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Abstract. - We study the stochastic fluctuations (from sample to sample) in the persistent
current 7(¢) of mesoscopic rings threaded by a flux 4. We find that it is necessary to include the
Coulomb interaction between the electrons, Then we obtain (I 2)1/2 ~ (L /1) 1) ~ evy /L; and h/e
for the dominant period in 4. This agrees well with a recent experiment on single gold rings.
Furthermore, we predict that the persistent currents have a Gaussian probability distribution,
since the total electron number of a typical ring is still very large.

Most recently, a group at IBM[1] has measured the flux dependence of the persistent
current I(¢) in single mesoscopic gold rings. They found that the dominant period of I(¢) is
#o = h/e; moreover, and most surprisingly, they observed a current of the order evy /L (L is
the perimeter of the ring) which is about two orders of magnitude larger than what has been
found by a group at Bell Labs. [2] for the average current {{(¢)) of an ensemble comprising
107 copper rings. If one does not wish to believe in large differences between the two
materials, gold and copper, one has to assume large stochastic fluctuations from sample to
sample, even if they have been fabricated identically on a mesoscopic level. In this letter, we
report on our investigations of such stochastic fluctuations in the persistent current.

Our theory follows the concept set out by Ambegaokar and Eckern [3] where the Coulomb
interaction between the electrons has been found to be responsible for the observed [2]
magnitude of the average persistent current {I(¢)). There it was found that (I} ~ T, /¢y,
where T, = #D/L? is the Thouless energy (D = vy1/8 is the diffusion constant, and [ = vyt
the elastic mean free path).

The ansatz of ref. [3] is based on selected Hartree-Fock-type contributions to the grand
canonical potential, as considered earlier in various contexts [4]. In particular, arguments
were brought forth on a logarithmic renormalization of the coupling constant (ef. [4]); but
these we believe, are not appropriate for the stochastic fluctuations considered here. For
simplicity, we proceed on the assumption that the simple Hartree diagram is sufficient; and
we /wi]l show that from this assumption, it follows (I2)*/2/{I)~ (zT,/h) "% ~
~L/I>1,
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Taking averages of products with respect to the random impurity positions, we find it
convenient to define connected correlators. Of central importance will be the connected
two-point correlation funetion

M ($,0") = L PI($ )eon = (D I($")) — T(PIKI($")). )
It is found to be of the form
M ($,8')= Fp—¢')— F¢g+¢), (2)

where the two terms on the right-hand side of this equation arise from the diffuson and
cooperon contribution, respectively. Note that & is an even function; it has the
representation

FP) = X fucos@nmé/d), @
where for zero temperature, T = 0, and zero phase breaking rate, y = 0,
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Here a = x*/2k§ ~ 1, where x denotes the Thomas-Fermi screening wave vector. The
quantity f,, (T, 7)/f.(0,0) is given by the same expression as found for the (7, y)-dependence
of the average current([3]; hence for y =0, it decreases with increasing temperature
approximately according to exp[—m?2T/3T,], while for T = 0, finite phase breaking leads to

0,0/ (0,0) = (1 + mIYHexp[-mIt?;, I =wy/T,. (5)

We briefly outline the theoretical basis and the derivation of the above results. Since the
persistent current is an equilibrium quantity, we need to study properties of the grand
potential Q2(¢) and, in particular, the connected correlation function

Mo ($,4") = (8() (¢ )eon (6)

from which .#; is determined via differentiation with respect to ¢ and ¢'. As mentioned, we
consider the Hartree contribution to @ only; in addition, for the screened Coulomb
interaction, we use the Thomas-Fermi expression (k) = 4ne? /(k? + «*).

