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1. Introduction

Metastable states with large, though finite, lifetimes occur rather frequently in
nature. As a model of a metastable state, one takes a particle in a potential well
which is separated from states of lower energy by a potential barrier. Such
a metastable state may decay by thermal activation and in many systems as they
occur in condensed matter physics, this is presumably the most frequent decay
mode. However, as one succeeds in reaching lower and lower temperatures,
there appears also the possibility that quantum tunneling may play a role.

It was Leggett (1978, 1980) who drew attention to the quantum decay mode in
large systems. In particular, he had argued that it may serve as a demonstration
of peculiarities connected with macroscopic quantum phenomena. Consider,
e.g., a system which features a metastable state in connection with a collective
coordinate of macroscopic dimensions. In general, this collective coordinate will
be coupled more or less strongly to the remaining degrees of freedom of the
system; thus, a situation emerges which may be best described by a macroscopic
object coupled to a dissipative environment.

Subsequently, Caldeira and Leggett (1981, 1983, 1984) have modelled such
a system as follows: The macroscopic object is represented by a particle in
a potential with a metastable minimum as shown in fig. 1, and the environment
is taken to be a set of harmonic oscillators (see section 3.6) which are coupled to
the object.*

Let us consider first the case of zero temperature, 7' = 0. In this case, and for
their model, Caldeira and Leggett have calculated the quantum decay rate
I using a field-theoretic technique (instanton technique), which was invented by
Langer (1967) and independently somewhat later by Lifshitz and Kagan (1972).
The instanton technique was subsequently discussed by Coleman (1979, 1985) in
his most illuminating and elegant paper. Note that this technique is of quasi-
classical accuracy, in the sense that Planck’s constant £ is considered there to be
a small quantity.

The instanton technique has sometimes met with skepticism. The seemingly
heuristic treatment of those quantum fluctuation modes that produce zero,
or even negative contributions to the action, has been questioned. More

* Frequently, we will call this ensemble a dissipative object.
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Fig. 1. Potential energy of an object featuring a metastable minimum. Regions A, B, and C repres-
ent, respectively, the metastable well, the barrier, and the outside region, where the object is found
after the decay.

specifically, it has been questioned whether the instantons of the Caldeira—
Leggett model, which feature a long-range interaction, allow the dilute-gas
approximation.*

Such questions motivated an investigation (Schmid 1986) by one of the
authors. As an alternative to the instanton technique, it has been proposed there
to calculate the wave function of the decaying mode in quasiclassical approx-
imation, which is an approximation where the phase of the wave function is
expanded in powers of h. The quasiclassical approximation has been used
frequently in one-dimensional tunneling problems, but difficulties arise in
systems of several degrees of freedom. In the last case, it seems that Kapur and
Peierls (1937) have been the first ones to investigate the properties of quantum
decay in systems with several degrees of freedom. Later, specific calculations of
wave functions in quasiclassical accuracy have been carried out by Banks et al.
(1973), Banks and Bender (1973) and de Vega et al. (1978).

However, the investigations of Banks et al. (1973) and Banks and Bender
(1973) on quantum decay were concerned mostly with systems of a rather
specific symmetry, whereas de Vega et al. (1978) were interested predominantly
in tunneling between degenerate minima of the potential energy. Since the wave
function of a decaying state exhibits some unique features, it seemed to be
worthwhile to carry out a quasiclassical calculation (Schmid 1986) for a general
model in a multidimensional configuration space.

From a technical point of view, differences in method seem to separate the
decay at zero temperature and that at finite temperatures. At T = 0, €g.,
Coleman (1979, 1985) has been able to demonstrate explicitly that the probabil-
ity of the object to remain in the metastable well decreases exponentially with
time, ie., is oc exp(—TI't) (dilute gas of instantons). For finite temperatures
T > 0, on the other hand, the calculation of the decay rate I" proceeds by a more
or less direct identification of I" with an imaginary part of the free energy, as was
first suggested by Langer (1967) and later also by Lifshitz and Kagan (1974).

* We cannot disperse completely this suspicion. See the last paragraph of section 3.6.
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This identification has also been emphasized by Affleck in his lucid and trans-
parent article (Affleck 1981).

A generalization of Affleck’s work to a dissipative object was formulated by
Waxman and Leggett (1985), but their work has been left uncompleted. Later,
this program was taken up by Ludviksson (1989} in his thesis, where it has been
carried out successfully.

This chapter consists mostly of a review of the papers by Schmid (1986) and
Ludviksson (1989), with an emphasis on a comprehensive and unified presenta-
tion. The formal procedure is based on the quasiclassical approximation either
of wave functions (Landau and Lifshitz 1975) or of Feynman’s path integrals
(Feynman and Hibbs 1965, Schulman 1981).

At this point, we wish to acknowledge the work of Miller (1975) on semi-
classical methods in chemical physics. We should also not fail to recall the
pioneering work of Kramers (1940) on the classical decay problem 50 years ago,
which started and motivated many other investigations on the decay problem.
In this context, we mention recent review articles on the decay problem by
Hinggi et al. (1990) and Mel'nikov (1991).

The chapter is organized as follows. Section 2 is meant to introduce the
fundamental concepts, which are illustrated explicitly for a one-dimensional
system. The multidimensional quantum decay for a wave function, i.e., at zero
temperature, will be discussed in section 3. Finally, section 4 is devoted to the
discussion of the statistical matrix and to the multidimensional decay at finite
temperatures, and a conclusion is given in section 5.

A detailed discussion of a one-dimensional system is given in sections 2.1-2.6.
In section 2.1, the concept of a quasistationary state is introduced. This concept
is the basis of all the following calculations; in fact, it seems difficult to work out
a general theory without this assumption. The matching of the quasiclassical
wave function is discussed in section 2.2; and in section 2.3, it is shown how this
matching procedure can be reduced to comparatively simple operations. The
decay at finite temperatures as put forward by Affleck (1981) is reviewed in
section 2.4. The statistical matrix appropriate to a decaying state is introduced
in section 2.5 and it is also shown how it can be obtained in quasiclassical
approximation from a Feynman path integral. This approximation is based on
complex extremal paths and section 2.6 provides a demonstration that complex
orbits of arbitrary multiplicity are required for a unified theory. It is also shown
that the generalization to multiple orbits leads to quantitative, if not qualitative,
changes as compared to the Affleck ansatz.

Sections 3.1-3.6 discuss the multidimensional quasiclassical wave function.
The direct approach of section 2.3 for calculating wave functions decaying from
a metastable well is applied in section 3.1 to quantum decay for a N-dimensional
system. The quasiclassical approximation there leads to nonlinear partial differ-
ential equations of first order which can be solved by the method of character-
istics. This method, however, requires the evaluation of a classical equation of
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motion in N dimensions; it is shown in section 3.2 how this rather complicated
equation can be solved in the small-fluctuation approximation provided that the
escape path is known. In section 3.3, the analytical properties of the principal
wave are investigated near the caustic {(which is the generalization of a turning
point to N dimensions) and it is shown how the transmitted wave can be
obtained by analytical continuation. There, an unpublished work of Landauer
(1950) has been most helpful to the authors in clarifying important concepts. The
decay rate is then calculated in section 3.4; and complete agreement is found
with the result of the instanton technique. Section 3.5 discusses the construction
of the reflected wave and the validity of the applied procedure in N dimensions.
For illustration, the Caldeira—Leggett model is presented in section 3.6 as an
example of quantum decay in a multidimensional system.

The theory of the multidimensional statistical matrix is explained through
sections 4.1-4.3. As pointed out in section 4.1, the quasiclassical approximation
is built on a set of extremal and complex paths which incorporates periodic
orbits which can be seen as a generalization of the escape path referred to above.
In section 4.2, we include the Gaussian fluctuations about these paths and
calculate their contribution to the decay current in the outside region; thus, we
obtain a generalization to N dimensions of Afflecks result for the decay rate.
However, the summation over multiple orbits is a nontrivial problem. This will
be demonstrated in section 4.3 and we will find qualitative changes as compared
to the standard theory. For the Caldeira—Leggett model a comparison with the
results of the standard theory is carried out at the end.

A discussion in section 4.4 summarizes the main results.

There are various appendices which are meant to remove detailed calcu-
lations from the main body. In Appendix A we calculate the quantum-mechan-
ical transmission of a smooth barrier in the quasiclassical approximation; the
result confirms the idea of summing up the contribution of multiple orbits.
Appendix B contains some results for the one-dimensional decay. In Appendix
C, the nontrivial problem of Gaussian fluctuations about complex paths is
investigated. In Appendix D we extend the work of Larkin and Ovchinnikov
(1983 a, b, 1984) on the pre-factor for a heavily damped object to multiple orbits.
Finally, conceptual and computational details on the decay rate of a heavily
damped object are contained in Appendix E.

2. Decay in one dimension

2.1. Quasistationary state

The concept of a quasistationary state is essential to all considerations which
will follow in this chapter. It is only for the sake of an easy demonstration that
we discuss this concept here for the one-dimensional decay. Let us recall the



The decay of a metastable state in a multidimensional configuration space 151

standard model of a metastable state, which consists of a particle (“object”) in
a potential well (region A in fig. 1), separated from the decayed state (region C)
by a potential barrier (region B). Characteristic parameters of this model are the
mass m of the object; the height vy; and width R of the barrier. Of interest is
also the oscillation frequency w, at A and wp at B for the inverted potential,
respectively. Later (section 3.6), we will also specify the interaction of the object
with its environment but for the moment we will do without it.

In extreme cases, the decay may occur entirely either by quantum tunneling
(quantum decay; QD) or by thermal activation (classical decay; CD). If the
condition for a quasistationary state applies, the theory leads to an exponential
decay law

P(t) =exp(—Tt), 2.1)

where P(t) is the probability for the object to remain in the well. Furthermore, it
is commonly found that the decay rate I' is of the form

I' = o exp(—B). 2.2
For orientation, we give some simple relations

# cvg/hwp (QD),

2 =vg/kT (CD),

o C wy. 23)

Within the limits of this simple picture, the condition for a quasistationary
decaying state* is given by

Physically, this condition means that the metastable state may be considered to

be internally in equilibrium. Using egs. (2.2) and (2.3), we may rewrite this
condition as

2> 1. 2.5)

2.2. Matching of the quasiclassical wave function

At zero temperature, the concept of a quasistationary decaying state allows us to
look for a wave function ¥(R) which is a solution of the time-independent
Schrodinger** equation

Ky = Ey, (2.6)

*See, e.g., Landau and Lifschitz (1975) for a discussion of quasistationary states and the
Breit-Wigner formula.

** The time-dependent Schrodinger equation has been solved repeatedly in the past for simple
models of decay. See Ludviksson (1987) for a recent publication.
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where the Hamiltonian

2 02
= R 2.7
H= = s+ V(R 27
includes a potential energy v(R) of a type shown in fig. 1. The ansatz above also

requires that the wave function has to satisfy the following conditions:

(i) Far to the right, y must carry an outgoing probability current.
(i) ¥ must vanish far to the left.
(i) Near the metastable minimum, { must resemble the ground state wave
function of a harmonic oscillator.

For such a wave function, the Schrédinger equation (2.6) can be solved
only for a complex energy E = $h(wa — iI); it follows that in a time repres-
entation, the probability decays exponentially in time at a rate I', namely
|W(t)|? oc exp(—I't). Obviously,

I'=—2ImE/h (2.8)

has to be identified with the decay rate.

In a region near the origin, R = 0, as well as in a region near to the classical
turning point R = R, the general solution of the differential equation (2.6)
may be expressed by known functions. This follows from the fact that there
v(R) can be approximated by a harmonic and a linear potential, respectively.

Accordingly,
{mw}R? R| <R
b(R) = {me"R ’ IR| < Re, 29)
—Fc(R—Rc), [R—Rc| <R,

where we have also indicated the regions of validity of the approximation for
a smooth potential. The simplest of such a smooth potential is

v(R) = imw3R*(1 — R/R¢), (2.10a)
where
wa=wp=wy, Rp=3%Rc,
v =smwiR3,  Fc=34mwoRc. (2.10b)

Concerning the region near the classical turning point R¢, we recognize that
a finite energy in eq. (2.6) means only a redefinition of R¢. Therefore, we may put
E =0(.c, Re E = ImE = 0). Then the solution which satisfies boundary condi-
tion (i) is of the form

Y(R) = m[m(RC — R> + iAi(RC — R>], ac = (R2/2mFc)'s3,
ac dc

(2.11a)
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where Ai and Bi are Airy functions (Abramowitz and Stegun 1968). To the right
of R¢ and for ac < |R — R¢|, the asymptotic form of ¥/(R) is

Y(R) = ./V7t_1/2<R—_-&>_1/4 exp{i[g<R — RC>3/2 + E]} (2.11b)
ac 3 ac 4

which represents clearly an outgoing wave. The asymptotic form of y(R) to the
left of Rc may be written as /,(R) + ;(R), which is a sum of what we wish to
call a principal and a reflected wave. Asymptotically, their form is*

Rc— R\ V4 2( Rc — R\*?
'pO(R):./Vn—l/Z(C—) exp[—( < > ]
dc 3 [276]

W1 (R) = %/Vﬁﬂ/Z(BS:_R_)_M eXp[;z<RC - R>3/2]. @119¢)

ac 3 ac

Considering the differential equation (2.6) in the region near the origin, we
find that a solution satisfying the boundary conditions (ii) and (iii) is

¥(R) = D,(—R/ag), ao = (h2mwy)*'?, v =—il)2w,, (2.12a)

where D, is a parabolic cylinder function (Abramowitz and Stegun (1981)). The
asymptotic form of eq. (2.12a) to the right of the origin and for aq < R is again of
the form o(R) + ¥ (R), where

¥o(R) = |R/ao|* exp(—R*/4a3),
¥1(R) = —v(2m)"/*(ao/R)' ** exp(R?/4a3). (2.12b)

The asymptotic form of (R) to the left of the origin is identical to y,(R) in
€q. (2.12b). [ Note that ac/R¢ = (21?2 aq/Re)*3.]

Outside the regions R ~ 0 and R ~ R considered above, the wave function
can be calculated in the quasiclassical approximation.** In fact, we will find that
the condition for quasistationarity 2 » 1 of eq. (2.5) guarantees the validity of
this approximation.

