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1 Introduction
Since the proposal by Josephson1 in 1962 th a t a tunnel Junction, i.e. 

two superconductors weakly coupled through an oxide barrier, should show 
a zero-voltage supercurrent due to  the tunneling of Cooper pairs, this sys
tem  has been studied with unending enthusiasm. In particular, in itiated by 
Leggett,2 the last decade has seen a remarkable activity in a field which is 
often called Q uantum  Mechanics of Macroscopic Variables;3 experim ents on 
small Josephson junctions a t low tem perature are found to be in excellent 
agreement with theoretical predictions.

As a m atte r of introduction, recall th a t the relevant variable for a tunnel 
junction is the order param eter phase difference ip. whose classical dynamics 
is determ ined by the following equations:

fty = 2eV ; CV + V//J + f j  sin *  = [ r  ,

where V, C, R, 1 j , and 1T  denote the voltage, the capacitance, the resistance, 
the critical current, and the external current, respectively. Alternatively:

M i  -  »7,i  = -dU Idp  .

Here the potential is given by

t ' i y  =  — Ej cosy: — f  ■ /  . (3)

where E j = M ji le  is called the Josephson energy, /  = hlr/Ze, M = (h / le fC .  
and n, = (ft/2x) • R o/R ’. Ro — erhiZe2 — denotes the unit of resistance.

Leaving aside for a  moment the dissipative term , it is clear th a t the above 
equation can be “derived” from the Hamiltonian

Ho = Q^iZC + Uip) (4)
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by im posing th e  com m utation  rela tion  =  —2e • i, w here Q is th e  charge 
difference across th e  junc tion . P henom ena re la ted  to  the  fact th a t  Q and 

have, in princip le , to  be considered op era to rs  and  n o t classical variables, 
becom e experim entally  accessible in sm all ju nc tions a n d  for low tem p era tu re . 
M ore precisely, define th e  charging energy E c  =  e2 /2 C  and  th e  p a ra m e te r  5 
by

i - 1 ~  ((A9?)2 ) ~  { E d E j ) ^  , (5)

w hich also a p p e a rs  as exponen t in a  typ ica l W K B  calcu lation ; n o te  th a t  E j  
is th e  p o te n tia l b a rrie r, a n d  ~ (ECE J )1/ 2 th e  charac teristic  frequency. In 
th e  sixties, ty p ica l p aram eters  have been  such th a t  i  ~  10®, w hich allowed 
indeed to  t r e a t  as a  classical varible. However, very  recently,5 (networks 
of) tunne l ju n c tio n s  have been  deviced w ith  6 ~  1; th u s  it  can  be expected  -  
a n d  is observed -  th a t  qu an tu m  phenom ena  are very pronounced  in  such a  
system .

O f course, given a classical equation  like (2), it is no t possible to  derive 
th e  correct q u a n tu m  m echanics of 1̂ . In  particu la r, n o te  th a t  R~* is often a  
sum  of two con tribu tions, nam ely

R ~ l = R ' 1 + RQ , (6)

w here R t is th e  strongly  tem p e ra tu re  dependent resistance  due to  quasipar
ticle tunneling , and  RQ deno tes an ex te rna l shun t resisto r. In o rder of m ag
n itude , one has

R t ( T ) ~  R N  e x p (^ /k T )  , (7)
w here R N = R i(T c ), and  A is the  m agn itude  of th e  superconducting  gap, 
tak in g  the two superconducto rs to be identical for simplicity. As it tu rn s 
o u t, in th e  presence of dissipation , th e  theo re tica l form ulation  proceeds most 
conveniently  w ith in  the p a th  in tegral form ulation .6 As a  resu lt,7,8 an  effective 
ac tion  is derived which contains, besides a  te rm  w hich follows from  Ho, two 
add itive  con tribu tions describing the shun t resistor7 and  th e  quasipartic le  
tunneling ,8 respectively. W hile the  form er leads to  a  quad ra tic  form, it is 
found th a t th e  la t te r  has an im p o rtan t 47r-periodicity,9 which reflects th e  fact 
th a t  th e  m icroscopic process is the tunneling  of single elec trons,10 in con trast 
to  th e  continuous change of th e  charge in the  presence of an  ex te rna l shunt. 
N ote  also th a t  v l R t is th e  low frequency lim it of a  m ore general expression,8 
w hich inco rpo ra tes the crea tion  of quasipartic les for frequencies w > 'l&lh.

