

. . k-
Bry + Blegz x 715 = eup,—nl:i x (ro —7,) , (44)
2

where B and B' are phenomenological coellicients. Of particular importance
is the form of the rhs of (44), which leads to the conclusion that for B = B' =0,
the vortex rides along with the local superfluid velocity. It seems that the
Magnus force as given in (44) is intimately related to the Galileil invariance
of the Helium system, and the above conclusion is believed to hold at low
temperature and for a translation invariant substrate. Generally, the vortex
moves in a direction characterized by the angle § (defined such that # =0 if
the vortex moves perpendicular to v,), which is given by

tan @ = (2whp,/m" — B')/B . (45)

(ii} Superconducting Films
The theory of vortex dynamics in superconductors has heen first dis-
cussed in detail by Bardeen and Stephen,!® and is essentially based on the
idea that a vortex has a normal core of radius ~ £, where ¢ is the coherence
length. (For an overview, see Tinkham’s book.?’) Thus dissipation is due to
ordinary Ohmic losses, i.e. through electrons scattering at static impurities
or defects, in the normal region. Their result reads:!®
’7(#0 —kyt,) = P:7—3 x(=17,), (46)

where [ have taken ¢; = 1; the friction constant 7 is given by

Ry h 13
=" = Ryond— a7
Ry g~ e “n

with oy the normal state (Drude) conductivity. In addition, xy is given by
KH = H/I{r.’! » I{CZ = ¢0/2r€2 ’ (48)

where H is the magnitude of the magnetic field {(which is applied perpendicu-
lar to the film), arid ¢, the flux quantum. (However, shortly thereafter it was
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argued® that xy = 1 should be the correct result.) Note that 7 is essentially
independent of temperature.

Using that at low temperature the integrated superfluid density is given
by 2p,/m* = nd, where n is the total electron density, the Hall angle is found -
to be given by the same expression as in the normal state, namely

tanf = w,t ~ nH—A—g ) (49)
r g

where w. is the cyclotron frequency,  the elastic scattering time, ¢ = vpr
the mean free path, ¢r the Fermi energy, and I used that ¢ ~ hvp/A, which
applies for £ > £. Note that the Hall angle is very small, except for extremely
pure samples, since A ~ 10~*¢p. It seems that the debate about the Hall
angle was somehow inconclusive (see, however, Ref. 22), which also may be
related to the fact that pinning of vortices by impurities?® — neglected above
~ plays experimentally a far more important role;?® on the other hand, the
theory of the viscosity as well as of nonlinear phenomena is well developed.?*

In comparison, I wish to emphasize what I believe is an important differ-
ence between Helium and superconductors, which is apparent from (44) and
(46). In the former case, the vortex moves in the direction of the local 7, in
the limit of vanishing viscosity, B — 0, with a velocity smaller than ¥/, pro-
vided B' is finite. In the latter case, however, the limit of an extremely clean
metal corresponds to a very strong viscosity, i. e. formally n — co. In this

" limit, the vortex moves in the direction of the local #',, with a velocity smaller
than & if kg < 1. It appears that the dynamics of vortices is fundamentally
different in the two systems.

Finally returning to the model of a network of Josephson junctions stud-
ied in the preceding sections, I emphasize that I do not find any indication
of a finite 8. Rather, the vortices are found to move perpendicular to the
local current, which seems somehow surprising since the viscosity is smali at
low temperature. Presently, | can only speculate that the underlying lattice
structure {(which means e.g. that the vortices do not have a normal core) is
responsible for this result.

5 Conclusion

In these notes, I presented selected aspects of the statics and the dynam-
ics of a network of Josephson junctions, within the framework of the dual
description in terms of vortices. In this approach, it is straightforward to
make contact with the classical (high temperature) limit results.!? I remark
that the lattice model (for M = 0) has been studied recently by extensive
Monte Carlo simulations, which show a reentrant behavior upon decreasing
the temperature, as well as a first order transition within the superconducting
region.?® However, for example, the effect of a finite nearest-neighbor capac-
itance (M # 0) on the phase diagram, especially at zero temperature, is still
an open question.?®!? In addition, | wish to mention that recent experiments
on granular?’ as well as on continuous?® superconducting films have shown
several unexpected features, pointing towards the normal state film resistance
as the (most?) important parameter.

As a word of caution, | emphasize that I restricted myself to discuss
the adiabatic limit of the general model,’? i.e. the limit of small frequencies
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hw < 2A. In this case, the parameter Ry or a = Ry /Ry, where Ry equals the
‘hormal state sheet resistance (for a square sample) in the absence of shunt
resistors, enters only indirectly through E; and the quasiparticle capacitance.
However, the adiabatic condition is, at best, only marginally satisfied when
E¢ and E; are of the order of a few Kelvin. For example, for ¢, = 0, a vortex
is freely accelerated by an external current until its energy is large enough to
create quasiparticles,!? i.e. is larger than 2A. This suggests that for a detailed
understanding of the dynamics at low temperatures, the full nonlinear model
has to be considered, which unfortunately is a formidable problem. On the
other hand, I emphasize that high frequencies probe the “normal” part of the
current-voltage characteristic, which possibly may explain the significance of
the normal state resistance.
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