In this approximation, the asymptotic waves of eq. (2.11) and of eq. (2.12) can
be connected as follows. We consider first the principal wave o(R). In the
classically inaccessible region we expect it to be a real quantity; therefore, we put

Yo(R) = exp{— % [#(R) + h#w D(R) + O(hz)]}, (2.13)

*Since i, is purely imaginary, it is legitimate to retain this subdominant contribution next to the
real dominant part y,. See also the interesting discussion in Coleman (1979, 1985).

** An excellent discussion of the quasiclassical approximation for one-dimensional systems can be
found in Landau and Lifschitz (1975). Frequently, this approximation is called the WKB or WKBJ
approximation.
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where the expression #°(R) — the first term in the square bracket — may be called
the (abbreviated) Euclidean action. We insert the ansatz (2.13) into the
Schrodinger equation (2.6) and then equate separately the terms of equal power
in h, observing that E = hwo(3 + v) is of order 4. Thus, we obtain

in leading order the eikonal equation*

1 (oW \?
— = 14
2m<aR> v(R)=0, 2.14)
in next order the transport equation

L awDow 1 oW
l1oF—ow 1 215
m 3R 3R 3 3Rz TG )= 215)

The solution of the eikonal equation (2.14) is
R
‘l/f(R)=f dR’'[2mv(R')]*?, (2.16a)
0
where the sign of the square root has been chosen such that s, decreases
exponentially with increasing R. For convenience, an arbitrary integration

constant has been fixed by the condition #7(0) = 0. In the case where v(R) is
given by eq. (2.10), we obtain

1 1 3R R \*?

8 moiRE 36 v

B = =—— 1
15 hawyg 5 hwg 17)
Limiting expressions for % (R) are as follows:
RZ
1.2 |R| < RC9
1 4a}
PV (R)= L SR RA2 2.160)
—@——( . ) , IRc—R| < Rq,
2 3 ac

where ac and a, are given by egs. (2.11) and (2.12a).
The transport equation (2.15) can be solved by a straightforward integration;
choosing a suitable integration constant, one obtains

a///‘(l)(R)zz |: R (1 —£>1/2:|—<1+v>lni—_—— VI_R/RC
+

4Rc Re 2 V1 —R/R¢
4R
—yln—S. (2.18a)
Ao

*This terminology has been used, e.g., in Banks and Bender (1973) and Banks et al. (1973).
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Limiting expressions for # V(R) are as follows:

R v
(;‘) , IR| < R,
—WOR)=(° 2.18b
exp[ ( )] 4RS\' (R — R 1/4 |R RI <R ( )
_ — <9 .
[723) 16 RC ’ ¢ ¢
Comparing the limiting expressions, we recognize that o=

exp[—(# + hw V)/h] agrees with y, of eq. (2.12) and also that it agrees with
Vo of eq. (2.11¢) if we choose

1/4 v
N = 2n1/2<&> (%) exp(3 B). (2.19)

ac 0

The quasiclassical ansatz for the reflected wave y;(R) is chosen similar to
eq. (2.13) with an Euclidean action #7(R) + h# {"(R). Clearly, the structure of
the eikonal equation and of the transport equation remains unchanged. The
different boundary condition, however, requires the opposite sign of the square
root; hence,

#(R) = =W (R). (2.20)

As a consequence, ¥ {(R) is similar to eq. (2.18), with, however, a change in the
sign of (1 + v); therefore,

W O(R) = lln£<l _£>1/2 + (1 + v>ln1—:— V11— R/Rc
2 Rc Rc 2 1+./1+R/R¢

+(1+ v)lnf‘? — In2r)12(—v), (2.21)
0

where a suitable change in the integration constant has been included. Thus, the
limiting expressions are

exp[—# {(R)]

1+v
- (h)lﬂv(%) : IRI < Re,
= B (2.22)
1+v R _ R 1/4
—(2n)“2v(4"7°> <1C6R ) , [Rc — R| < Re,
C C

Comparing again the limiting expressions, we recognize that Y=
exp[— (W1 + hw V)]/h agrees with i, of eq. (2.12b). We also recognize that it
agrees with ¥, of eq. (2.11c) if we choose

. I .1 <4RC

T TP

and 4" according to eq. (2.19).

1+2v
> exp(— ), (2.23)
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If |v| < 1, the v-dependence on the right-hand side can be neglected. Then,
eq. (2.23) can be rewritten in the standard form [eq. (22)], I' = o/ exp(— &),
where £ is given by eq. (2.17) and where

'@ 1/2
d=601/2<5> wo. (2.24)

This expression for the decay rate is similar to eq. (2.3) except for numerical
constants and a factor #'/* contributing to .o/.

It is known (Landau and Lifschitz 1975) that the quasiclassical approxima-
tion relies on the inequality

AP
oR? OR

2

h

<3

(2.25)

In the present case, where 0% /OR = + mwoR(1 — R/R¢)'/?, this inequality
reduces either to @, € R or to ac < |R — R¢|. Therefore, we conclude that the
present method of solving the Schrodinger equation by matching exact solu-
tions for an approximate potential with approximate solutions for the exact
potential requires the inequalities

Qo < Rc, ac < RC' (226)

Inserting the appropriate definitions, we find that inequalities (2.26) are satisfied
provided that eq. (2.5), i.e., # > 1, is satisfied. Therefore, the concept of a quasi-
stationary state and the quasiclassical approximation are valid in the quasi-
classical limit.

2.3. A simple approach to quantum decay

We have put the discussion of the one-dimensional quantum decay on a broad
basis in order to demonstrate how so many intricate details conspire to bring
forth the simplicity of the final result [eqgs. (2.17) and (2.24)]. One might wonder
whether there is a much simpler scheme leading to the same end. Indeed, there is
an alternative method which ultimately relies on the fact that the principal wave
Yo can be found, to a sufficient degree of accuracy, without prior knowledge
of I'.

Considering the Schrédinger equation (2.6), we conclude that
Imy *[# — E]y = 0. Integrating this expression from —oo to R, and recall-
ing eq. (2.8), we obtain

r= UR dR’ |l/l(R')|2j|_1 J(R), 2.27)

where the probability current

J(R) = (h/m)Im y* dy/OR. (2.28)
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Later we will take R ~ R for the current J(R). On the other hand, the choice
R’ < Ry in the denominator of eq. (2.27) is sufficient since it includes most of the
normalization of a decaying state.

One might quite easily argue that the ratio (2.27) of probability current
divided by the probability of the object to be found in the region of the well may
a priori be considered as the definition of the decay rate and that no reference to
eq. (2.8) is required. We will make use of this idea later.

Consider the limit I' = v = 0, where eq. (2.12b) assumes the simple form
Yo(R) = exp(—R?*/4a}). Note also that in the same limit the quasiclassical
approximation to the wave function as given implicitly by egs. (2.16) and (2.18)
agrees with y(R) in the region |R| < R¢. Therefore, we conclude that the
following statement is true:

The quasiclassical solution can be found directly from the eikonal equation
(2.14) and the transport equation (2.15) if we put I' = v = 0 and if we extend these
equations to the origin R = 0, supplementing them by the boundary condition

W(0)=#wDV0)=0, W (R)>0. (2.29)

Thus, the quasiclassical method leads us directly from the harmonic oscillator
wave function near the origin to the asymptotic form of the principle wave
Vo (R) near the classical turning point R¢. According to egs. (2.16) and (2.18), we
obtain for R ~ R,

— -1/4 _ 3/2
Yo(R) = 2<RCRC R) expE(RCaC R> —?]. (2.30)

In principle, we could use the connection formula contained in eq. (2.11) in
order to construct the outgoing wave iy (R). However, it has been found* that the
breakdown of the quasiclassical approximation near the turning point R and
the matching of the wave function can be avoided if one generalizes the eikonal
equation and the transport equation to complex R. Then, it becomes possible to
pass from one side of the turning point to the other side on a semicircle in the
complex plane which remains at a sufficiently large distance from R.

In order to obtain a wave with outgoing probability current, we have to
perform an analytical continuation via the upper R-half plane. Thus, we are led
to substitute

(Rc — R) » e ™(R — R¢) (2.31)

*In a recent edition of Landau and Lifschitz (1975), the method of analytical continuation is
attributed to Zwaan (1929). There are doubts whether it is valid in general. Presently, one might say
that it depends on some analytical properties of the Airy functions. See also the discussion in section
3.8 of Bender and Orszag (1978).
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in the principal wave of eq. (2.30), whence we obtain the outgoing, ie., the
transmitted wave

~ R—Rc\ 4 2ifR—Rc\*? & in
l/I(R) = 2( Re > €xp —3— e - 5 + z (232)

which agrees with eq. (2.11b) together with eq. (2.19).

Calculating the probability current (2.28) from y/(R), we need to differentiate
only with respect to the argument of the exponential. Thus, we obtain
J(R) = 4wy Rcexp(— %) which is independent of R. Concerning the normaliz-
ation, we note that it is given by [dR|y,|* = (2m)'/*a, by a high degree of
accuracy. Inserting these expressions in eq. (2.27), we recover the same result for
I as given in egs. (2.2), (2.17), and (2.24).

As a final comment on the possibilities and ambiguities enclosed in the
concept of analytical continuation, we remark that a substitution

(Rec — R) > e %*(Rc — R) (2.33)

in the principal wave of eq. (2.30) does lead to the reflected wave i, (R) as given
by eq. (2.11c) except for a factor of . It is possible to implement this factor by the
additional requirement of current conservation.

2.4. Decay at finite temperatures

In this section, we review the theory which has long roots but which Affleck
(1981) has presented lucidly in his paper. Consider again the metastable poten-
tial as shown in the pictogram of fig. 2. In quasiclassical approximation, the
energies E, of the levels in the well are implicitly given by (Bohr-Sommerfeld
rule)

W(E,) = 2rnh(n + 3), (2.34)

where the abbreviated action W for a closed orbit in the well is calculated
according to

W(E) = ffp dR,

P(R) = {2m[E — v(R)]}'?. (2.35)

In the simplest quasiclassical approximation, the transmission probability
D(E) through the barrier is given by

D(E) = exp[— % W(E)], (2.36)
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Fig. 2. Quasistationary levels in the well (full lines) and the tunneling distances (broken lines).

where #7(E) is the abbreviated action for a closed orbit in the inverted potential
—v(R) of the barrier. Hence,

W(E) = fﬁg) dR,

2(R) = {2m[v(R) — E]}'~. (2.37)
Recall that, classically, ¢ W/OE is the time the object needs to complete the
closed orbit in the metastable well. Therefore,

L= <a W>_1 D(E) (2.38)

JF

E=E,

is the rate by which the object leaves the nth level of the well.

Let us now assume that the levels are populated as being in thermal equili-
brium, i.e., with probability oc exp(—E,/kT). Then, the average decay rate is
given by

I'=2Z5'Y Iexp(—t,E,/h), (2.39)

where Z, is the normalization and where, with respect to further developments,
we have introduced the Euclidean time

ty = h/kT (2.40)

as a measure of the inverse temperature.

We emphasize that the ansatz (2.39) may have only a restricted validity since it
ignores changes in the population of the levels which result from a level-
dependent decay rate. On the other hand, we wish to emphasize that such an
ansatz is completely in accordance with the concept of a quasistationary state
introduced in section 2.
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Concerning the normalization

Zo =Y, exp(—t1Ea/h), (2.41)

one should observe that, effectively, only the lowest levels contribute. There, the

well may be approximated by a harmonic potential; hence (W = Ws = wo),
Z, = (2sinh woty /2)” L, (2.42)

We consider now the case where the level spacing is so small that we may
replace the summation in eq. (2.39) by an energy integration. Since the level

density is (0 W/QE)/2mnh, we recognize a cancellation of a corresponding term in
the expression (2.38) for I;. Thus, we arrive at

r=2y! J%exp(—%[W(E)+nE]>. (2.43)

In the quasiclassical limit, it is possible to evaluate the integral (2.43) by
steepest descent. Thus, we obtain for the average decay rate a relation of the
form [eq. (2.2)], which is I' = o exp(— %), where the prefactor is given by

o = Zo‘l[21ti'162‘l/f(E)/6E2:|'”2 (2.44)
and where the argument of the exponential (except for a factor h),

h# = F(t) = W(E)+ 0, E,

7, = —0W (E)/OE, (2.45)

is the Legendre transform of W. Alternatively, we may write the prefactor as
follows:

o = Z5 V[ —2mhdt,(E)/QE] Y = Z51Qrk) M2 [0 (1,)/0% 1 12
(2.46)

An important point in Affleck’s paper has been his demonstration that I is
related with the imaginary part of the free energy [compare eq. 2.39)]

_ 2
[=—3Im¥, (2.47)

which means a generalization of eq. (2.8) to finite temperatures. In the first step,
Affleck proposes to calculate the full partition function Z by a path integral*

z= jd(&)exp(— ; y([R,J;n)), 248)

*For a general introduction to path integrals, see Feynman and Hibbs (1965) and Schulman
(1981).



The decay of a metastable state in a multidimensional configuration space 161

where the Euclidean action is given by*

csp([Rr]’ Tl) = j” df[% (ath)z + D(Rt)] ’ (249)
0

and where the integration includes all closed paths R;, = R=o0-

In quasiclassical approximation (see the discussion by Dashen et al. (1974)),
the predominant contribution to the path integral is from extremal paths r, that
obey the equation

=0. (2.50)

Specifically, the relevant extremal paths that contribute to Z are closed orbits
that are completed in time T;. There is the trivial orbit r,=0 (metastable
minimum) which provides, together with its Gaussian fluctuations (periodic in
time 7, ), the normalization Zo of eq. (2.42). The nontrivial orbit r, # 0 produces,
first of all, the exponential

h# = ([r.J;71), 2.51)

which can easily be shown to agree in its value with eq. (2.45).