In the following chap te rs, I wish to  discuss som e aspects o f th e  low 
te m p e ra tu re  behavior of a  tw o-dim ensional netw ork o f Josephson  junctions, 
m ainly based  on th e  app ro p ria te  generalization  of th e  H am ilton ian  (4). In 
pa rticu la r, I wish to  pursue the dual descrip tion  in te rm s of vortices, which is 
know n to  be  ad eq u a te  in th e  classical lim it.11 M ost o f th e  m ateria l to be p re
sen ted  is based  on a  recent publication  w ith  A lbert Schm id, in w hich fu rther 
d e ta ils  and references can be found .12

2 Description of the Model
I consider a  system  of weakly coupled superconduc ting  grains w hich form 

a  tw o-dim ensional square la ttice . T he  relevant variables are th e  phases {VT}, 
w here I = ( I d ? )  labels th e  la ttice  sites ( th e  la ttice  co n stan t is taken  to  be 
u n ity ), and  th e  corresponding charges {Qp}:

= -2 e  i6 r [ , . (8)
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The Hamiltonian of the network is given by ( /  = 0)

«0 = - r d  ’ (9 )

l,T' CM
where p — (1,0) and (0,1); C denotes the capacitance matrix. Its Fourier 
transform in the long wave-length limit is given by

C(q) = co + Cq2 , (10)

where c0 and C denote the ground and nearest-neighbor capacitance, respec
tively. In passing, I remark that C is the sum of a geometric (Co) and a 
quasiparticle part,8 namely

C = Co + C9P , C,p = 3ae2/16A , (11)

where I defined a = RQ/R M as a dimensionless measure of the coupling be
tween the grains (which is not a measure of the dissipation in the junc
tions). For example, Ej = aA/2 in the low temperature limit. For distances 
large compared to the lattice spacing, the Coulomb interaction in real space 
(r = |1 - 1'1) follows from (10) to be given by

C-‘(r) = (27TC)-1 • Ko(r/A) , (12)

which identifies A = (C/co)1/2 as the screening length. Thus peculiar features 
can be expected in the limit c0 = 0, which means in particular A » W, where 
N is the size of the system (assuming N2 grains). For the junctions described 
in Ref. 5, however, A is presumably of the order one, i.e. the Coulomb 
interaction is of short range.

From the Hamiltonian (9), the corresponding Euclidean action So is de
rived in the usual way.6 Due to the extended nature of the vortices to be 
studied below, especially in the quantum regime, it is sufficient (for some 
purposes) to consider the continuum limit, which is defined by the approxi
mation

v )¥>r- <1 3)
Henceforth, I replace I by f. Defining in addition m = /j2c0/4e2 , the action is 
given by

So = |  J  dr I  + Af(Vy>)2 + E^Vy,)2] . (14)

Note that for finite temperature, the r-integration is restricted to 0 ...h ‘3, 
P = (fcT)- 1 , with periodic boundary conditions (see also Refs. 9 and 10). In 
addition, the external current contribution is

ST  = -  y  dr y  d2r (f-  V)p . (15)

Finally, the dissipative contribution corresponds to a term in the action which 
is nonlocal in time; note that in the continuum limit, the special features of 
the quasiparticle part are not apparent. The result is

S D ^ j  drdr' [  d2r A,{T -  -  V ^ f , / ) ] 1 . (16)

313



Here I also neglected an unim portant contribution;12 A ,(r — r ’) is given by

(19)

