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Abstract. - We study the nonlinear diamagnetic response of mesoscopic rings of super-
conductors above the transition temperature. Based on the standard expression for the
fluctuation correction to the grand potential, 2, we investigate the flux and temperature
dependence of the equilibrium current I = — 3Q/39, for the cases where T, is A) much smaller,
and B) comparable to the coherence temperature Ty = AD/L? (D is the diffusion constant, and L
the circumference of the ring). The results are compared with, and contrasted to, recent
experimental and theoretical studies of mesoscopic normal metal rings. New experiments are
suggested for the easily achievable situation T.>T4.

In a recent note [1], with a view to understanding an experiment [2, 3] on an ensemble of
identically patterned small copper rings, we have studied interaction-induced flux periodic
equilibrium currents in mesoscopic rings of normal metal, threaded by a magnetic field. Our
calceulation predicts a current with the following key features: i) periodicity in the flux @ with
period @, = h/2¢; ii) a decrease in magnitude with increasing temperature on the scale ~ 3T,
(where T, = #D/L? is the correlation temperature, and D and L are the diffusion constant and
the circumference of the ring, respectively); iii) a magnetic moment in the direction of a
small applied field (i.e. a paramagnetic current), assuming a repulsive interaction between
electrons, and iv) a magnitude I* =8T,/@, times a dimensionless coupling constant.

As regards 1) and ii) above, our theory agrees with experiment. In contrast to iii), in
ref. [2] as printed the current is reported to be diamagnetie, although we understood and
understand [3] that its direction is experimentally not yet definitely determined. As far as
the magnitude iv) is concerned, multiple-scattering corrections [4] appear to make our
theoretical prediction too small by a factor of about 5.

(*) Permanent address: Laboratory for Atomic and Solid State Physics, Clark Hall, Cornell
University, Ithaca, NY 14853, USA.
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From a theoretical point of view, it is clear that the magnetic response of super-
conducting rings above their transition temperature must be diamagnetic, because the
phonon-induced attraction between electrons is then dominant at the Debye energy. Here
we study this case. We assume that the total coupling constant at the Debye energy is
negative, denoted as usual by — A, and related to T, by T, ~ Awp exp [— 1/2]. We study two
cases: A) T. Ty, and B) T, = T,. Case A) relates to an interesting speculation [5]—about
which we comment at the end of this note—that the currents observed in copper might be
due to a very low-temperature superconducting transition.

In summary, we find that in case A), apart from the expected opposite sign, the current
to a very good approximation is given by our first-order result [1], with the dimensionless
coupling constant being replaced by ~ [In(T,/T)]™. Case B) will be of interest for future
experiments, since a strong enhancement, and an unusual signature—all harmonies in
(2n®/®,) having the same amplitude—are predicted for the current as 7'— T,. Quantitative
results are given below for 7,=10"*T, and T,=3T),.

We start from an expression for the grand potential averaged over impurity positions
obtained by summing ladder diagrams in the Cooper channel, or equivalently by doing a
Gaussian functional integral [6-11]:

Q=T3 In &w,q), (1
@, g )

where the eigenvalues of the pair propagator &(w, ¢), in the regime |w|, Dg?<< 7! (7 is the
elastic scattering time) are given by

#(|w| + Dg?)
g(w,q)=1n%+¢(~;-+]—ﬂ;$—q-)—¢%). )

() denotes Euler’s psi-function, « the Matsubara (Bose) frequencies and, for a ring with
transverse dimensions much smaller than L, the wave vector is one-dimensional, and in the
presence of a magnetic field given by ()

_2( _ @
=7 (" %) ®
withn=0, 1, 2, .... Clearly, Q is even and periodic in the flux with period &;, and thus

has, up to an additive constant, the Fourier expansion

Q=2 }of Q. cos Qrmd/P;) . )
m=1

The equilibrium «persistent» current is then given by

=—30/00 =S I, sin(2rm®/5;) 6

=1

with I, = 4nmf2,/®,. Using methods described in [1], the Fourier coefficients of the current

(*) Note that the nonlocal effects of a magnetic field considered in [6] and [7] are not present for an
Aharonov-Bohm flux,
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are (I* = 8T1f(@0)

J’ zexpl2mix] | < 4 el h wl L xz) (6)

A Gl x) T2 47:T T
where T, = Ty/m® and &,(w, x) = &(w, g = 2rx/mL). We note in passing that even though
the expression (2) is not accurate enough for large &—where & must approach a constant
corresponding to no attraction in the Cooper channel—to make (1) convergent, it suffices for
a calculation of the flux-dependent current (5), since x~ 1 controls the behaviour of (6).

Let us first consider case A): T. << T', T,. An examination of (6) suggests that it should be a
good approximation to replace &, in the denominator of (6) by a (possibly weakly
temperature dependent) constant & X. The expression (6) then yields a current identical,
apart from a factor (—1/&}), to the first-order result given in[1]. In particular

LT)=—I*-G(TIT)/m* &F, O

where G(T/T,,), which equals ¢,,(T)/¢,.(0) as introduced in[1], is given by

o]

A very good approximation, in the range T=<8T,, is
G(TiT,)=exp[—T/3T,]. 9

In the low-temperature regime we estimate &} =m(«T,/T,) with « ~1. The numerical
results for T./T; = 1072 shown in fig. 1 can in fact be well fit over the whole temperature
range by (7) with «==1.25. In this figure, we show the first two harmonics obtained by
caleulating I(®) = — 30Q/3¢ directly from (1)-(3) for about ten independent values of the flux,
and then Fourier analysing the result. (Note that it is sufficient—and convenient—to cut off
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Fig. 1. - First and second harmanics of the current amplitude as defined in eq. (5) in units of
I*=8T,/®, for T./T,=10"3. Dashed lines: «classical> contribution as explained in the text.
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the n-summation at a few hundred, provided the cut-off is smooth.) In addition, we show {(as
dashed lines) the asymptotic behaviour coming from the w =0, or «classical», term in (6).
These curves are reasonably well approximated by the corresponding part of (7), where
G(T/T,,) is replaced as in[1] by

32 12
{G(T/Tm)}"‘aﬂ*’-—-i-(%) exp{t-—» (%’:—f-) } (10)

In conclusion, for T,<«< T, the persistent current is essentially given by the first-order
expression [1], except that the coupling constant is to be replaced by [~ In(T,./T)17, in the
temperature range of interest.