Concerning the Gaussian fluctuations about r,, one should observe that they
are periodic in time with period ;. Furthermore, one should note that there is
a mode oc 7, with eigenvalue 4, = 0 and also one mode with a negative eigen-
value Zo. In contrast to the Minkowski case, the negative eigenvalue poses
a delicate problem in the Euclidean case. However, one can argue (Caldeira and
Leggett 1981, 1983, 1984) that for the present case, it contributes with a factor
1(Ao) V2 = —3()%0l” 112 For the remaining factors we refer to Dashen et al.
(1974); accordingly, the overall contribution of the nontrivial orbit is

Z, = Zo ‘%‘ o exp(— B), (2.52)

where for the present case

. 1/2 A2 2 1/2
ﬂ — VO([rt], tl) det[ zat + (Do] . (253)
2nh det' [—02% + v"(r:)/m] | es
In the above relation
SLollr);t)=m j dt(0,r.) (2549
1]

and det means a determinant in t-space (det’: zero eigenvalue omitted). The
subscript PB means that the eigenvalues are calculated for periodic boundary

* For convenience, we mark at appropriate places the time dependence by a subscript, e,
R, = R(1).
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conditions. If one makes use of relations given in Dashen et al. (1974), one finds
that the prefactor of eq. (2.53) agrees exactly with the one given by eq. (2.44).
Since the exponent & in eq. (2.52) is clearly identical to that given by (2.45), this
completes the justification of eq. (2.47).

2.5. Statistical matrix in quasiclassical approximation

Again, we assume that the system is in a quasistationary state corresponding to
thermal equilibrium. This means that we should look for a statistical matrix
p(Ry, R; t,) which has to satisfy the following conditions:

(i) Far to the right, p must supply an outgoing probability current.
(i) p must vanish far to the left.
(iii) p should contain a large part which represents the object localized in the
metastable well.

Let us represent the statistical matrix by the path integral (Feynman and
Hibbs 1965):

p(Ry, Ry1q) = jd[Rf]exP<—;l,;5”([Rz];ﬁ)>, (2.55)

where & is given by eq. (2.49) and where the integration above includes all paths
R, which start from R at T = 0 and lead to R, at T = 7. In the quasiclassical
approximation, the path integral is dominated by extremal paths r, which obey
€q. (2.50). There are different classes of paths (see fig. 3) but the final choice has to
be in accordance with conditions (i)—(iii). In the discussion that follows, we will
realize that in fig. 3, the class (a) provides the large part which is important for
the normalization* whereas class (b) contributes to the outgoing probability
current.** At first sight, there seem to be two different paths of class (b) which
differ for R, = R in the sense of circulation. However, the requirement of an
outgoing current eliminates one of the possibilities.

The outgoing current is calculated from the statistical matrix according to the
prescription

h 0 0
JR) =—| 55— ; .
(R) 2mi<6R1 aR)ﬂ(Rl,R,n) ok (2.56)
The average decay rate then is given by
I'=Z5'J(R), (2.57)

*Note that in the present case the Gaussian fluctuations about extremal paths have to be
calculated for zero boundary conditions. Alternatively, class (a) is equivalent to the trivial orbit
including Gaussian fluctuations for periodic boundary conditions.

*#* [t is this selection of paths by which we disagree with the work of Waxman and Leggett (1985).
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R
] /\

=
A S \b)

Fig. 3. Extremal path contributing to the statistical matrix p(R,, R; 7,)in quasiclassical approxima-

tion: (a) Contribution to the normalization. (b) Contribution to the outgoing probability current. At

first sight, there seem to be two different paths (for R; = R, they differ in the sense of circulation).
However, the requirement of an outgoing current eliminates one of the two possibilities.

where
R
Zy= j dR’p(R’, R’; 74). (2.58)

As already discussed following eq. (2.28), we take R 2 Rc in the expression for the
current J(R), and R’ < Rg for the normalization (see fig. 3).

In quasiclassical accuracy, the decay current can be calculated by taking the
derivatives only with respect to the argument of the exponential, ie., with
respect to the action. Considering this action as a function of the coordinates,
ZL([r.]; 1) = L(Ry, R; ty), we find that

1 |[o¥ 0o
J(R) = — % [a—Rl _— ﬁ]Rl:R p(R, R, Tl)
1
=—5 2% - (=2)1r,=rP(R, R; 71), (2.59)
mi

where # = #(R;) is given by eq. (2.37) with R; in the outside region (C). Clearly,
the requirement of an outgoing probability current is met if we choose the sign
of the square root such that Im & < 0. Observing that mr,, = mé, = #; = P, we
may write

J(R) = |folp(R, R; 14). (2.60)

In retrospect, we realize that we need to calculate only extremal paths r, that
are closed. For the one-dimensional case we are presently considering, these
paths are also periodic since #,, = #,. It is worth noting that it will also be
a periodic path which will play a prominent role in multidimensional systems.

A further property of a periodic path can easily be demonstrated in one
dimension and for the cubic potential [eq. (2.10)]. There, the extremal paths
r. are found to be doubly periodic functions in the complex t-plane; more
precisely, they are found to be Weierstrass functions (Abramowitz and Stegun
1968). Specifically, the (real) period 7, fixes the energy as well as the second
period which is purely imaginary (and which is the period of the periodic motion
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in the classically accessible region). Now, if one allows also complex extremal
paths r¥* # r,, where 7 is real and 0 < 1 < 7,, then one can see that for any 7,
there exists a complex path where ry, = r,, = Ris real and larger than Rc¢. In the
complex R-plane such a path is completely characterized by its topology with
respect to the branch points (classical turning points; see fig. 4). Also, one
recognizes at once that any deformation of the path in the complex plane leaves
the action S([r.];7;) and the final momentum % = —i(2m[E — v(R;)])'/?
unchanged.

In order to elucidate a basic feature of the complex path, let us compare it
with a real path which will, however, require a complex time. Considering fig. 5,
we recognize that the real paths R, — R, and R; — R in the classical accessible
region of fig. 5a run along the imaginary t-axis in fig. 5b. Of importance is that
at the classical turning points R, and R, the velocities vanish; and it is this very
fact which allows us to introduce corners in the contour of the complex t-plane.

We anticipate the fact that in multidimensional problems the turning points
are replaced by caustics where the velocity does not vanish; in this case, only the
concept of complex paths carries through without modifications.

Of importance is also the fact that complex paths cannot be avoided in the
case E > vg (high temperatures); see fig. 4c for illustration. Concerning correc-
tions due to Gaussian fluctuations about the extremal paths, useful relations can

q
i
H
'
H

ImR

E<vup /'/‘\
ReR
I\/I b

ImR

E>Ug
ReR
C

Fig. 4. Extremal orbits completed in time 7, = h/kT under the barrier: (a) Potential energy and
turning points; (b) complex extremal path which encloses the two branch points for E < vg (T < Tg);
(c) the same for E > vg (T > Tg).
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Fig. 5. (a) Real path under the barrier (2 — 3) in time 7, and real paths in the outside region (0 — 2,
3 — 1) for imaginary 7. (b) The corresponding contour in the complex z-plane. (For R, = Ry =R,
the endpoint of the contour is on the real axis.) Note the corners at the classical turning points.

be found in Dashen et al. (1974). There, they are derived for a real path but we
will show in Appendix C that they are also valid for complex paths with
appropriate interpretation. Accordingly,

p(R,R; 1) = 3, [2mh|fo|*(— 07, /0E)] /% exp (— ;l.l-sf’([rt]; m>, (2.61)

Ccp
where the sum includes all closed paths. Eventually, we arrive at the relation

1
J(R) = Z [2nh(— 97, /0E)] "2 exp (— 7 SL([r]; Tl)>, (2.62)
PP
where now only periodic paths have to be included.
We recognize that egs. (2.62) and (2.57) are equivalent to egs. (2.45) and (2.46),
except for contributions of all periodic paths that satisfy the requirements.

2.6. Unified theory by multiple orbits

As pointed out by Affleck (1981), that part of the theory which we have
presented in section 2.4 is not applicable to higher temperatures. In what
follows, we present a unified theory which comprises the separate parts of
Affleck’s theory which are meant to cover different temperature ranges. In order
to emphasize at least one of the differences between our theory and Affleck’s one,
we note that the trivial path r, = Rp cannot contribute to an outgoing probabil-
ity current; hence, it does not play a role in the foundation of our theory.

As already mentioned, there are nontrivial complex orbits (Weierstrass func-
tions) even for small values of t,, ie., for large temperatures (see fig. 4c).
Therefore, we may also look for periodic orbits that are completed in time
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(primitive period)
1
T,==T1, P=12,..., (2.63)
p
and which are traversed p times. Recalling the summation of eq. (2.62), we write
r=5%ro, (2.64)
p=1

where according to eqgs. (2.57) and (2.62) we have
I,=Z§'(—1)***[2nhp(—0t,/0E)] exp (— %y([r,]; r,,)>. (2.65)

The factor (—1)?*! above deserves a comment. In a saddle point approxima-
tion, the overall sign depends on the direction in which the “mountain pass” is
being traversed. Quite generally, this direction has to be found from a proper
deformation of the original integration contour. For an integration in function
space, however, it seems to be difficult to ascertain the details of the proper
deformation. At least, this appears to be the case with Euclidean functional
integrals and we have been unable to find general sign rules in the literature. On
the other hand, the factor (—1)?*! above does lead to correct results in cases
where we have been able to check it.*

Since & ([r.]; T,) = — o for 7, — 0, the sum given by eq. (2.64) is divergent.**
However, it is possible to interpret this summation in a meaningful way as
follows. In a first step, we calculate the Laplace transform in quasiclassical
approximation

F(E) = r de, Ty (e, exp (— : Er1>

0

=Zgl(—1)"“exp[—;1,l—p‘///(E):I, (2.66)

where % (E) is defined by eq. (2.37) — or by the inverse of the Laplace transform
(2.45). (Note that 7, is the same function of E independent of p.) Summation of
the series leads to

F(E)= 3. F(E)=Z5' D(E), 261)

* For an illustration see Appendix B.
** This is a general property of asymptotic expansions (see section 3.8 of Bender and Orszag 1978).



The decay of a metastable state in a multidimensional configuration space 167

WI(E)

’ v~ €

Fig. 6. Abbreviated Euclidean action #'(E) for a closed orbit under the barrier. We have for
1= — OW (E)/OE the values oo and 15 = Ai/kTy at E = 0 and E = v, respectively.

where

D(E) = [1 +exp;1,l—“lV(E):|_1 (2.68)

means a generalization of the barrier transmission probability of eq. (2.36).
Next, we invert the Laplace transformation and obtain (Et,/h = E/kT)

I'=(@2rhZ,)™ ! jdE D(E)e ™ E/*T, (2.69)

In his paper, Affleck (1981) has discussed three different regions of temper-
ature. They correspond, to some extent, to the different types of approxima-
tions* which are suggested by some properties of egs. (2.68) and (2.69). For an
orientation, consider fig. 6 for a typical energy dependence of #"(E). Note that

W(UB) = 0,
_OW(E) h

= Tp

OE vE=vB_ =k_-TB,

(2.70)

where Ty is called the crossover temperature. (In the one-dimensional case we
are considering here kT = hwgo/21.)

(i) In the case of very low temperatures T < Tg, only small energies contrib-
ute in eq. (2.69) and we may approximate D(E) =~ exp[— (1/h)# (E)] as shown
in eq. (2.36). Thus, we recover egs. (2.44) and (2.45).

(ii) Next, we consider temperatures where T is distinctly larger than 7g. Then,
we expect that energies |E — vg|SkT contribute mostly in eq. (2.69). This
justifies the approximation %~ ~ #7, where the first-order expression # is
given [cf. eq. (2.70)] by

hl-“//ﬂ(E) = —(E — vp)/kT;. (2.71)

* See also Hinggi and Hontscha (1988).
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In this case, we obtain
I'=(hZy) *kTa(sinn Ty/T)™ ' exp(—vs/kT). (2.72)

For temperatures kT » kTg, hoo, we may expand Z, of eq. (2.42) as well as
the trigonometric function above. Thus, we obtain in leading order

I = (wo/2m) exp(—vg/kT), (2.73)

which should be compared with eq. (2.3).

At this point we wish to draw attention to an alternative way to obtain eq.
(2.72), which can already be found in Affleck (1981) and which has been worked
out in some detail in Wolynes (1981) and Grabert and Weiss (1984). Starting
from a modification of eq. (2.47), namely

_ 2 Ty
r=—--—"1 .
BT mZ, (2.74)
one calculates the free energy & = —kTInZ from Z = Z, + Z,, where Z is the
contribution of the trivial orbit r, = R, including its Gaussian fluctuations.
Thus,

Z, = %i[2sin(hwo /2kT)] ! exp(—vg/kT), (2.75)

where the factor i is a consequence of the unstable mode at Rp and where the
factor 4 needs a separate justification.

(iii) Close to the crossover temperature T = Ty, Affleck proposes the
expression

vB

I'=Q2rhZy)™ ! j

-

dE exp{— [‘;{ W>,(E) + E/kT]}, (2.76)

where #,(E) is the second-order expansion given by

1 1 1/E — vy \?

_ E)= - Z

h“sz( ) h“fVl(E)+4< kT, > 2.77)
with

1Y _28#(E) 278

kT,) h OE?* |z, 278)

[In the one-dimensional case, (kT;)* ~ kTzvg.] This ansatz leads to*
— _ kT2 T2 T2 U 1 T2 T2 2
F=Z;' =g %erfc| = - = —— | === .
° k" °r°<TB 7)™\ "\ "T) | @79)

* See also eq. (63) of Larkin and Ovchinnikov (1992).
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where erfcz = 2n~ /2| dtexp(—t*) is the (complementary) error function
(Abramowitz and Stegun 1968).
For large values of T,/ Tz — T, /T, we obtain from eq. (2.79)

f_Z—l__l_ _1___1_ _le-vB/kT (2.80)
© 70 omh| KTy kT ’ '

which reduces to expression (2.72) for temperatures T2 Ty above the crossover
temperature.
In particular, we have for T — Ty, where erfc (T5/Tg — T/ T) — 1,
_ o kL
F=Zolme /Ts, (281)
A detailed discussion of the procedures above for a one-dimensional system is
given in Appendix B.

3. Quasiclassical wave function in multidimensional quantum decay
3.1. Quantum decay in N dimensions

The following considerations concern a system with N degrees of freedom.
Without loss of generality, one may assume all masses to be equal. Then the
Hamiltonian may be written as

B 92
H =—— —— + V({R:}), 31
3 Loz VR (3.1)
where the potential energy V is supposed to have one metastable minimum. We
take this minimum to be at the origin such that

1 ?*v

V=imUPR R, + O0(R3), U9 =-_—— )
sm UL R, R, + O(R”) = SROR | reo

(3.2)
Here and in what follows, summation over repeated indices is implied; we will
also use vector notation R = {R,} = (R, . . ., Ry), if convenient.