In computing the impurity average in (6), we have to connect 2(¢) and 2(¢') by impurity
lines, e.g., as shown in fig. 1a); and in order to determine the flux dependence, we have to
extract the dominant pole contributions of the diffuson and of the cooperon (the particle-hole
and the particle-particle impurity ladders). In view of the complexity of the analytical
expression, we propose two methods for its evaluation.
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Fig. 1. - a) Graphical representation of (Q(¢) 2(¢'))e,, within the Hartree approximation. Double wavy
line: screened Coulomb interaction. Dashed lines arise from impurity averaging. 5) Equivalent
representation for a), in which the lower part has been condensed into a pseudointeraction (zig-zag
line).
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I) Since the momentum going around the loop in fig. 1a) is large and of order |k| ~ kF,
we expect the dominant flux dependence to be given by the term with a single
diffuson/cooperon, as shown in this figure. Then we recognize that formally (see fig. 1b)) we
may introduce a pseudo interaction Wi(k), given by (note the combinatorial factor of
four)

Wik) = 4-1/2-[2 A 0k) 2 /21 N 7. )

From the analogy with the caleulation [3] of the average thermodynamic potential, we easily
deduce the following result:

— 7

Mo(,¢')=2NWT 3 o] > ) (8)
@9 ]ml +y+Dq d+e

where presently we have to sum the diffuson (d) and cooperon (¢) contributions. Note that for

the ring situation (transverse dimension much smaller than the perimeter), the wave vector ¢

has to be taken one-dimensional such that

4 Gog = %(”‘ ¢:f ) ©

with % an integer, and £, — Z, . Inserting the Fermi surface average W (defined as earlier in
ref. [3]) of the pseudo interaction W, we arrive at the results (2)-(4). We remark that the
large typical value of |k| ~ kr renders the coupling constant renormalization [4] due to
multiple interactions in the Cooper channel ineffective, in contrast to the calculation of the
average current [3].

II) As an alternative, we write .# ; in the form (1)

] W d3k et 2 12
A , =9. 2 | TR k; o, , 1
2(4,¢") 1 (2:@3[%( N [.2k;0,4")] (10)

where the diffuson contribution to 2 (k; ¢, ¢') is shown graphieally in fig. 2. Clearly, there is
a dominant «regular» contribution, .2,, arising from the region |k, —k,| > 1™, which
is given by (a single impurity line suffices for its evaluation) 2, = 2k.4"%/z7. On the
other hand, a small but flux sensitive («singular») contribution, 2, arises from the region
|ky —ks| <17%, |&; — &2 | < h/7, which for the ring case in order of magnitude (|k| ~ kg) is
given by .2, ~ (T, /eg) ¢ ', where ¢p is the Fermi energy. Hence .2,/ .2, ~ (I/L)* /N is
extremely small (N ~ 9k§ ~ 9’N %¢p is the number of electrons), and it is sufficient to retain
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Fig. 2. — Representation of the diffuson contribution to .2 (k; ¢, ¢'), as explained in connection with
eq. (9).

() Note the multiplicity factor of two. ¢’ is the volume of the system.
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Fig. 3. — Contribution to the connected 4-point correlation function.

only the mixed term ~ 2.2, in (10). Proceeding to evaluate .# , along this method, we
restrict |k| to the range 0...2kp, and confirm the result (8).

The analysis a}on% method II) suggests' the following estimates of higher-correlation
functions. Define .# Q") to be the connected n-point correlation function, i.e.

M (Bryenbn) = (B s D) Deon » (11)

it is clear that this quantity has a dominant regular part (compare fig. 3), which is given by
~ N(#/7)". However, the quantity of interest is the connected current correlation function,
which is obtained from (11) by differentiating with respect to all variables ¢,,...,4, (and
multiplying with (— 1)*); hence we have to determine, out of all contributions to (11), only
those which are sensitive to all fluxes ¢,,...,¢,. As is apparent from fig. 3 and since
2,> 2, the dominant term is the one where we retain the singular (impurity ladder)
contribution for every second impurity connection between ’s (n even). Suppressing the
flux dependence for simplicity, we find for

n=2p MIP ~N(NH"2P 2P (12)
and for
n=2+1 HLEV~-N(AN 9P 2P+, (18)

Inserting the estimates of .2,, .2, as given above, the estimate for the connected current
correlation functions is (compare (4) where p =1)

M ~ (evp [LYFNI-P (14)
A FPY ~ (/L) evp LY TIN 7P, (15)
Hence in units of (evy /L)" we obtain .# (¥ ~ N1~ "2 and .4 { ~ (I/L)N =™/ for n even

and odd, respectively. At that point we remind that the number N of electrons is large even
for mesoscopic samples (N ~ 10'%), Therefore, only the two-point correlation function is
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important and the higher-order correlators can be neglected. As a consequence, the
probability distribution of the persistent currents is Gaussian(®).