Next we treat case B): T, = T,. First consider the limit 7'— 7, in which case the classical
long-wavelength fluctuations are dominant. This means that we take w =0 and consider
small « in (6), such that

&0, @) =+ (=D/8T,) ¢* = ¢[1 + (5¢)*], an

where we identify the dirty limit coherence length, & given by &2=zD/8(T - T.);
e={(T—-T)/T.. Then we find as in ref. [5]

4T,
T—T.«Ts: [[]7=— "o exp[—mLig]. 12)

17
In this limit the sum over harmonics in (5) can be done explicitly, yielding

47T, exp[L/f]sing

Iclass —
O, (exp[L/£] —cos ¢)* + sin®p

(13)

with ¢ =2290/@,. All harmonics are thus important close to 7, (§>> L), and in the limit
T=T}

2nT &
class o o < 4
I % ctg( @O). (14)

We remark that (mL/8)?=8T,-&/xT,,, so that £>mL corresponds to ¢<T,/T,; thus the
anharmeonic content is pronounced in the range T=T. + O(T,,), which also applies to the case
T.> T, provided that other coherence destroying processes have not set in. Since for 7> T
the current is in any case dominated by classical fluctuations, we conclude that for 7. = T,
these are the most important fluctnations at all temperatures, which we have explicitly
confirmed numerically. Results are given in fig. 2 for T, = 3T,, where we show the first two
harmonics vs. temperature. Note that at the critical temperature, every harmonic reaches
the limit

(L /[¥) = — T, /2T, . (15)

As fig. 2 shows, there is a steep increase in the current (which will be even more pronounced
for T, > Ty) in the regime T =T, + O(T)). Since the prefactor in (12) is not reduced by an
effective coupling constant as in case A), there are simple and striking predictions here that
cry out for experimental verification.
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Fig. 2. - First and second harmonics as defined in eq. (5) for the case T, = 3T;. Note that both curves
reach 3=/2=4.71 as T—->T7.

All of the results of case B) are implicit in ref, [5], which however considers the possibility
that superconducting fluctuations explain the experiment on copper rings. Since copper is
known not to be superconducting down to about 10upK[12], the appropriate limit
corresponds to our case A)(®). Now, the observed temperature scale of 80 mK[2] gives
T,=2TmK. As a result the effective coupling constant which we found above,
[In(1.257/T)]7, is 0.12 for T, = 10 uK. This is too small to explain the experiment precisely,
for which a value =0.3 is needed. On the other hand, no theory is presently doing much
better, so that we cannot rule out the possibility that the battle between Coulomb repulsion
and phonon-induced attraction in copper is just barely won by the latter. The experimental
determination of the sign of the observed current would seem to resolve this question,
particularly since spin-orbit coupling is found [4](®) not to modify the results in[1]. The
neglect of all but pairing fluctuations so far from 7, requires further study however.

Finally, we remark that we have here considered the interaction-induced contribution to
the nonlinear magnetic response, in contrast to the so-called single-electron effect which
relies on the discreteness of the single-electron levels in a finite system [13-17]. The latter,
which has to be added to the interaction contribution, predicts for low temperatures and for
experiments done on single rings an equilibrium current which is periodic in @ with period
@y/2 = h/e, and has an order of magnitude given by ~I*[13, 14]. However, the sign of the
current is expected to vary from ring to ring, depending on the actual impurity
configuration; as a consequence, for an experiment on an ensemble of rings, only the
«second» harmonic (period @,) survives[13, 15, 16]. Its amplitude has been estimated in
recent large-scale numerical simulations (16], with the result (see also[4])

5% = 0.12(L/MDY? I* sin(2r $/Dy) (16)

where ! and M denote the elastic mean free path and the number of transverse channels,
respectively (M = £ k%/4r, where £ is the transverse area of the ring). Similar to case A)

(® The «classical» approximation used in[5] which leads to the dashed curves in fig. 1 is thus
incorrect.

(®) For a recent review of the single-electron effect and a comparison with the interaction
contribution, see also[13].



738

above, the single-electron contribution is expected to decrease with temperature on a scale
given by a few T).

Comparison with our results presented above leads to the following conclusions. i) For
case B) (T, = T)), where superconducting fluctuations are very strong, the single-electron
effect is negligible for experiments on single rings and on an ensemble of rings. ii) For case
A) (T.«< T)) and single-ring experiments, the single-electron effect dominates. Its sign can
be either diamagnetic or paramagnetic, and its period is @,/2. iii) For case A) and ensemble
experiments, the interaction contribution dominates for typical parameters, provided the
effective coupling constant is not extremely small. As an example, consider the parameters
quoted for the copper rings [2, 3], which lead to 0.12(L/M1)"*=0.7 - 102 Finally we remark
that recent analytical calculations [17] predict an amplitude for the single-electron effect
which is clearly different from (16), and even smaller.
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