Although the potential energy V is positive in a region which includes the
origin, it should become negative in a range of directions and at larger distances.
Consequently, there is a surface 2, defined by V(R) = 0, which separates the
outside region C (classically accessible) from the well and barrier regions A + B
(classically inaccessible), i.e., the regions where ¥ < 0 and ¥ > 0, respectively.
See fig. 7 for illustration.

As pointed out in section 2.2, the wave function y(R) of a quasistationary
state has to be a solution of the Schrodinger equation [eq. (2.6)], where the
Hamiltonian 5 now is given by eq. (3.1). However, conditions (i) and (i) on the
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Rz

Fig. 7. Surfaces of constant potential energy ¥(R) for a two-dimensional system with a metastable
minimum (potential well A) at R = 0. The surface Z, defined by ¥V(R) = V(0) = 0 separates the well
and barrier region (A + B) from the outside region (C).

behavior of the wave function at large distances are of little value on account of
the missing information for N — 1 degrees of freedom. Therefore, we have to rely
entirely on the simple approach of section 2.3.

We start from the quasiclassical ansatz (2.13) for the principal wave y/o(R),
where now the action is a function of R. Inserting this ansatz into the
Schrédinger equation, where E = 3 hay is real, we obtain
the eikonal equation

1
H=5-P}—V({R})=0

0% ({R
P = #’ (3.3)
the transport equation
ow 1 3w 1
HWY = P(l) — =0
oR, 2m oRZ 129175
EW/‘”( R}

The equations above are nonlinear partial differential equations of first order
which have to be solved for the boundary condition (2.29). Note also the special
notation for the partial derivatives introduced above.

The solution to the eikonal equation (3.3) can be found by the method of
characteristics.* The characteristics can be presented in parametric form as
trajectories in the 2N-dimensional { R, P}-space

Ry = Ry (1), P, = Pi(7) (3.5

* A concise presentation of the method of characteristics can be found in section 2.13 of Whitham
(1974). See also section II of Courant and Hilbert (1962) for a broad discussion.
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such that they obey H = 0, together with the canonical equations of motion

: o0H 1 . oOH oV
Ry=—=—P,, Pp=——=—| 3.
o, m* *7 3R, 0R, G6)
where the dot means differentiation with respect to .
In addition, we also introduce the concept of paths which are defined as
projections of the trajectories on the N-dimensional {R}-space. These paths

obey the equation of motion

oV

TR ImR: -V =0, (3.7)

mkk =
where the condition H = 0 has been added for completeness. Clearly, eq. (3.7)
corresponds to the classical equation of motion in the inverted potential for zero
energy.
The change of # along a characteristic is given by
. OoH .
W = P, — = mR}. 3.8
k3 P, mixy (3.3)
At this point, it is appropriate to recall that the relation 0% /OR = P = mR
means that the paths follow the lines of steepest descent of % (R).
Solving the transport equation (3.4) by the same method, one recognizes that
the paths are the same as above. Furthermore,

oOH®Y 1 2*w 1

1/'/(1) = pW - _
P 2m 0R? 2

o7, (3.9)

where the condition H™) = 0 has been used.

Since #~ = %) = 0 at the origin is given, we obtain the action # (R) and
# (R) for other points in space by calculating the paths which connect the
origin with these particular points. Being paths in the inverted potential, they
will be confined to the classically inaccessible regions, A + B, acquiring large
distances for sufficiently large 1. As an illustration, such paths are shown in
fig. 8 for a two-dimensional system. The figure suggests that there is also
a collection of paths which are reflected at some distance from Z,, having
curvatures either to the left or to the right. Following this suggestion, we
conclude that there exists, as a case on the border line, a single path which
approaches 2, perpendicularly and with zero velocity.

The particular role of such a singular path in quantum decay has been
stressed by Banks et al. (1978). We follow their suggestion and assume that in the
most general quantum decay problem, there always exists such a singular path
— possibly a discrete number of such paths* — which connect the metastable

* One might suspect symmetries to be responsible for the appearance of several of such singular
paths.
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Fig. 8. The continuous lines (with arrow) represent paths that are solutions of the classical equation
of motion in the inverted potential. These paths have left the unstable point at R = 0 in the infinite
past. There is a unique path, the escape path (EP), which connects R = 0 with Rc on Z.

minimum with the boundary between inaccessible and accessible regions. In-
vestigations on specific models support this assumption. In fact, one has found
one such path for the Caldeira—Leggett model (see section 3.6).

For simplicity, we consider the case where there is just one such path, say
R = r(t) = r.. It obeys the equation of motion (3.7) together with the appro-
priate boundary conditions; explicitly,

. oV m
mrr_a—rt’ Ert_V—O,
r_o, =0, ro = Rc, (3.10)

where R is on Z,. We will call r, the escape path* (EP) and R the escape point
(see fig. 8).
Clearly, ¢, = 0 for t — 0; but there exists a unit vector

(/| es0 = e, (3.11)

which is perpendicular to 2, at Rc.

If one follows the consequences of this assumption, a picture as shown in fig. 9
emerges. There is a dense bundle of paths which start (at T = —o0) at the origin
and which follow the escape path closely for a long distance. Eventually, they
enter a region close to Z, and then, it becomes evident that their velocity
component parallel to £, remains finite preventing these paths from reaching
%,. Observe that in this region, the form of these paths is almost parabolic, and
that there is an envelope Zc to these paths which may be called a caustic
(Courant and Hilbert 1962). We conclude that, beyond Z¢, there is no solution
# (R) of the eikonal equation (3.3) which is real and which satisfies the
boundary conditions at the origin.

* This is an abbreviation of the term “most probable escape path” found in Banks et al. (1978).
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3.2. Small-fluctuation approximation

Let us assume that the wave function falls off quickly if one moves away
perpendicular from the escape path.* In this case, we may restrict our attention
to paths in the vicinity of the escape path. Thus, we are led to introduce the
small-fluctuation approximation where R, = r, + v,, such that v, is small. Tt
follows from eq. (3.7) and from the initial condition discussed before, that,
through first order in o,

t.=U-v, ©0.5=0, (3.12)
where the operator U, is defined by**
1 2’V
Uplt) = — ———— 313
ke (T) m OROR,. | g=r. ( )
A quantity of most importance is the action along the escape path,
Wep(t) =m J dr'r2. (3.14)

Concerning the action in the vicinity of the escape path, one may calculate it as
follows, using eq. (3.8) and the condition H = 0:

W (1) = dtv' mR2

T . .

= dv' {$mR2 — V(R,) + imR%Z + V(R,)}

= dt' {$mF2 + mi b, + smoZ + V(e +v.)}. (3.15)
One expands V(r + v) = V(r) + (v-0/0r)V + (1/2)(v-0/0r)* V, then one per-
forms partial integrations and observes that v, m¥, — (v,*0/0r,)V = 0 [cf. egs.
(3.12) and (3.13)] as well as v,-mb, — (v,-0/0r,)* ¥ = 0. Thus, one obtains in
quadratic accuracy

W (1) = Wep(t) + mi v, + 3m (0, v.). (3.16)

We express #7(t) in coordinate space as follows. By choosing 7, we select
a point r, on the escape path. A vicinity of this point will be represented by

R=r.+n, (3.17)

*In section 3.3, we will show that this assumption is not really independent but fits in the
framework of the quasiclassical approximation.

**In cases where the quantities carry Cartesian subscripts, we note the time dependence in the
usual way, e.g., (U = U (7).
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where |} is small. Of course, this representation is not unique. It could be made
unique by requiring that # be locally perpendicular to the escape path (Banks
and Bender 1973, Banks et al. 1973, Gervais and Sakita 1977) or by another
convention, as will be shown in section 3.3. For the time being, however, it is not
necessary to do so.

Next, we define a small-fluctuation operator K, such that it obeys the
equation of motion

[—132+ U1K, =0 (3.18a)

and such that it vanishes for 7 — —oo. Note that in this limit U, approaches the
constant U@ introduced in eq. (3.2). Therefore, if

B = [T@]*72 (3.19)
is the positive square root, we have

K, > expdot, T——00. (3.18b)
Since, UT = U, we may derive the relation

K TK - KT =0, (3:20)

where the superscript T denotes the transpose of a matrix.
It is now easy to associate with each t and # a path v, such that v, = n and

v, =K. K ' y. (3.21)
Therefore, in the small-fluctuation approximation, the action assumes the form

W, )= Wep(t) + mé,q+imy-Q. g, (3.22)
where

0. —K.R . (3.23)

We conclude from eq. (3.20) that QT Q.. Furthermore, Q_, = . Consider-
ing eq. (3.18), one may derive for Q the following Riccati-type equation

b, = U, — 2. (324)

The redundancy of representation (3.17) can be used to calculate the derivat-
ive in the direction of the escape path in two ways. Accordingly, 0/0t = ¥+ 0/0,
where the left-hand side is taken at # =0 and the right-hand side requires
the limit # >0 to be taken only at the end. We apply this relation to
oW /On, = ry + 4 mie, and obtain the useful relation

o= 0,F (3.25)

According to eq. (3.9), the calculation of the first-order correction % ("
requires the evaluation of 32%/0R?. In the small-fluctuation approximation,
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this is equal to 32 % /on}; therefore, from egs. (3.9) and (3.22),

WO =1TrQ, — toq (3.26)
For w1 to be finite near the origin (where 1 — — o0), we require that

wr=TrQ_, =Trd,. (3.27)
Then it follows that

W O(7) = $Trin{ K, exp(—do1)}. (3.28)

Considering egs. (2.13), (3.17), (3.22) and (3.28) and using the identity
Trln A = Indet A4, the principal wave function may be written as
exp[— {#ee(t) + méc q + $my- Q.- 'I}/h]

[det{ K exp(—do1)}1"/2

Yoln, 1) = (3.29)

Concerning the wave function near the origin, we assume that there is
a sufficiently large environment where the potential is purely harmonic. This
means that

ro=dg 'K, g7 = bglFe, (3.30)

provided that r, is sufﬁcwntly small (t & —o0). One may understand this relation
by noting that y7 = &g ' K[! F, is a time-independent vector. It also follows
that in the above limit, #gp(t) = (m/2)r,* D¢ r, and that

W, t)=4mlr.+ 9] do [r. + n] = 3mR - R, (3.31)

which means that eq. (3.29) reduces to the correct harmonic oscillator wave
function o = exp[— (m/2R)R - & - R]. The normalization of the wave function
is determined mostly by contributions from the environment near the origin;
therefore,

N B (nh/m)N 1/2
jd R¢g~[ detd)o] . (3.32)

3.3. Principal and transmitted wave near the caustic

For convenience, we introduce a coordinate system { = R — Rc = ({1,...,{x)
such that the {,-axis is parallel to nc, which is the tangent vector to the escape
path at its end as given by eq. (3.11). Note that at the escape point, the force
Fo = —(0V/OR)g—z.= (F,0,. . .,0) points in the same direction.

Let us also shift the coordinates of the escape path according to z, = r, — Re.
Observe now that the solution to eq. (3.10) can be represented in the form of
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a power series in 74

zi(7) =_L72FCk_LT4UI?k’FCk’ +0, (3.33)
2m 4'm
where* U€ = U,_,. Note that in leading order, z; = —12F¢/2m, and that
z, oc T oc 23, where z, is the component perpendicular to nc.

Consider now # (s, 1) as given by eq. (3.22), and observe that gy = £ — z,. The
redundancy in the representation (3.17) is used to choose t = 7, such that

zy(t)) = {1, T=—(=2m{/F)'P? + - -, (3.34)
where the second expression holds in leading order. Then,
W55 Cn) = Wee(ty) + mi (1) [G — zi(71)]
+3m Q) — ze(t) [ — ze(x1)]. (335)

Since {; — z;(r;) = 0, the summation above includes only indices k, k' > 1. In
particular, #” depends on {; only through its dependence on t,.

One expects that #7({) satisfies the eikonal equation (3.3). However, due to
the small-fluctuation approximation, this will be true only through terms of
order ({ — 2)* ~ (3, {, (3, {1. This can be checked by differentiating eq. (3.35) as
follows. We introduce indices j, j’ > 2, e.g., £ = ({1, {{;}). Then we observe egs.
(3.14) and (3.25), whence we obtain

10w _ dTl

m a0 = ag, U1 Rull = 21+ 38, [0 - 200 - 21,

1ow
aa—cj=rj+gjjf[c—2]j'. (336)
As an abbreviation, we introduce again #; = {; — z;(t;). Then one obtains
through O(y?)

1 (6“#/

2
5?,:) =i + 20251, + Qo + Qi jmin;

m?
=rl + 2rn; + Ujnn;e. (3.37)

Note that the last line follows from egs. (3.24) and (3.25). Using eq. (3.10), we find
through order 5? that (0%7/0(,)* — 2mV = 0, as expected.

Of central importance is the fact that r,, and f)n can be expanded in powers of
7. This follows from the equations of motion (3.10) and (3.24); eq. (3.33) may
serve as an example. On the other hand, it is also possible to express 7, in a series
of powers in (— {;)"/? the leading term of which is shown in eq. (3.34). Hence, it
follows that all quantities can be represented by power series in (— {;)'/2 Thus,

* Note that UC has (at least) one negative eigenvalue.
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we may write eq. (3.35) as follows:

W(E) = Wepl0) — 3@mFO A L)% + -+

2 1/2
+§<F{’> (=L UGG — 7)1+

+ % QO — z,(C)IE — zp(C)1 +- -, (3.38)

where only terms of leading order are shown explicitly.

Note that %V, the first-order correction to the action, does not depend on
{; in the small-fluctuation approximation. Hence, its expansion is of a simple
form except for one peculiarity which is connected with a logarithmic divergence
for {; — 0. Therefore, we write

WD) =tIn(—2mFl )+ + 3{Trin K, — InF () }mo + - - - -
(3.39)

The unique role of {; clearly demonstrates that in the small-fluctuation
approximation the caustic X is approximated by the hypersurface {; = 0. It
follows from eq. (3.38) that the surfaces #'({) = const < #&p(0) are of the form
— ¢ (L — Lo)*?, whereas the surface #'({) = #gp(0) is characterized by
—{, oc {43, See fig. 9 for an illustration.