(20)

with a, = R o /R  (recall th a t q, = (ft/2ir)a,). The above expressions apply in 
the continuum limit, in the adiabatic lim it of small frequencies (tuv 2A), 
and for low tem perature. T he to ta l action

S = Su + ST  + Su  (18)

is the basis of the following considerations (except for some final remarks).
Ignoring vortices for a  moment, it is obvious th a t the response and the 

fluctuations of th e  system are characterized by the quantity

D -9,
1
u »=  [-I D-°

1
  + 2- A SV2

^1_|W 

=  mw2 +  [Mw2 4- E j + !73 |W|]?2 ,

from which the “spin-wave” dispersion w,,

u
2 =  , 
’ l + (e<?)2 K

is easily identified. Here I defined c2 = E jlm  and (ft.u>0 )2 = SEjEc', note th a t 
A = c/w0 , and th a t = Wo for m  = 0 (A =  oo).

3 Statics and Dynamics of Vortices
The transform ation to  the vortex picture is achieved by separating from 

a contribution which incorporates explicitly the vortex configuration. 
Thus I put

•P = p V  + <pS  (21)

and choose <pv  to  be the appropriate solution of V2 <py  = 0, namely

V V (r, r) = y  e i arctan - — , (22)

where r j(r )  =  is the center of the j th  vortex. Note th a t <pv  is
a  multiple-valued function, which increases by 2xej (ej = ±1) as one goes 
around the j th  vortex; ej will also be called the charge of the vortex, and I 
impose at once th e  charge neutrality  condition, =  0. Inserting the  ansatz 
(21) into the equation of motion, D ^ip  =  0, I obtain for the spin-wave p a rt 
<p3  the following linear inhomogeneous equation:

D~ l
V

s  =  (m -  MV2)d2v?y  , (23)

which leads to
= -iw (m  + Mq2 ) . (24)
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Inserting the total <p into (18) leads to an effective action in terms of the 
vortex coordinates {r}}, which I denote by A (and Xo, etc.). The following 
relations are useful:

=  2^i £  e j  . ( 2 5 )

[dr ? v ]f  = 2™ £  . (26)

In addition, it is clear that in some expressions a large wave-vector cutoff is 
necessary, for example, as in the following quantity (see below):

V(r) = Ej y  -  l)«-’7’' , (27)

where qc = (27r)*/2 as required by the original lattice model. Correspondingly, 

y  d2,  y  = 2TT92 = (27r)2 . (28)

For the sake of transparency, I present the main features by concentrating on 
simple cases.
(i) m =  0 (A =  oo)

In this case, in which the spin-wave spectrum has only an optical part, 
it is possible to neglect ips . With p ~  q>v , it is straightforward to derive the 
following results:

A  =  j  y  d T  p 4  £  + £ 2 e £
e jV (F £ - r ) ) ]  (29)

}

AT =  - 2 x £ e y  y  dr(fyZj -  (30)

J

-4D  =  £  eie j  y  dr dr' A,(r -  r ')  F ^ r )  -  F j(r ') )  (31)

Here the vortex mass is given by M = 2ir2Af, V(r) is the (logarithmically in
creasing) interaction potential familiar from the classical limit,11 and I have 
taken the external current, represented by /  = to be space indepen
dent. Furthermore, F(r) is given by

2 2

Ignoring the dissipative term Ap, (29) and (30) correspond to the following 
equation of motion:

MFi — Fi — 2ireiz x f  , (33)
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w here z =  (0,0,1), an d  Ty, represen ting  th e  force due to  the  o ther vortices, is 
of th e  s ta n d a rd  form :15

=  -2 r rB je , i  X (V ^ v )' . (34)

H ere the  prim e, (V<pv )', ind ica tes th a t  th e  ith  te rm  has to  be o m itted  in 
(22); also, I used th e  large d is tance  resu lt, V (r) ~  -2 ir E jln r ,  to  arrive a t  the  
las t equality. N ote  th a t  a  vo rtex  moves perpend icu lar  to  th e  to ta l cu rren t 
(ex te rn a l plus th e  cu rren t due to  th e  o th e r vortices).