Recall egs. (2) and (8) and note that .#;(¢4,¢’) is an odd function of ¢ and ¢'.
Consequently, the even eigenfunctions of the operator .#; have eigenvalue zero; and it
follows that I(¢) is odd with probability one. Therefore,

I($) = mifm sin @nme/do), (16)

where the Fourier coefficients 7, are independent Gaussian variables with probability
distribution

o« — 2
A€, =) } an

For orientation note that at T = y = 0, one finds 6%, = 2f,, ~ (evp /L)? /m; recall also Iy, . 1) =
= 0, and that (I, ) ~ (evp [/L?) k% < 6y is negligeably small. We emphasize that the current is
an odd funetion of the flux (as it should be) only if the cooperon and diffuson contribute with
the same amplitude.

At this point, we wish to emphasize an important difference between the stochastic
fluctuations of persistent currents and the Aharonov-Bohm effect in mesoscopic
normal-metal rings [5-7]. In the latter case, one may expand [8] the measured quantity (i.e.
the conductance) in a Fourier series « cos[2zmg/dy + 7,,], in a way similar to eq. (16).
However, the phases y,, for different values of m appear to be completely uncorrelated with
no theoretical prediction available. Therefore, only the power spectrum (with respect to ¢) of
the measured quantity is physically relevant; in fact, this is the central message of the
so-called ergodic hypothesis [7]. In contrast to that, the phase of the persistent current is
uniquely fixed by the condition that the current be an odd function of 4.

In summary, we find that the persistent current I(¢) of one mesoscopic ring is an odd
function of the flux ¢ with Fourier components I,,sin (2amg/d;). The amplitude I, is a
stochastic function depending on the random position of the impurities with a mean value (/,,)
almost zero. Using data of ref. [1], we find

(IE)'? = g, ~ 0.42evg /L. (18)

This value, and the period #/e, are in good agreement with the experimental results obtained
for three gold rings [1]. We expect the current to vary randomly in sign from ring to ring; and
from one Fourier component to the other. (Experimentally, the sign of the current for two
rings was found to be positive, but obviously no conclusion can be drawn from such a limited
sampling.) Detailed data[1] are given for a (1.4 X 2.6) um?® loop (L = 8 pm); for this loop, we
compute the characteristic temperature 37, ~ 12 mK. Thus for 7 ~ 7.6 mK, the second
harmonic is suppressed by a factor ~ 13, consistent with its almost absence in the power
spectrum ([1], fig. 2(d)). Concerning the parity of the eurrent and its derivatives, we feel that
fig. 2b and 2c of ref.[1] are of fair illustration of I(— ¢) = — I(¢).

Finally, in order to develop an idea of the width of the dominant %/e-peak in the power
spectrum, we consider a flux-dependent phase-breaking rate y(¢), as for example arises from
the finite transverse dimension (~ 900A) of the loop. For the quoted parameters, we

() For large p, small momenta |k| ~1~! are found to be important, which leads to factors
~ (kgD =3 and ~ (kgl)» ~2 for p > 8 and p > 2, in (14) and (15), respectively. These, however, do not
change the conclusion.
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find (®) [4] yu = 1/7u = B%(#/¢o)? Ty /h with § = 0.5. Hence, we estimate the relative width
(«full width at half maximum») as B/n ~ 0.16 (experimentally it is about twice this value),
indicating that field penetration gives a substantial contribution to the broadening. Clearly,
more detailed studies of the lineshape will be most interesting.
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(®) See ref.[9] for a discussion of various phase breaking effects in isolated metal rings.
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