Concerning the validity of the quasiclassical approximation we take an
appropriate generalization of the criterion [eq. (2.25)] which is given by

ow W oW
OR oR

. (3.40)

<4

In the present case, no problem arises with this condition for R near the origin,
provided that k is sufficiently small. The situation is different near the caustic.
Taking the derivatives in eq. (3.40) in the normal direction, we obtain from egs.

Fig. 9. Paths (—) in the inverted potential near the escape point. The caustic (——) is marked by
Zc. The surfaces for #°(R) = const (———) are seen to intersect the incoming paths orthogonally.
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(3.38) and (3.39), and for {, = 0, the condition |{,|* » h?/mF¢ which corres-
ponds to one of the inequalities (2.26). Therefore, the quasiclassical approxima-
tion breaks down near a caustic the same way it does near a turning point in
a one-dimensional problem.

In accordance with the principle of analytical continuation outlined in section
2.3, it is possible to bypass the caustic (which is given by {; = 0 in the small-
fluctuation approximation) if we allow {; to assume complex values. At this
point, we observe that #7({) of eq. (3.38) is a solution of the eikonal equation
(3.3) also for complex {;. A similar statement can also be made with regard to
w V(£). Therefore, and in view of eq. (2.31), we are led to substitute

=L —eT (3.41)
in both expressions (3.38) and (3.39). Let us now mark all quantities obtained by

this analytical continuation by a tilde, e.g., W &) =#[-(1 »e ™, ] Then,
the transmitted wave may be written as

¥ = exp{ - hl- [# () + Wm(m}, (3.42)

where {; > 0.

For a general orientation, let us remark that, beyond the caustic, % ) is
a complex function. This complex function may be represented by surfaces
Re # = constand Im # = const. It follows from the eikonal equation (3.3) that
at each point, the two normal directions to these surfaces are perpendicular
(Landauer 1950). Furthermore, the surface Im #~ = 0 coincides with the caustic.
Schematically, this is shown in fig. 10 for a two-dimensional system.

It is possible to obtain the wave function [eq. (3.42)] directly by modifying
appropriately the method of characteristics introduced in section 3.1. For the
time being, we are interested only in the small-fluctuation approximation. Then
one may proceed as follows.* We allow the parameter t to assume purely
imaginary values. In view of egs. (3.41) and (3.34) we substitute

T —>it, (3.43)
where ¢ is real and positive. Note that this procedure is justified by the very fact
already made use of earlier, namely that Q. and r, allow a representation as
power series in T and that

Q=0 aswellas #,=0.

The extension of the escape path F = F, is defined by
. oV .
mé=—-—, Fo=Rc, Fo=0, 3.44
: a7 o= Re Fo (3.44)

where the dot means here differentiation with respect to t. (Note that the
t-differentiation operates always on quantities marked by a tilde; therefore, no

* Recall the discussion in the second part in section 2.5 and fig, 5.
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Fig. 10. Surfaces of constant Re W (R)(——) and of constant Im W (R) (——-) near the caustic. The
surfaces of constant #°(R) (——) in the classically forbidden region complete the picture in
a consistent way.

ambiguity arises with the two types of dot-symbols.*) This path describes
a classical motion in the potential ¥ in contrast to eq. (3.10), where the potential
is inverted.

In the small-fluctuation approximation, eq. (3.17) is replaced by R = F(t) + #.
Further changes are as follows:

(a) Equation (3.18) is replaced by

[162 + U1K, =0, Ko=Ko, —iKo=Ko, (3.45)
where (7, is obtained from eq. (3.13) if #, is substituted in place of r..
(b) Equations (3.14), (3.22) and (3.23) are replaced by
t .
Wer(t) = Wep(0) — imj dr'r2,
1]

W, 1) = Wep(t) — im, g + 3my- O, 1,

0, = —iK,K Y, (3.46)
(c) Equation (3.28) is replaced by

WD) = Y TrIn{K, - exp(—idot) }. (3.47)

It is advantageous to use again the {-coordinate system. Specifically, we
put Z, =¥ — Rc. In place of eq. (3.34), we now choose t =t; such that
Z,(ty) = {; > 0. Considering eq. (3.46), and introducing #; = {; — Z;(t;) as an
abbreviation, we obtain analogously to eq. (3.35) the expression

W) = Wep(ty) — iy, g + smy-Q,, . (3.48)

* Following eq. (3.41), we have introduced the convention to mark the analytically continued
quantities with a tilde. Note that this notation might be ambiguous by a factor + i for time-
integrated or time-differentiated quantities. In what follows, however, the explicit definition applies.
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Note specifically

() = exp{ —2Wep(0)/h — Re[% n-Qon+ 21?‘%1)]}. (3.49)
We assume that Re 5,1 is a positive definite operator in the subspace perpen-

dicular to nc.
Let us now calculate the probability current through the plane {, = const:

)
J(C1.)=JdN I{CJ}"C _Imlp* lp
Nt oW oW
=——jd {{H 12 Im [acl +h 5T } (3.50)

Calculating oW /8, we obtain a result similar to eq. (3.36). Due to the form of
|¢ 2, the terms linear in #; vanish upon integration. We also observe that terms
contained in d% /0Ly which are bilinear in n; may be neglected since their
contribution to J is smaller than the leading term by a factor k. Within the same
approximation, 0% (V/8(; may also be neglected. Thus, we obtain in leading
order

(mh/m)¥ J”Z F1 () exp(— 2% (0)/h) (3.51)

J(Cl) = [ 2 ’
detRe Q, (1) det Re{K,CXP(—id’t)} t=n

where Q, is the projection of € onto the subspace perpendicular to nc.

It is worth noting that the leading contribution to the current as given in
€q. (3.51) does not suffer from the small-fluctuation approximation. In fact,
systematic corrections to this approximation are of higher order in #; than the
order of the leading terms in #” and # V). Consequently, these corrections will
give rise to changes in J only by relative order of k.

The current J({) as given above does not depend on the value of {,. One
way* to understand this is as follows. Since eqs. (3.3) and (3.4) are also valid for
# and #©, we find that

dj. h oW\ 2HD]
A | - 2, :
oR, m m[( oR, orz |IY! (3.52)

Integrating this expression over a volume enclosed between two planes {; = {}
and {, = (Y, we find that the difference J({}) — J({7) is smaller than, say, J({1)
by a factor h.

*1It is also possible to show that this property follows directly from eqs. (3.44—3.47). See also
a similar discussion in section 3.5.
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3.4. Decay rate in quasiclassical approximation and in instanton technique

In analogy with the procedure leading to eq. (2.27), we integrate
Imy*(s# — E)y with respect to d" R in the region to the “left” side of the plane
{, = const. Thus, we obtain I' as the ratio of the current J({,) as given in eq.
(3.51) and a normalization which is given by eq. (3.32). Since J({;) does not
depend on {,, one may take as well the limit {, -0, ie,, t; = 0.

However, this limit has to be taken with care since both rl(t) as well as
detRe K vanish for ¢t — 0, although their ratio remains finite. On the other hand,
the analytical properties ensure that

<L‘)~> =<"—(’)> (3.532)
detRe K, /t~0 det K, /=0

Thus, we may write I' = o/ exp(— %) in accordance with eq. {2.2) where the
exponent is

B =2Wep(0)/h (3.54)
and the prefactor is
A 1/2 .
o = [M"—] < r‘—(r)> : (3.552)
whdet 2, (0) detK, /=0

The restriction of @ to a subspace in the determinant above is of some
inconvenience. It follows from eq. (3.25) that in leading order,
Q,,(7) = F1(1)/F,(z) for T — 0. Consequently, we have

det 3, (0) = <r18 det &, ) R (3.53b)

since the contributions of the finite elements 2,; and Q;, to det © drop out in
the limit taken above. Using this relation and the definition (3.23), we may write
eq. (3.55a) in the form

o = |:m7.'1 (T);'l (T) det (ﬁo:l 1z
nhdet{K.K,}

As a technical device, we select a number z, and change the equation of
motion (3.18) for the small-fluctuation operator K? as follows:

[-182+ U, +z11Kz =0,
Kz sexp{[d? + 211421}, 15—,
Re[dZ + 2172 > 0. (3.56)

(3.55b)
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In the following, we choose z = ¢, where ¢ is a small quantity, ¢ > 0. Consider-
ing eq. (3.30), we introduce
it=Ktyr. (3.57a)

Note that r; satisfies the smali-fluctuation equation (3.12) if U is replaced by
U + &l and that there exists a Wronskian type of relation

;5.':1:_':?';!:8‘[ dT’l:f,'"':t'. (357b)
In leading order, one may replace #° by ¢ on the right-hand side. Therefore,
b= — B, (3.57¢)
2m

We proceed now on the assumption that the limits T - 0 and ¢ — 0 can be
interchanged. Then, we obtain from egs. (3.55b) and (3.57¢)

e nE A 1/2 _ A 1/2
of = |:mr1(0)r1(f))dftwo] _ [ ( e)gadft a;o :l , (3.58)
rmhdet K§ K§ e=0 2nhdet K§ K§ e~0
where we have made use of the fact that rj, is parallel to ¢ up to corrections of
Ofe).

We compare now the present result with the one obtained by the instanton
technique (Coleman 1979, 1985). The escape path here corresponds to the
bounce there if the escape path is supplied by a path of return, which is done by
putting r_, = r,. Clearly, the action of a bounce is then 2#p(0) = hA.

In the instanton technique, the prefactor contains products of eigenvalues A of
the small-fluctuation equation. These eigenvalues are defined by

[—182+ U.] 9. = 9., (3.59)

where ¢, is required to remain bounded for |7| — co. Since U = U ., the
eigenfunctions can be chosen to be either odd or even functions of 7. Therefore,
we must have either g, = 0 or g, = 0.

Consider now an arbitrary complex number z, and let us construct the
small-fluctuation operator K? according to eq. (3.56). Then it is necessary and
sufficient for —z to be an eigenvalue 4 to an odd eigenfunction that there exists
a nontrivial vector ¢ such that

{5 ¢ = 0. (3.60a)
Furthermore, —z is an eigenvalue 1 to an even eigenfunction only if
K3-d=0. (3.60b)

The two relations above can be solved for ¢ or for d nontrivially only if the
appropriate determinants vanish. Therefore, —z = 1 only if

det K3 K3 = 0. (3.60¢)
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Consider now the case where U, is replaced by its asymptotic form U,
Correspondingly, we may construct the small-fluctuation operator K@= Then
we assert that

det{—1(32 — 2) + U} _ det K©* f(ﬁ,‘”z

det{—1@%> -2+ U,}  detK3K3
where det means a determinant in continuous T and N-dimensional configura-
tion space.

The proof of the assertion is the same as the one given by Coleman (1979,
1985) for the case N = 1; it is based on a comparison of the analytical properties
of both sides of eq. (3.61) as functions of z. In particular, one finds that the zeros
and the poles agree, as well as the asymptotic behavior for |z| - co.

Since K©% = exp([#2 + z1]Y?1), we have

det K7 RO7 = det[ &2 + 2112 (3.62)

, (3.61)

Note that in all cases of interest, det([d3 + &1]/d3) — 1 for & — 0. Therefore, we
may write eq. (3.58) as

1/2 _ i o2 7(0) 1/2
=<§> [_8 det{~10: + U} ] _ (3.63)
2n det{—102 + U, + &1} Je-o
Recall that ¢, = — ¢ _, is an odd eigenfunction of eq. (3.59) with eigenvalue 0.

This means that we may write eq. (3.63) in the form best known in instanton
technique (Coleman 1979, 1985), namely,

1/2 R Y-Y TO)y /2
d:<£> [_det{ 10 + U7 }] , (3.64)
2n det'{—132 + U,}

where det’ means that the eigenvalue zero has to be omitted. Thus, the prefactor
[eq. (3.58)] obtained from our many-dimensional WKB technique is 1dentlca1 to
the instanton expression (3.64).

So far we have assumed that there is only one escape path. If there are several
such paths, the total decay rate is the sum of contributions of the type (3.54) and
(3.64) from each escape path.

3.5. Reflected wave

Essentially, the wave function of a metastable state consists of a principle wave
Yo, which resembles near the origin the ground state of a set of harmonic
oscillators and which extends towards the caustic in a narrow tube surrounding
the escape path. There, the wave is partially transmitted and it emerges as the
transmitted wave y in the classically accessible region. It remains now to
calculate the reflected wave i, . It has been shown in the one-dimensional case
that s, can be obtained by analytical continuation. Considering eq. (2.33), we
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perform the substitution
—{1 > —e (3.65)

in egs. (3.38) and (3.39). Let us mark all quantities obtained by this analytical
continuation with a prime, e.g, #'({) = #([—{, » —e~2"{,]). Clearly, #"'
and #"'™" satisfy the eikonal equation (3.3) and the transport equation (3.4) to
the same degree of accuracy as the original expressions do. Therefore, we
conclude that the reflected wave is given by

1 1
Y1) = 56XP<— Ak ‘/V"”]>, (3.66)

where we have inserted an additional factor* of  in order to obtain from
Yo + ¥, the same probability current density normal to the plane {; —» —0, as
we do from the wave function ({) at {; - +0.

Again, it is possible to obtain the wave function [eq. (3.66)] directly; in the
present case, this is done by extending the method of characteristics to 7 > 0.
Thus, the extension of the escape path is just the return path r, = r_,, and, in the
small-fluctuation approximation, most of the relations of section 3.2 apply to the
present case as well. For instance, #7'(y, 1) is equal to expression (3.22) for
W (n, 7) in the case T > 0. However, care has to be taken with expression (3.28)
for #'(1) on account of the logarithmic branch point at 7 = 0. Specifically, we
have for 7 >0

W' D(1) = Re {3 Tr[In{K,exp(—do1)}1} + in. (3.67)
Consider now the equation of motion (3.18) of the small-fluctuation operator
K,. Since U, = U_,, we may derive the following Wronskian-type of relation

KT K.+ KT K, = const, (3.68)

which will be found useful in a moment.

Next we aim to calculate the current J () from y = - + i, through a plane
perpendicular to the escape path, i.e., through a plane perpendicular to #, at r..
We obtain the result

J(r)=[ (hjm)” ]/[ L ]l/zexp(—%@),
det (30 + 0.9 Ldet®R. &)

(3.69)

which may be compared with J({,) of eq. (3.51). Using a local basis with one axis
pointing in the direction of ¢, and using eq. (3.68), we find after some lengthy
arguments that J(z) is independent of 7. In view of eq. (3.53a), we conclude that
J(@)=J(£ = 0).