In  o rder to  derive the d issipative co n trib u tio n  to  (33), analy tic  con tinua
tion  procedures are  requ ired .8 H ere I give only th e  final resu lt, which follows 
from (31), nam ely

M  ~r; + 2e; £  e j  J  dt' A ?(i -  t ') =  . . .  , (35)

j

w here A ^ ( t - t ' )  is th e  Fourier transfo rm  of A ^ (w) = A,(w —> - iw+0). R etain ing  
only th e  term  i =  j ,  and  in ad d ition  expand ing  for sm all d istances, I find

A4F; =  . . .  , (36)

where is given by ij — 2 r t j ,  — u lin ,, which is no t unexpected  in view of the 
resu lt M  = M .

(ii) M  = 0, p, =  0
In th is case, it is ra th e r cum bersom e to follow th e  above procedure. How

ever, it is obvious from (14) th a t  th e  problem  is sym m etric w ith respect to 
space and tim e (for zero tem p era tu re ), which allows for th e  following elegant 
a rg u m en t.18 Defining x = (z ,y ,c r ) , th e  corresponding gradient, V, and  the 
“m agnetic  field" h — the  action (14) can be w ritten  as follows:

•% = I  -¡'r (h )2 . (37)

Also, in troduce th e  charge and  th e  cu rren t density  by

p = 5 )  , J =  ^ c . r ' i S F -  r,) . (38)
i i

T hus th e  continu ity  equation  dT p +  V j  — 0 transfo rm s into V - j  =  0, where 
J =  Finally, it  is obvious th a t

D ~ x
v  =  0 V -h  =  0 . (39)

C hoosing h such th a t  V x h = 2irj, it follows from th e  analogy w ith  the 
m agne to sta tic  p rob lem  th a t A o is given by

= HO)¿C J — X 'I
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In  term s of th e  vortex  coord inates , this result reads

_ TEJ , _______ Tj(r) ■ f^ T 1) +  C*_______  ¿4, x
2c {[r- ( T ) _ r5.( T -) p + c 2( T _ T T ? /2 • (4 1 )

T h e  expression (40) is pa rticu la rly  appealing since it is o f th e  sam e form as 
th e  m agne to sta tic  energy of un im odular line cu rren ts (in th ree  dim ensions) 
flowing along th e  tra jec to rie s  of th e  vortex centers. I only rem ark  th a t  some 
progress in th e  descrip tion  of the  phase tran s itio n  of th is m odel, w hich is 
expected  to  be of th e  3D -X Y  type, in term s of vortex  loops has been m ade 
recently .17

O f course, for a  s ta tic  configuration, i.e. r j(r )  independent of r ,  one may 
in teg ra te  w ith  respect to  tim e and  recover the p o ten tia l given in (29). More 
in teresting , however, is th e  fact th a t  (41) also includes a con tribu tion  which 
represents d issipa tion  in  th e  vo rtex  m otion due to  decay in to  spin-waves. In 
particu la r, tak ing  again  th e  i — j  term  and  expanding for sm all velocities, 
lo ( T ) — ’5 (T ')I C|T — T'|, one ob ta ins after Fourier tran sfo rm ation 12,13

A  |  52 /  l“ l 77<w) IbA)!2 > (42)
. J ¿It

where ^(w) =  rrmlcj ln (l/|w |) m eans a frequency dependent friction (which is 
called subohm ic  since 17(01) —> 0 for w —► 0; th is featu re  is connected  w ith the 
fact th a t  th e  vortices are  coupled to  a tw o-dim ensional system  of acoustic 
v ib rations). I t  tu rn s  o u t, however, th a t the friction represented by rj(w) is 
weak in th e  sense th a t  it leads only to  logarithm ic corrections to  the free 
acceleration  of a  vortex  by an ex ternal cu rren t.12

