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Recent experiments in charge-density-wave systems suggest that thermally activated phase slip is re-

sponsible for current Aow. We present a quantitative theory that explains the nonlinear current-voltage
relationship.
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The currently accepted model for charge-density-wave
(CDW) dynamics gives the phase of the CDW order pa-
rameter the leading role in determining the dynamics far
belo~ the Peierls transition temperature. This model has
been successful in explaining many important transport
properties: the existence of a threshold electric field for
conduction, extremely non-Ohmic conductivity, narrow-
band noise, mode locking [1l, etc.

The "phase only" model cannot, however, suffice at
current contacts, where normal current is converted into
CDW (also called Frohlich) current. To one side of the
contact, the CDW is moving [2], while on the other side,
the CDW and its wave fronts are stationary. If CDW
wave fronts were not removed continually at one contact
and injected at the other, a large phase difference would

build up very quickly across each one and this would de-
stroy the condensed state. In short, the CDW must nu-

cleate topological dislocations that carry away the extra
phase difference: We refer to this process as phase slip.
This process is best studied [3] in the "transposed"
configuration (Fig. I). In the usual four-probe "normal"
configuration, a current I is injected at the sample's ends

F&&. l. (a) Transposed and (b) normal configurations.

and the voltage is measured by contacts placed a distance
L apart. This configuration separates the regions of
current conversion and voltage measurement. In the
transposed configuration, ho~ever, it is the current con-

tacts that are placed a distance L apart, between the volt-

age contacts. In the normal configuration, the voltage
developed across a section of length L is V„=6"TL
+IcowrcowL, where AT is the usual bulk threshold field,

IgDw is the CDW current, and rcDw the resistance per
unit length. Recent experiments [3-6] on phase slip at
contacts found that there is a difference between the volt-

age across a length L in the transposed and normal

configurations when the same current IgDw Aows. We
may ~rite the voltage required in the transposed
configuration as V, = V„+V~„where V~„ the diA'erence

between the voltages in the two configurations, is referred
to as the phase-slip voltage. In the above, the normal

carriers have not been neglected; they are a parallel chan-
nel of conduction and they experience the same potential
diA'erence as the CDW.

The aim of this paper is to establish that V~, drives the
nucleation of phase-slip centers between the current con-
tacts. This extra voltage cannot appear only at the

current contacts, over some small length. If it did, there
would be a huge current of normal carriers due to the

large electric field. Such large normal currents have not

been observed in the experiments. It is, additionally, not

possible for the electric field to be discontinuous in a

small region in a linear sample with homogeneous electri-

cal conductivity. We are thus led to a picture where the

voltage appears throughout the sample, across the current
contacts, with the consequence that a proportionate
amount should be seen in the normal configuration. It is

very small and would be hard to observe in that con-

figuration unless the voltage contacts were almost as

widely spread as the current contacts.
To relate phase slip to the CD% current, we note that

in the steady state the rate at which the CDW wave

fronts are lost at the current contact must equal the rate
of phase slip. What follows in the paper is a computation

of this phase-slip rate, carried out using the usual

Ginzburg-Landau static free energy [7] 9:
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We shall take the CDW axis to be along the z direction.
i

The K's are the anisotropic elastic constants, p, is the ap-
propriate condensate density [8] (we use the static limit

for low currents and the dynamic limit for large currents
corresponding to electric fields much above threshold), 8
is the applied electric field, e is the absolute value of the
electron's charge, Q =2kF, and V; p(p) is the impurity
potential.

The samples used must be considered three dimension-

al, since the transverse amplitude coherence lengths (g~)
are —10 A and are much smaller than the typical trans-
verse sample dimensions (which are —1 pm). The sim-

plest intensive (i.e., independent of the sample dimen-

sions) process one can imagine to remove or add a wave

front is the creation of an edge dislocation loop, i.e.,
oriented with the plane of the loop perpendicular to the
CDW direction [9,10].

To understand the mechanics of dislocation loop nu-

cleation, we view the CDW as an elastic medium [9] with

a displacement field u= —e.-p/Q and strain tensor com-

ponents

1

Qaz' " ' Qax'
(2)

r, , =r.yKJh Q-ef.--.
(3)

By separating the phase into background and dislocation
[1 1 l parts, we establish that it is background stresses that
drive dislocation loop nucleation. In fact, only
(denoted by Z) is relevant for the nucleation of edge
loops.

Suppose an edge dislocation loop is created in a back-
ground stress Z. The stress produces a radially outward
force, the Peach-Koehler [12] force, upon the loop perim-
eter. In vector notation, the force per unit length is
F=Zxa'/Q, where a is the vorticity. The outward force
on an edge loop of vorticity 2m is hence 4x ZR/Q, where
R is the loop radius. The energy gain when the loop ra-
dius is increased from 0 to R is then 2n R Z/Q. On the
other hand, the curvature energy [13] of a dislocation
loop is 2Kb x R(ln[8R/(J] ——,

' ), where K is an effec-
tive transverse elasticity [14]. Thus, as in all such nu-
cleation problems, vortices that are below a critical size
just fall back upon themselves, while those bigger than

1

Q

The structure of the elastic terms in (1) allows us to write
the components of the stress tensor as

2 2 2 2&===Kx~ Q ~;:, &x:=&;x Kx~ Q &x:,

8Rc 3 8Rc 11
ln ln

(T 4 (T

and is a dimensionless factor of order unity in the regions
of importance to the experiment. We note that the nu-

cleation energy is inversely proportional to Z.
We have yet to compute the background stress Z. We

now demonstrate that it is related to the phase-slip volt-

age. The effect of the current contacts (separated by a
distance L) is accounted for in the phase p by writing