* See also the comment below eq. (2.33).
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With increasing t, the return path approaches the origin. Again, we assume
that there is a sufficiently large environment of the origin where the potential is
purely harmonic. Then, for 7 large and positive, the small-fluctuation operator
assumes the form

K,=e® 4 +e B, (3.70)

where A and B are constant matrices. According to eq. (3.20), they have to obey
the relation

AT doB = BT, A. (3.71)

It has already been remarked in connection with eq. (3.20) that there is a vector

x1 such that K, “X1_= F.. Since r, -0 for 1 — + o, we find that A- x1 =0.
This means that det A = 0.On the other hand, there are no arguments which tell
us that det B should vanish. Therefore, we assume det B # 0 and write

Q, = g — 20ge "% [C + dge 20071 hye =0t (3.72)
where the matrix
C=dyAB'=C" (3.73)

is symmetric on account of eq. (3.71). Furthermore, its determinant is zero. Let
x1 be the normalized eigenvector of C to the eigenvalue zero. Then, for
sufficiently* large 7, we obtain
“ R (ﬁ e—&;otﬁ*— d) e*(’x\)or
Q —dp=2———F ", (3.74)
X Doe™ 2 "

where P { is the projector on y{. We conclude that, in general, #"'(#, t) cannot
be put in a simple form comparable with eq. (3.31).

Consider now the case where the lowest eigenvalue wy; of @ is smaller than
the remaining ones, wo,, 1 = 2,. .., N, such that exp(— wg;7) > exp(— WoaT).
Taking the matrix elements of eq. (3.74) with respect to the normal coordinates,
we then obtain

—Wp1, h= 1,
Q. .=, 375
" " {wo,,, n=2...,N. (3.75)

Clearly, we will find in this case that 7,(t) oc J,; exp(— wo;7) which means that
the return path (escape path) leads to (leaves) the origin on a straight line in the
direction of the low-frequency mode. Furthermore, it follows from eq. (3.26) that
W = —Wo1, i.e.,

WM = — w7 + const = In R, + const. (3.76)

*Precisely, the condition is ¢ -doexp(—2dq17) x € C,, where Cat =Cuit Afor
k=2,...,N. Note that eq. (3.74) may also be written as Q = @)y — 2P (F.#.)/(F+ F), where P, is
the pro;ector on f..
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In writing down the last part of eq. (3.76), we have chosen a coordinate system
(Ri, . . ., Ry)in the direction of the normal modes, and we have also chosen # in
eq. (3.17) such that -r, = 0. As the final result, we obtain
ir a R? Y, R?
R) = — (m)2 22 —L _ . 77
R =5 —n e 50— D5 ) (377)

w
01 1 n=2

where ao, = (h/2mw,,)"'* and I is given by eq. (3.54). The overall constant in
eq. (3.77) has been obtained from the condition that the probability current
calculated from ¥, + ¥, through a plane normal to the R,-direction be equal to
the result of eq. (3.69).

The reflected wave of eq. (3.77) is an appropriate generalization of the
one-dimensional form (2.12b) to N-dimensional systems.* The above presenta-
tion suggests that this result can be obtained only if restrictions are imposed on
the frequencies of the metastable state. In particular, it appears that one slow
mode has to enslave the remaining fast-moving ones. Alternatively, one may
require that the escape path leaves the origin on a straight line. At present, we do
not know whether there are significant corrections — if any at all — to the decay
rate (presumably only to the prefactor &), if this condition is not satisfied.**

At the end of this section, we wish to comment on the extension of the method
of characteristics which we have introduced so far only in the small-fluctuation
approximation. We recall that this extension has been meant to provide solu-
tions to the eikonal equation and to the transport equation for com-
plex coordinates. We will give arguments which show that this can be done
quite generally by solving the equations of motion egs. (3.7)-(3.9) for complex
coordinates.

As an introduction, we consider first the case of a harmonic potential. There,
the solution satisfying the boundary conditions of the present problem is

R, =¢e%" g,
W = tmy- doe?®* x, (3.78)

where the vector y represents an initial direction which is arbitrary. Clearly,
complex coordinates are obtained if the times 7 and the initial direction y are
chosen to be complex quantities.*** Although the mapping (z; x;,- - -, xn) =
(Ry,. .., Ry) is a projection which does not allow inversion, in general, it is
possible to eliminate (z; §,. . ., xy)in # in favor of (R, . . ., Ry) since there is
a relation between the time and the initial directions which expresses energy
conservation. For the present case this elimination is trivial on account of the

*The exponent 1 + vis now replaced by 1 since the imaginary part of the energy has been omitted
in the Schrodinger equation.

** One may wonder whether this condition is necessary to guarantee a quasistationary state.

*** Actually, 7 could have been chosen to be real. However, one may use the redundancy of the
(z, y)-representation in the more complicated case as discussed below to ones advantage.
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linear nature of this mapping. For instance, we may write y = exp(—®,71)" R,
insert this in the expression for the action and then we obtain #" = imR- &, - R.

Consider now the case where the potential energy V(R) is an analytical
function of the coordinates; e.g., a polynomial of third degree is of sufficient
complexity in the problem of quantum decay. The solution of the equations of
motion (3.7) and (3.8),

Rk = Rk(r; Xis- o XN)’
W =W, 5 XN (3.79)

is known to be unique if R,(r) is bounded. Therefore, we expect that the
expressions on the right-hand side of eq. (3.79) are analytical functions of r and
also of (xy,. . . , xn), with the possible exception of poles. Clearly, this property
allows us to conclude that relation (3.79) does not depend on the path of
integration in the complex z-plane.

The elimination procedure described above may now be applied to #° of
€q. (3.79). There, we may consider one variable, e.g., xy, to be fixed for reasons
discussed above (energy conservation). Note, however, that this inversion fails if
the corresponding Jacobian vanishes; this defines a hypersurface in { R }-space
which should be identified with the caustic. In the space of complex coordinates,
this hypersurface is of dimension 2(N — 1), i.e., two less than the dimensions of
the space itself. Therefore, the complex coordinate space will not be discon-
nected by the caustic.* We have made use of this property in the analytical
continuation procedure where we obtain an expression for #"(R) which should
agree with eq. (3.79) in the sense explained above. Note that the caustic appears
as a branching surface of #°(R). Similar considerations apply to # (R).

3.6. The Caldeira—Leggett model

This model consists (Caldeira and Leggett 1981, 1983, 1984) of one particle
(which we will call the object in the following) in a metastable potential as shown
in fig. 1, which interacts with a dissipative environment. Specifically, the cubic
form of eq. (2.10a, b) for a potential is considered. The environment is repres-
ented by a set of harmonic oscillators, say, with coordinates x;, interacting with
the particle by linear forces. Specifically, we take from Caldeira and Leggett
(1983) the following Lagrangian:

1 IRy c; \?
L=§Méz—v(q)+zzm;[i}—w}(xj— i q) ] (3.80)

2
j=2 m; j

Eventually, one takes the limit N — co such that the frequencies w; are distri-
buted continuously. Of importance is the quantity [see eqgs. (4.8) and (4.9) of

* See also the discussion on complex orbits jn sections 2.5 and 4.1.
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Caldeira and Leggett (1983)]

2

J(w):%ancf 8(w — w;) > nw. (3.81)
)

f At

The equation above reveals a redundancy in the description of the environ-

ment. Therefore, we may put without loss of generality M = m; = m, C; = mw}.

Furthermore, we introduce a uniform notation for the coordinates q = R;,
x;=R;,j=2,...,N. Then egs. (3.80) and (3.81) assume the form

N
L=Y 4imR? - V({R:}),
k=1

N
V =uv(R,)+ ‘Z imo?(R; — R,)%,

j=2
J)=imtm) w}dw — w;) - no. (3.82)
j

In the above representation, the environment appears to consist of a cloud of
springs attached to the particle carrying masses at the other end.

By now it is clear that the Hamiltonian of the Caldeira—Leggett model is just
a special case of eq. (3.1). In order to make progress in the calculation of the
decay rate of the metastable state in the well at R ~ 0, we have to find r, of the
escape path. According to egs. (3.10) and (3.82), it obeys the equation

N

miy =v'(ry)— Y, mwi(r;—ry), (3.83a)
i=2

mi; = mad(r; — ry). (3.83b)

As already found previously, it is advantageous to supplement a return path by
putting r_, = r, r., = 0. Then, one may introduce Fourier transforms,

r, = ~[d—we_i“”rw, (3.84)
2n

and eq. (3.83b) is solved by

2

ri{w) = 5 r(w). (3.85)

_ %
w? + 0}
Substituting this result in eq. (3.83a), one obtains the following equation of
motion for the coordinate r, of the object

—mr(t)+ Hxr; + ' (ri (7)) =0,

Hxr, = fd‘r’H(r —Y)ri(t), (3.86)
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where the linear operator H is defined most conveniently by its Fourier

transform
2

2
H, =mzm o). (3.87)

In the limit indicated above, H represents a friction linear in the velocity.

Caldeira and Leggett (1981, 1983, 1984) have succeeded in solving the equa-
tion H=xry + v’ =0, which is eq. (3.86) without acceleration term. It can be
considered as the heavy damping limit of eq. (3.86), which is realized when
y = n/m > w,. The solution is given by

4R 1 2n mw?, w}

cL
=5 agip © =,
i) ?wf + 1 T T n Y

r§t(e) =

The quantities r§*(w) follow from eq. (3.85). We wish to add that numerical
calculations (Chang and Chakravarty 1984) have shown that the above heavy
damping limit is approached very smoothly.

Interesting properties of the escape path (3.88) can be calculated as follows.
We define

A orp)=r.ro —ri(®ry(t)

dedw e i (@)t (o)
@ny? & +w2)(w’2+ of)

4yR7 ,exp[—iot — i0't — (0| + |@'|)/wg]
= dodw -
o] + |’

R exp(—lol/s). (3.88)
B

,  (3.89)
9wy

where we have obtained the last line of this equation by making use of eq. (3.88).
One recognizes that eq. (3.89) can also be written as

4))RC B 4
A t. ) = d
(r r ) 9(,012; Jl) w(TZwZ+ 1)(,[/2 2+ 1)

_HRe {wn[4—3wn(f +172)], |wstl |wat'| €1,

(3.90)

9wg (2n/(I7] +[7']), lwgtl, |wpt’| > 1.

In particular, we have near the origin, 4(r?) » r?(); this means that the escape
path starts perpendicular to the R;-axis.
Using eq. (3.90), we may also calculate the curvature k of the escape path
Krz = (':t)z(;t)z — (':t';t)z = COIlSt, R le‘El < 1,
[(F)*]? |97w3]/(8nREy), |wet|> 1.

We recognize that this path leaves the origin with infinite curvature.

(3.91)
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Very schematically, the escape path of fig. 8 may be thought of describing the
present situation if we identify — r,(z) there with [4(r?)]*/2 here. It is interesting
to note that at the escape point* where R¢; = rf(r = 0) = 4R¢/3 > R, the
particle has lost the potential energy v(4R¢/3) = — 4vg; this energy is now stored
in the springs.

Considering definitions (3.14) and (3.54), we calculate

2nnR2 N 4nmaey RE
9 9 )

In the limit m — O, this agrees with the result of Caldeira and Leggett (1981,
1983, 1984).

Concerning the prefactor &/, note that the square root of the ratio of
determinants in eq. (3.63) can be expressed as the ratio of two Gaussian
functional integrals with respect to N-dimensional paths.** Observe now the
simple structure of U in the Caldeira-Leggett model, where all matrix elements
but one are time-independent. Therefore, it is possible to perform the functional
integrals with respect to N — 1 components of the paths (“integrating out the
coordinates of the environment™). The result of this operation is expressed by
the relation

det{—182 + U} det{—md? + H + mw3}
det{—1(@2 —¢) + U,} det{—m(@>—¢&) + H* +¢"[r,®]}

where the operator H is defined by eq. (3.86) and H*® is obtained by replacing
w? - w? + ¢ in eq. (3.87). Therefore,

0 dw
KB =2 J drm(FL)? = JZ maw? |rS |2 = (3.92)

— o0

(3.93)

4

maj;
HZ,=HG,+EZW+O(8 (394)

Concerning the operator —m(0? — ¢) + H® + v”, note that in the case of
& =0, it has an eigenvalue zero which belongs to the eigenfunction r(z).
Therefore, we may calculate for finite & the eigenvalue A° closest to zero by
perturbation theory:

&

e dw R
A= %J [1+Z(w — 2)2]w2|r1(a>)|2_a§% (3.95)

where h# = 2#%p(0) and the normalization is given by

hBo = hBo{[r1 ()]} = 2m F dr[F (91> (3.96)

* Note that in the present context, R¢ of eq. (2.10) is just a parameter which has nothing to do with
the one coordinate R¢; = 4R /3 of the escape point.

**The problem of a negative eigenvalue in the denominator determinant can be handled by
deforming the contour of integration properly.
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Thus, we conclude that the prefactor can be expressed alternatively as

of — <ﬂ>1/2|:_ det{—md?+ H + mw%}:|”2

2nm det'{—md? + H + v"}

This form is well-established in the literature (Caldeira and Leggett 1981, 1983,
1984, Chang and Chakravarty 1984, Grabert and Weiss 1984).

Although the present formalism of calculating decay rates does not raise any
problems, we should observe that the Caldeira—Leggett model does not conform
so well with the concept of a quasistationary decaying state on account of the
presence of arbitrarily small frequency modes. For the same reasons, the escape
path leaves the origin with infinite curvature. This seems to leave some questions
open with respect to the concept of a quasistationary state.

(3.97)

4. Statistical matrix and multidimensional decay at
finite temperatures

4.1. Decay at finite temperatures in N dimensions

In the discussion of section 2.5 we have argued that our theory requires closed
extremal orbits which connect the metastable region (A) with the outside region
(C) and which are traversed in time t; = h/kT. We have also pointed out that
only an extension to complex extremal paths provides sufficient flexibility to
meet these requirements in the multidimensional problem.