(Hi) M  = 0, ij, /  0
I w ish to  rem ark th a t , in all cases, the  evaluation  of A  can be simplified by 

th e  fact th a t  [V ^3 ]^ is p e rpend icu la r to C oncerning the d issipation
re la ted  to  it follows from (19) th a t a  characteristic  frequency can be 
defined by

hui, = hEj/T), = 2 v E j/a , = irA a /a , . (43)

A ssum ing th a t  a = R a /UN  2> it seems possible to  expand the result (24) 
w ith respect to  rj,. In  p a rticu la r, it follows th a t the  expression ip2 + c2 (Vyj3 )2 
has only a  correction  in second order. As a result, th e  con tribu tion  ~  rj, to  A  
is precisely given by (31), and  An retains the form given in (41) in th is order.

Finally, I briefly discuss the case where bo th  M  and m are different from 
zero. As a  rule, it seem s th a t th e  acoustic v ibrations implied by a finite 
value of m  dom inate  a t  large d istances in space and  tim e. T his m eans th a t 
th e  m ost im p o rtan t consequence of a  finite M  is th e  effective m ass At o f a 
vortex . Besides th e  k inetic energy term  in (29), th e  effective action  is thus 
given by (41), (30), and  (31), a t least as long as a , is sm all. A p a rticu la r 
case is th e  lim it in w hich A =  (M /m )1^2 is larger th a n  th e  sam ple dim ension. 
T h en  it is possible to  p u t m  =  0 and  take A o as given by (29). Presum ably, 
th e  last case is m ostly  o f th eo re tica l interest.
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4 Vortex Dynamics in Other Systems
W ithout going into great detail, I summarize in this section the classical 

equations of m otion which are often used to describe vortex dynamics in 
superfluid 4Helium and in superconductors. In order to  simplify the notation, 
I denote the coordinate of the  vortex under consideration by F0(t), and define 
F, to be the local superfluid velocity a t Fo , however, excluding the  velocity 
field of this particu lar vortex. Also, e0 =  ±1 is the sign of the vorticity and, 
having especially films in mind, d is the film thickness, and p, the superfluid 
mass density integrated across the film; finally, m* denotes the Helium mass 
and twice the electron mass, respectively.
(i) SuperHuid Helium Films

The equation of motion is obtained by balancing the Magnus force against 
the viscous drag due to interactions with therm al excitations and with the 
substra te  (see V inen,15 and also Ref. 18):

B TB + B 'eBz x  r 0 =  eBp , - ^ - z  x ( r 0 — v,} , (44)
m ”

where B and B' are phenomenological coefficients. Of particular im portance 
is the form of the rhs of (44), which leads to the conclusion th a t for B  = B' = 0, 
the vortex rides along with the local superfluid velocity. It seems th a t the 
Magnus force as given in (44) is intim ately related to the Galileil invariance 
of the Helium system, and the above conclusion is believed to hold at low 
tem perature and for a translation invariant substrate. Generally, the vortex 
moves in a direction characterized by the angle 0 (defined such th a t 0 = 0 if 
the vortex moves perpendicular to F,), which is given by

tan  0 — (2irhp,/m* — B ')/ B . (45)

(it) Superconducting Films
The theory of vortex dynamics in superconductors has been first dis

cussed in detail by Bardeen and Stephen,19 and is essentially based on the 
idea th a t a vortex has a norm al core of radius ~  where £ is the coherence 
length. (For an overview, see T inkham ’s book.20) Thus dissipation is due to 
ordinary Ohmic losses, i.e. through electrons scattering at static impurities 
or defects, in the normal region. Their result reads:19

Z“ f \ • I \ t r'V{r o P ,— - . ’ X , (46)m

where I have taken co = i; the friction constant r; is given by

n =  ~  = RQaN d ^  (47)

with apj the norm al state (Drude) conductivity. In addition, KH is given by

«H = HIH C2 > HC2 = ! (48)

where ff is the  magnitude of the magnetic field (which is applied perpendicu
lar to  the film), arid io the flux quantum . (However, shortly thereafter it was
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argued21 th a t K U  = 1 should be the correct result.) Note th a t -q is essentially 
independent of tem perature.