&0+pi, where po represents the bulk solution to the
CDW problem and pi is a small time-independent correc-
tion. We then expand the usual overdamped equation of
motion [15] (for p) for small pi (we average over trans-
verse dimensions since phase coherence is maintained
along those directions):

2& 00
yea

—K:6 —K,h

(s)

' 8+F; p(PO)+ Pl . (6)

We are interested in time-independent effects that vary
slowly in space. Hence, upon canceling out the terms
that arise from the averaged bulk equation [16], noting
that V; p(p) is simply periodic in P, and defining C~

VpJL, we are led to

K-6
2

= — '

8p, —
Pi V;~p(P) .2 8 P| ep,

(7)Z'
The factor multiplying Pi in the above equation is the

pinning energy density above threshold. This quantity
decreases rapidly [17] above threshold and we assume it

to be negligible. We are then left with

K~ 8 e
ps

By construction, pi obeys periodic boundary conditions;
the solution to the above equation then is

K ~ y, (z) = —— e„.z(z —L)1 ep..
2 Q

Z= —K:A Q az
2z= —, ep, V~ —

1

(9)

this size grow indefinitely. The nucleation energy of the
critical dislocation loop is

~' (K~')'Q
(4)

2
where
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We next brieAy address the question of the magnitude
of the contact strain [18]. The typical phase strain from
weak pinning is —x over a length scale of the
Fukuyama-Lee-Rice phase correlation length. This is at
least 10-100 times less than the contact-related strain for
experimentally relevant values of the phase-slip voltage(- I mV). Hence (8) is an exceedingly accurate picture
of the phase portrait.

This parabolic phase profile, and the corresponding
stress distribution, indicates that the system favors the
thermal nucleation of extra windings in one-half of the
sample and the loss of windings from the other half. The
spatially nonconstant stress in the sample leads to a
position-dependent loop nucleation rate. The rate of
thermally activated phase slip in, say, the section 0 —L/2
1S

N A
2z (g„) 40

dz —b9'(z &/k~ T

4 (io)

Since the dislocation loop could be nucleated anywhere in

the cross-sectional area (A) of the sample and in any of
L/(& independently IIuctuating regions [19] in the sam-
ple (g~ is the longitudinal amplitude coherence length),
we include the prefactor A/(gJ) and scale dz by g~ in

the integral. In (10), ro is an appropriate attempt rate.
We have nothing concrete to say about it except that it is
probably on the same scale as other typical microscopic
rates —10' ' s '. It is convenient to define

@ 2 g (KA')'
ep kgT

such that

to obtain

Vps —V /V VpsIqpw=Ip e "
1
—2! +. . .

V, V,

Io(L) = 10
1 pm 10 pm 4p

A.

If there exists a minimum current (l~;„) that could be re-

liably measured then the "threshold voltage" [3,5] V„,.o is

defined from the equation I;„=I pcw(V~ p). In fact, us-

ing (16),

This is the central result of our paper. It is directly
amenable to experimental check. We note that the I-V
curve turns on abruptly due to the presence of the ex-
ponential term in (14); this behavior has been miscon-
strued as evidence for a threshold phase-slip voltage [3,5].
The theory predicts that there is a small probability of
phase slip at points other than the current contact. This
leads to the rather peculiar result that the CDW current,
for fixed phase-slip voltage, is proportional to the distance
between the current contacts. We note that the precise
length dependence is determined by the exact contact
geometry: Here the contacts have been placed at the
crystal ends.

To estimate the magnitude of the effect, we use low-

temperature values [14] for NbSe3 and use C = 1. Then
using the condensate density [8] in the dynamic limit

(p,, -h), appropriate to motion above threshold, we ob-
tain [defining Ao=h(T=O)]

V, = 3200
(~/~0)'

mV,
T

4

BP (z) Va 2z

kaT Vp, L
(i 2)

Va

In[Ip(L)/I;„] —ln[V /V p]
(i 9)

With the above rate at hand, the current is

ep., Vp,
Icow =2& A&

V,
(i 3)

co A L Vp —v /v

V, 2 (g )' 4g„V.
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V, V,
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The typical scale of V~ is —I mV so that V~@V„&&I at
low temperatures. We next use (13) and define

Io(L) =ro ' Aep.. A L

4 ' 44~
(15)

since each phase-slip event adds or removes one wave
front, i.e., 2x of phase, over the entire cross section of the
sample. We now compute this current as a function of
the phase-slip voltage. The integral for the rate can be
simplified [I I] to the Stieltjes asymptotic series

This threshold voltage would have the temperature
dependence V~,o-(6/ho) /T and would be in the scale of
-0.1 mV. We leave detailed comparisons to experiment
to a forthcoming paper [6].

In conclusion, we have presented a theory that clarifies
the phenomenon of current-related phase slip in charge-
density-wave systems. The main result is a derivation of
the relationship between the CDW current and the
phase-slip voltage. Apart from an undetermined attempt
rate, the theory provides explicit expressions for all other
quantities. This theory differs from previous approaches
[3] in that it deals with three-dimensional samples and
also clearly explains the role of Vps. The phase-slip
phenomenon is especially important at low temperatures,
and should play a significant role in the study of CDW
dynamics. It is of general relevance for related systems,
e.g. , spin-density waves. These, and other issues, will be
discussed in a future publication [11].
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