An attempt to describe the properties of such a complex orbit in a multi-
dimensional space should be guided by the experience we have gained in the
Zero temperature (7, = 0o) case of section 3. There, an essential part of the
theory is the escape path which connects the bottom of the well with the outside
region at the escape point R (fig. 8). A closed orbit (bounce) is obtained by
adding a return path which retraces the escape path. Obviously, the total time
needed to complete such an orbit is 7, = c0. We have also learned in section 3.3
that the escape path can be extended in region C by letting © — if; see, e.g., eq.
(3.43). This procedure reminds us of the discussion in the second part of section
2.5 which has been illustrated by fig. 5.

It is fairly obvious that at finite temperatures kT = h/7,, we need an escape
path (see fig. 11) which connects in the time 7,/2 the turning points on two
surfaces of the same potential energy, but surfaces pertaining to the well region
A and outside region C, respectively. Again, this escape path together with its
return path forms a closed orbit which will be completed in time 7,. We may
also argue that two external legs can be attached at R, ; by letting © — it. The
corresponding diagram in space and complex time is shown in fig. 12a, b; it
should be compared with fig. 5. Evidently, for R, = R we have P; = P, the
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Fig. 11. Periodic orbit under the barrier completed in time t,. The endpoints are turning points on
surfaces of equal potential energy.

R;

Imt

- Ret

0 1

Fig. 12. (a) Real path under the barrier (2 — 3) in time 7, and real paths in the outside world (0 — 2,
3 — 1) for imaginary 7. (b) The corresponding contour in the complex z-plane. (For R, = R, = R,
the endpoint of the contour is on the real axis.) Note the corners at the classical turning points.

trajectory is closed and also periodic in time 7,. Now, we assume that this
combination of escape and return paths augmented by external legs can be
deformed continuously in the multidimensional complex planes R = { R, } such
that for real T and 0 < t < 1, it is the solution of the equation*
m¥, = ov . “4.1)
or,

* 1t differs from eq. (3.10) by different boundary conditions.
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We expect that this solution is an analytic function of 7; moreover, we expect
that such an orbit exists for any choice of the starting point R and that the action
F([r.]; T,) depends only on the topology of the orbit. We will give some
arguments in favor of this assumption at the end of Appendix C; moreover, it
can be verified for the Caldeira-Leggett model by analytical (see section 4.3) and
numerical (Ludviksson 1989) calculations.

With only a moderate increase in the action &, there are also closed extremal
paths r, in the multidimensional vicinity of the periodic orbit which contribute
also to the outgoing current. To evaluate their contribution, we put

ro=r+x, X=X, =0p, 4.2)
where x, is small. We now expand [cf. eq. (3.15) and below]

Vr) = Vir) + (x-3,)V(r) + 3(x 8, Vir) +- - -, (4.3)
and obtain the action through second order in x,:

Z([rJ 1) = L([r]; 70)

+ J de{m - %, + ymx? + (x.*0,) V(r.) + 3(x.-9,)* V(r.)}.
0

4.4)

Taking into account the periodicity of the orbit r, as well as its equation of
motion (4.1), we obtain after integration by parts

T

(Rl 1)— L ([rdit) = %mj 1 de(s? + v, U, vo), (4.5)

[}

where v, is the first-order approximation to x,, which satisfies the small-
fluctuation equation

[—-102+ U,]'0,=0 (4.6)
and the boundary condition
Yy = vtl = p (47)

Above, we have introduced the operator lj, which is defined analogous to eq.
(3.13)

1 %V

m OR,OR, | z=,. “8)

((jr)kk’ =

but for a different extremal path.
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Let us choose a linearly independent set of solutions to the small-fluctuation
equation as follows:

~

- ~_ K
[—182+ U,] {]\/}1 =0, 4.9)

where 121 and M, satisfy the initial conditions

Ro=0, Ko=1, Mo=1, M,=0. (4.10)
In terms of 12, and 1\7!, we may write v, [cf. eq. (3.21)] as follows:

v, = {K.Ki'[1 - M1+ M.} p. (4.11)
Above, we have introduced

K=K, M,=M, (4.12)

and have assumed that det K 1 #0.
In eq. (4.5) we integrate by parts again and observe that v, satisfies egs. (4.6)
and (4.7). Then, we obtain

Z([r]; 1) = L([r]; 1) = dmog - (6., — o). (4.13)
Considering eqgs. (4.7) and (4.11), we may write

P ([7); 1) = L([r];w) + imp 2 p, (4.14)
where

6= —[1-KJKr'[i-M,]+M,. 4.15)

Obviously, Qisa symmetric matrix. Furthermore, since ¥, is a periodic solution
of the small-fluctuation equation (4.6), the vector f, (=r,,) is an eigenvector of
2 with eigenvalue zero. For convenience, let us choose a representation where
the first basis vector e, is parallel to £,. Then

Q-e, =0, e|Fo. (4.16)
This means that we have

Qlk=gkl=0’ k=1,2,...,N. (417)

4.2. Gaussian fluctuations about periodic orbits

To complete the quasiclassical approximation to the statistical matrix p(R + p,
R + p; 7,) we must calculate the prefactor due to Gaussian fluctuations about
r.=r.+ x,. In view of the approximation x, — v,, this prefactor will be, to
lowest order, the same as for the periodic orbit r..

Since r, and, hence, the operator U, is complex-valued, the calculation of the
Gaussian fluctuations follows somewhat unusual lines. A complete calculation
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has been carried through for the one-dimensional case in Appendix C. The
outcome is fairly simple: the final result is the same as for real-valued operators
U provided that we replace the determinant det, which means the product of
all eigenvalues, by det*, which now includes only positive eigenvalues as
explained by egs. (C.47), and (C.48).

For the sake of simplicity, therefore, we will consider U, to be real in the
following discussions, which allows us to disregard the details mentioned above.
Generalization to complex U, follows the arguments of Appendix C and is
straightforward though lengthy.

We introduce KZ? and M? that are solutions of

(—=102 + t},+zi}{§:=o (4.18)
subject to the initial conditions

=0, Ki=1, Mi;=1 Mi=o0. (4.19)
First let us consider the eigenvalue problem

[—18% + U.]p. = g, (4.20)
where the eigenfunction ¢, satisfies zero boundary conditions

po = ¢, =0. @4.21)
For A = —z, we may write any solution of the differential equation (4.20) which
vanishes at t = 0 as follows:

9. =K:-a. 4.22)
For —z to be an eigenvalue A we must demand (I& i= K Z,etc)

Ki-a=0. . @.23)

This equation has a nontrivial solution only if
det K7 = 0. (4.24)

Similar relations may be derived in the case where U, is replaced by U as
defined by [see also eq. (3.2)]
1 o?v

U(O)
m aRkaRk R=0

(4.25)

and where the matrices K®© ) and M are constructed according to egs. (4.9) and
(4.10) with U replacing U,.
We assert that

[LO® +2)  det{—102 + 09+ 1z} det KO-
Hn(ln'f‘z) det{—iaf+ﬁr+iz} detlei )

(4.26)
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The proof of the assertion is based on the fact that both sides have the same
zeros and poles and approach unity as |z| — co. Thus, we have for zero bound-
ary (ZB) conditions, taking z = 0 in the above equation,

det{—102 + U®}|  detK{
det{—1062 + U,} |z detK;

Next we consider the same eigenvalue problem [eq. (4.20)] but this time with
periodic boundary conditions. Although the eigenvalues and eigenfunctions are

different now, we retain the labeling 4 and ¢.
The eigenfunctions now satisfy

RZB = (427)

90 = 0> Po = Pr,. (4.28)
Now we must write an arbitrary solution of eq. (4.20) as follows:
p.=Kic+M:id. (4.29)

For —z to be an eigenvalue 4 we must require that the boundary conditions
(4.28) are satisfied, i.e.,

Ki-c+Mi-d=d,
Kic+Mi-d=ec, (4.30)

which is equivalent to
i-M; —K;
det< ! N >=0. 4.31)

We deduce by the usual argument that for periodic boundary conditions

i- M(IO)Z _IE(IO)z
det< 2 ~ 2 )
. M 0)z 1 _ K 0)z
= i i . 4.32)

i-M: -—K:
e det< P )
—M: 1-K3

det{—10? + U© + 1z}
det{—102 + U, + 12}

Let us now assume that K i is nonsingular. In that case the system (4.30) is
equivalent to the existence of a nontrivial solution of

{—[1 - Ki1[K11 7' [1 - Mi1+ M3} d=0 (433)
Consider now the function of the complex variable w
(det K§)det{[wl — K11[R3] " [wl — M3]— M3}

det<Wi—Ale A—Iézi )
—M:  wi-K:

(4.34)
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The zeros of numerator and denominator coincide and for |w| — oo their ratio
approaches unity. Hence, it is equal to one everywhere and we may write

det{—102 + U@ +z1}|  (det K{¥%)det Q©*

- — — - — 4.35)
det{—10? + U, + z1} Ipp  (det K3)detQ*
where, in accordance with eq. (4.15) we have put
Q = —[1 - K31[K2]1'[1 — M3] + M=, (4.36)

We know that the small-fluctuation-operator with periodic boundary condi-
tions has an eigenvalue zero (corresponding to the eigenfunction #,), which has
to be omitted. To take account of this, we consider
det{ 102 + U©)} lim edet{—102 + U}
PB = = ~ = - - ~ >
det’'{—107 + U,} Ipp  c~odet{—182 + U, + ¢l}IeB
where, again, the determinants are calculated for periodic boundary conditions
and the prime denotes omission of the zero eigenvalue.
Due to the property (4.16) we may write
_ (det K{?)det Q©
oz(detlel)detlé ’

where the subscript L denotes restriction to the subspace perpendicular to #,.
Furthermore,

4.37)

Rep (4.38)

o= lim{~[1 — K{IOREI T - WEED+ M, (439)
To evaluate «, we consider the vector

vi = {Ki[Ki]7'[1 - Mi1+ M} ey, (4.40)
which, according to egs. (4.6) and (4.11) is a closed solution of

[—021+ U, +¢l]- vt =0. (4.41)
In terms of v} we may express o as follows:

o = lim 1 e, [98, — v5]. 4.42)

=0

On the other hand, we have

0. {vi*o, — 05-v,} = —evt- v, 443)
where v, is defined as in eq. (4.40) with ¢ = 0. Integrating eq. (4.43) and observing
that v, = v,,, we find to lowest order

(%, — 95) 0o = eJ dro.-o.. (4.44)

[}
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Eventually, we conclude that
71 1 T1
o= J dt(v,*v,) = —ZJ dz|F |2 (4.45)
0 IFol® Jo

We are now in a position to write down the quasiclassical approximation to
the statistical matrix at Ry, = R+ p, R =ry =r;:

A 1/2 >(0) J1/2
madg det K
R R ; =| det — =
PR+p.R+p11) < © 2nhsmhworl> I:detKl]

XCXP<—15”([r,];n)—;n—hp'é'p>, (4.46)

where again &, = (U®)"/2. We have chosen a representation where a ratio of
determinants appears since it is easier to handle. That the overall constant is
chosen properly can be seen by inserting the trivial orbit r, =0, where
U, = U®. Then one obtains p(0, 0; 7,) = [det(md,/2nk sinh &g, )]*/?, which
is known to be valid for harmonic oscillators.

Eventually, we need the total current flowing through a plane perpendicular
to e, which is defined in eq. (4.16). Since Q- e, = 0, we need to take the derivative
in the exponent only with respect to #([r.]; 7,). This operation produces the
factor

(3 — 3r)Z([r.]; T1)lgs=r = 2P = 2mo. (447)

Thus, we obtain the decay rate

P
r= 2—de Lpuer))

0
! [ m_ g t< o )}”Z[detﬁa‘”]“z ol
= —| —— € " ~ ~ ~
Zo[ 2mh sinh o 74 det K, (det, Q)2
1
xexp(—ﬁy[(r,];rl)) (4.48)

Here, in analogy with the one-dimensional case, Z, is the partition function
corresponding to the harmonic approximation of V(R) at the origin. Hence,

! = det(2sinh &g 74 /2). 4.49)
Furthermore, we note that
- 1 -
K© = & sinh &7, M® = coshwy1;. (4.50)
0
Considering eq. (4.36), we obtain
Q© = 2%, tanh o1, /2. (4.51)
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Combining suitably egs. (4.37), (4.38), (4.45), (4.49) and (4.51) and inserting it into

eq. (4.48), we obtain a decay rate which can be written in the standard form
I' = o/e™® of eq. (2.2), where the exponent is given by

# =2 F([r]: ), 452)

whereas the prefactor

FollrJ; v1) )2 | det(—21 + UO)| 12
d=< ol[r.] m) et=&1+ U7) ™ (4.53)
2rh det'(—0?1 + U,) | s
In addition, we have introduced the quantity
So([R ;7)) = mJ dr (R[> (4.54)
0

Note one peculiarity of this result. At first, we had to calculate the Gaussian
fluctuations for zero boundary condition (ZB). Now, it has been found that the
contribution to the current from the closed paths in the vicinity of the periodic
orbit has, in effect, changed the requirement of zero boundary condition to the
one of periodic boundary condition (PB). This allows us to interpret the above
quantities as being part of a contribution Z; = (it,/2)Zo.o/ exp(— %) to the
partition function that leads to an imaginary part of the free energy # and from
there — see eq. (2.47) — to the decay rate I'.

Thus, the relations above confirm and generalize Affleck’s theory and inter-
pretation to the multidimensional case. Specifically, they mean a generalization
of egs. (2.51) and (2.53). In the limit 7 0 (1, - 00, %, —> & — 2#p(0)), this
relation agrees also with egs. (3.54) and (3.64). It is this form (4.53) which emerges
naturally (although less rigorously) from instanton-type calculations and forms
the starting-point of many finite-temperature calculations in the 11terature (see,
e.g., Larkin and Ovchinnikov 1992).

4.3. The Caldeira—Leggett model at finite temperatures

In what follows, we wish to apply the theory developed in sections 2.5, 2.6, 4.1
and 4.2 to the Caldeira—Leggett model as presented in section 3.6. Most of the
motivation for such an application originates from our desire to demonstrate
the multiple orbit theory of section 2.6 for a nontrivial model.