Using th a t a t low tem perature the integrated superfluid density is given 
by 2p, /m* = nd, where n is the to ta l electron density, the Hall angle is found 
to be given by the same expression as in the norm al state , namely

A f . .tan 8 = UICT  ~  ng  —  - ,  (49)
¿F i

where o>c is the cyclotron frequency, r  the elastic scattering time, t  = vpr 
the mean free path , e? the Fermi energy, and I used th a t f  ~  hvpl&, which 
applies for f »  £. Note th a t the Hall angle is very small, except for extremely 
pure samples, since A ~  10~4 ep. It seems tha t the debate about the Hall 
angle was somehow inconclusive (see, however, Ref. 22), which also may be 
related to  the fact th a t pinning of vortices by impurities23 -  neglected above 
-  plays experimentally a far more im portant role;20 on the other hand, the 
theory of the viscosity as well as of nonlinear phenomena is well developed.24

In comparison, I  wish to emphasize w hat I believe is an im portant differ
ence between Helium and superconductors, which is apparent from (44) and 
(46). In the former case, the vortex moves in the direction of the local 5’, in 
the limit of vanishing viscosity, B —> 0, with a velocity smaller than v) pro
vided B' is finite. In the la tte r case, however, the limit of an extremely clean 
m etal corresponds to  a very strong viscosity, i. e. formally n —► 00. In this 
limit, the vortex moves in the direction of the local v(, with a velocity smaller 
than if K H  < 1. It appears th a t the dynamics of vortices is fundamentally 
different in the two systems.

Finally returning to the model of a network of Josephson junctions stud
ied in the preceding sections, I emphasize tha t I do not find any indication 
of a  finite 6. Rather, the vortices are found to move perpendicular to the 
local current, which seems somehow surprising since the viscosity is small at 
low tem perature. Presently, I can only speculate tha t the underlying lattice 
structure (which means e.g. th a t the vortices do not have a normal core) is 
responsible for this result.

5 Conclusion
In these notes, I presented selected aspects of the statics and the dynam

ics of a network of Josephson junctions, within the framework of the dual 
description in term s of vortices. In this approach, it is straightforward to 
make contact with the classical (high tem perature) limit results.11 I remark 
tha t the lattice model (for M  = 0) has been studied recently by extensive 
Monte Carlo simulations, which show a reentrant behavior upon decreasing 
the tem perature, as well as a first order transition within the superconducting 
region.25 However, for example, the effect of a finite nearest-neighbor capac
itance (M  0) on the phase diagram, especially a t zero tem perature, is still 
an open question.26,10 In addition, I wish to  mention th a t recent experiments 
on granular27 as well as on continuous28 superconducting films have shown 
several unexpected features, pointing towards the normal sta te  film resistance 
as the (most?) im portant parameter.

As a  word of caution, I emphasize th a t I restricted myself to discuss 
the adiabatic limit of the general model,12 i.e. the limit of small frequencies
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hui 2A. In tills case, the parameter Rpr or a = RQ/R N , where R N  equals the 
hormal state sheet resistance (for a square sample) in the absence of shunt 
resistors, enters only indirectly through E j and the quasiparticle capacitance. 
However, the adiabatic condition is, at best, only marginally satisfied when 
Ec and Ej are of the order of a few Kelvin. For example, for a, = 0, a vortex 
is freely accelerated by an external current until its energy is large enough to 
create quasiparticles,12 i.e. is larger than 2A. This suggests that for a detailed 
understanding of the dynamics at low temperatures, the full nonlinear model 
has to be considered, which unfortunately is a formidable problem. On the 
other hand, I emphasize that high frequencies probe the “normal” part of the 
current-voltage characteristic, which possibly may explain the significance of 
the normal state resistance.
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