First of all, note that the equation of motion [egs. (3.83a, b)] is still valid, but
now it has to be solved for a periodic orbit. Consequently, we introduce the
discrete frequencies

w,=wn)=—n (4.55)
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and define Fourier transforms as follows:
1 .
r,=— Z ] T
T1
n

e, = J dre'®’r,. (4.56)
0
Elimination of the environmental coordinates r,, k = 2,. .., N, leads to the
same type [eq. (3.86)] of equation of motion for the coordinate r; of the object
except for the redefinitions (4.55) and (4.56) of the Fourier transform; specifically,
the dissipative part [cf. egs. (3.86) and (3.87)] is given by

(H *11)o, = nlan|ri(@,). (4.57)

Therefore,
2 2 3 2 1
(Mo} + nl| +mod} & —3mwl =Y Eumwila =0, 4.58)
-
where the coordinate of the object has been rescaled according to
1
$n= Re ri(@,). (4.59)

In the limit of heavy damping
n
Yy =— >y, 4.60)
m
the acceleration term mw? in the curly brackets of eq. (4.58) can be neglected;
Larkin and Ovchinnikov (1983a, b, 1984) have shown how to solve eq. (4.58) in
this limit. Specifically, for an orbit of multiplicity p, where the primitive period is

1, =2, (4.61)

we have

Em = %1y (tanhb)exp[ — b|n| + iw,,1,],

& =4%(tanhb) Y exp[— bin| — iwp(t — 7)1, 4.62)
where
tanhb =B,  15=2" 4.63)
Tp o

Note that Ty = h/ktg is the crossover temperature in the above mentioned limit.
Also, we wish to draw attention to the fact that r,(t = 0) = Rc&, - can be given
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any value by an appropriate choice of the integration constant 7, (e.g.,
Im <z, # 0). Note also that we have orbits for 7, < tp; in this case Imb = m/2.
Calculating the action for a single orbit, we find that

1 3 1 TB 2
St )=y([rt];tl)=thB e > (4.64)
2 2 Ty
and that its Legendre transform is given by
E 2/3
W (E) =3 1508 [1 — (v_> ], (4.65)
B

which should be compared with fig. 6.
The corresponding quantities for an orbit of multiplicity p are

PO = p([r.J;7,) = perBB - %( Z—)z]
WP = py ON(E). (4.66)

Of interest will also be the quantity
2y P 1ivg

ot 51

4.67)

The computational procedure for the fluctuation determinants which appear
in the expression (4.53) for the prefactor, follows the same reasoning as in section
3.6, that has led us to eq. (3.97). Accordingly, we have

d _ yo([rl(f)]; 1"1) 172 det(— ma,z + H + mw(z)) 1/2
- 2nthm det’(—md2 + H + v"(r,(1)))
The calculation of the prefactor is carried out in Appendix D. There it is

shown that it depends on the multiplicity p in a nontrivial way. Accordingly,
A — P, which is given by

. _{ 9mve\'? (18\? p'* T'(2p + 20)
A P(1,) = ( s > (;) ) T'2o) (4.69)

where o is defined by

1 2
a=5[1+z—;<£—%—1>]. 4.70)

According to what has been said in section 2.6, we should sum the contribu-
tions of all orbits with arbitrary multiplicity p. Hence,

(4.68)

. 1 '
= ‘; (— 1)"+1,5z¢("’(11)exp<— . yw)). @4.71)
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As in the dissipation-free case, we solve the summation problem by a Laplace
transform, evaluated by the method of steepest descent. Thus, we obtain*

F=7% (-l)"“jdE,g?‘”’exp{—%[W‘”’(E)+Etl]}, 4.72)

p=1
where, by virtue of eq. (4.67),
1 2yw®
27th 61.'1

Uz 1 T(2p + 20)

7P — g T
AT = 7 pT2())I'(20)

4.73)

Interchanging the order of summation and integration in eq. (4.72), the decay
rate can finally be put into the form

r =%j dEe™ ¥ ¢(z), z=e"OM, (4.74)
o

where ¢(z) can be expressed in terms of the Gauss hypergeometric function
(Abramowitz and Stegun 1986) as

Z(_l)pH pl'(2p + 20) _pl@2p+20) |
I'*(p+ 1) Q2o)

= 4za(a +3HFe+1,0+3;2 —42). 4.75)

At this point we would like to mention that in Larkin and Ovchinnikov
(1984), and subsequently also in Grabert and Weiss (1984) and Grabert et al.
(1987), a calculation of I close to the crossover temperature Tg has been carried
through according to Affleck’s prescription (2.76) listed in (iii) of section 2.6:

f"=j dE&?“’(t,)exp{—%[W‘;’(E)+E11]}, 4.76)
where w4 is the second-order expansion of # ) = #" in E — vy as shown in
eq. (2.77). Some arguments concerning this prescription are found in Appendix
E, where also the explicit form of I'* is given in eq. (E.11).

Ludviksson (1989) has calculated the decay rate [eq. (4.72)] numerically. (For
details see also Appendix E.) In Table 1, we have listed some of his results for the
case y = 4wy, vg = hw, in the form of the ratio @ = I'/Tr(T), where

—e T TS T,
2ny
IR(T) = @.77

2
w
0 e=velkTs T < Tp.
2ny

*See also Appendix E.
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Table 1
Decay rate divided by I'x(T'), which
is the classical Kramers rate trun-
cated for T < Ty. The parameters
are y = 4w, and vy = hwg. Present
theory: Q; Affleck’s prescription: Q4

T/Ty e o*
0.4 0.0161 0.0177
0.5 0.0545 0.0585
0.6 0.241 0.253
0.7 135 143
0.8 8.58 10.5
0.9 520 101
1.0 268 1010
20 6.13 9.28
4.0 1.70 2.03
6.0 1.24 1.39
8.0 1.09 1.18

10.0 1.02 1.09

Note that for T > Ty, I'x(T) is the classical Kramers rate in the heavy damping
limit. For the sake of comparison, we have also listed numerical data
Q* = I'*/Ix(T), which have been calculated in Grabert et al. (1987) according
to Affleck’s prescription. In view of the very different analytical expressions, one
may call the agreement reasonable* above and below the crossover temper-
ature, with some reservation in the crossover region. Fair agreement is obtained
also for other values of y/w, and vg, with a tendency of improvement for large
values of vg/hw,.

The agreement for temperatures far above the crossover temperatures is not
a coincidence. In fact, as we have shown in Appendix E, our theory is, in the
high-temperature limit, equivalent to the ansatz of a quadratic expansion of
V(R) at Ry. Such an expression has been discussed by Affleck (1981) and
others **

For temperatures far below the crossover temperature, only small energies
contribute to the decay rate [eq. (4.72)]. Consequently, only the simple orbit
p =1is of importance and we agree with the standard theory.

*The agreement here relates only to the comparison of different methods. Arguments for the

validity of semiclassical approximations, even for the quoted parameter values, are given in Larkin
and Ovchinnikov (1992).

**See, e.g., the paper by Wolynes (1981).
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5. Conclusion

This chapter has been concerned with the decay of a metastable state which may
exist in a system where the potential energy V(R) of an object features a relative
minimum at some point of the multidimensional configuration space R. In the
present paper, such a minimum has been assumed to be at R = 0, where we have
put ¥(0) = 0. Clearly, there must be an environment of R = 0 where V(R) > 0,
i.e., which is classically inaccessible; but there must also be an extensive outside,
i.e., an accessible region V(R) < 0, where the object is found in the decayed state.

There are two main parts: one corresponding to the decay at zero temper-
ature, where a wave function y suffices for a description of the state, and the
other corresponding to the decay at finite temperatures, where a statistical
matrix p is required.

Let us first recall the case T = 0, where the wave function ¥ is calculated in
quasiclassical accuracy. Specifically, this calculation is based entirely on the
standard quasiclassical ansatz, where the wave function is put equal to
exp(— [action]/h) and the (Euclidean) action is expanded in powers of h.
Generally, the action is a complex function of position. In case of a metastable
state, however, it is real in a very large part of the inaccessible region.

This ansatz substituted in the Schrodinger equation leads to a coupled set of
nonlinear first-order partial differential equations (eikonal equation and trans-
port equation) which can be solved by the methods of characteristics. These
characteristics are trajectories in a phase space (configuration and momentum
space), which obey classical equations of motion.

Of central importance is one single trajectory called the escape path. This is
a classical trajectory of zero energy in the “inverted” potential — F(R), which
connects the metastable minimum at R = 0 with an escape point R on the
border of the outside region. There are also other trajectories in the inverted
potential which start with zero energy at R = 0 and which follow the escape
path for some distance. Eventually, however, they will be reflected off at more or
less close distances to the boundary of the accessible region. There is an envelope
to these paths which may be called a caustic, and which lies entirely in the
inaccessible region except for the escape point.

One can show that the wave function falls off rapidly at distances which scale
with A2 from the escape path. Therefore, it is possible to introduce the
small-fluctuation approximation, where only paths which are sufficiently close
to the escape path are taken into consideration.

The problem now arises how the wave function can be obtained in the region
beyond the caustic, which is by and large classically accessible. It is shown that
a process of analytical continuation in the configuration space extended to
complex coordinates resolves the problem. Alternatively, it is possible to extend
the trajectories (essentially, as they touch the caustic) to complex phase space
and to complex times. Note as a special case that the extension of the escape
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path, which starts at R into the accessible region, is a real classical trajectory in
the true potential V(R).

We should keep in mind that this complexity merely reflects the fact that in
multidimensional systems cases are rarely found where the action is either
purely real or purely imaginary.

Concerning the wave function, the following picture emerges. Essentially, it
consists of a principal wave ¥, (= y§) which resembles, near the origin, the
ground state of a set of harmonic oscillators and which extends toward the
caustic in a narrow tube surrounding the escape_path. There, it is partially
transmitted and reflected. The transmitted wave y (# y*) represents a wave
propagating in the direction of the extension of the escape path. The reflected
wave ¥, (= — y¥) returns to the origin.

By general arguments, the decay rate I' of the metastable state is equal to the
probability current which penetrates into the outside region. It has been shown
that the decay rate thus obtained is exactly the same as that calculated in the
instanton technique. This equivalence can partially be understood by noting
that the escape path here corresponds to the bounce there.

At finite temperatures, we represent the statistical matrix in the form of
a Feynman path integral. In quasiclassical approximation, the integration with
respect to the paths is dominated by extremal paths, that are paths for which the
action is stationary. Two types of such paths are of importance. There are some
that contribute to the normalization and others that lead to a finite probability
current in the outside, i.e., the classically accessible region. The extremal paths
are solutions of classical equations of motion in the inverted potential. Of
importance are periodic orbits completed in time t; = h/kT and which connect
the metastable well with the outside region. One can easily see that for 7, — oo
(T - 0) this periodic orbit degenerates into the bounce discussed above.

For the same reasons that has led us above to the conclusion that, in general,
the action is a complex quantity, we have to extend the class of extremal orbits
to include also complex orbits. Also, we have found it necessary to -include
multiple orbits (see, e.g., Hinggi and Hontscha 1988), where a primitive orbit
completed in time 7, = 7, /p is traversed p times. This generalization constitutes
the main message of our theory as compared with the one put forward, e.g., by
Affleck.

In the vicinity of the periodic orbit there are closed extremal paths which also
contribute to the outgoing current. These neighboring paths can be taken into
account by a technique similar to what we have referred to above as the
small-fluctuation approximation.

One result is worthy of note. As is quite generally the case in the quasiclassical
approximation to path integrals, the Gaussian fluctuations have to be calculated
for zero boundary conditions. Now, it has been found that the integration of the
contribution to the current from those neighboring paths mentioned above
changes the expression for Gaussian fluctuations at zero boundary condition
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exactly to an expression for Gaussian fluctuations at periodic boundary condi-
tions. This allows us to interpret the overall current contribution as a contribu-
tion to the partition function where the paths are known to obey periodic
boundary conditions. Thus, we have been able to confirm strictly the connection
between the decay rate and the imaginary part of the free energy.

However, our theory means a generalization since it requires the inclusion of
complex periodic orbit of arbitrary multiplicity. The summation with respect to
the multiplicity is simple in a one-dimensional system but it might become
a formidable task in the multidimensional case. We have carried through such
a program for the Caldeira—Leggett model in the case of heavy damping and
found that, numerically, the agreement between our theory and the standard
one may be called reasonable in view of the fact that the corresponding
analytical expressions are quite different. On the other hand, we have been able
to show that for temperatures far above and far below the crossover temper-
ature, our theory does lead to the standard limiting expression.

Although progress has been made, we have not found quantitative criteria for
the assumption on the quasistationarity of the decaying state.

Appendix A. Transmission through a smooth barrier
in quasiclassical approximation

For an illustration of the quasiclassical expression for the transmission coeffic-
ient [eq. (2.68)] let us compare the quasiclassical result with the analytical one
for a barrier of the shape

Up
Ry=——F—. .
v(R) cosh?aR (A1)

Let us calculate the abbreviated action #7(E) defined by eq. (2.37) for a closed
orbit and for E < vg. Then (v(Ry) = E)

W(E)=4 jko dR /2m(@(R) — E)

2 1
=—V“""’“(1 —s)f (1 — )21 — (1 — ¢)s)~ 15~ V2 ds, (A2)
(4]
where we have made the substitution
E
e=—, s= tanh? aR. (A.3)
Ug — &

After some calculations, we obtain

W(E) = —(1 — &1/2) (2mpg) /2, (A4)
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Although we initially assumed E < V(e < 1), the above result holds for all
values of E ( > 0). We thus obtain within quasiclassical accuracy

2n
-1 121 _ glizy |, A.S
et exp[ o (2mug) (1 — ¢ )] (A5)
whereas the exact expression (Landau and Lifschitz 1975) is

1 sinh?(nk/a) + cosh?[n(2mug/h?a® — 3)'/?] (A6)
D(E) sinh? (nk/o) ’ .

where hk = (2mE)"/?. We realize that egs. (A.5) and (A.6) agree in the quasiclassi-
cal limit & — 0, i.e., in the range

(hoy?/2m < E, vg. (A7)

In contrast, the expression for the transmission coefficient in harmonic approx-
imation, i.e., replacing the barrier by a parabolic one with the same curvature at
the top, is given by

ﬁ 1+ exp[% (2mog)2(1 — s):l, (A8)

which differs from eq. (A.S). Thus, the agreement of expressions (A.5) and (A.6) in
the quasiclassical limit is not related to the fact that the smooth potential (A.1)
can be approximated by a parabola close to its maximum.

Appendix B. Some results for the one-dimensional decay
In the case of the cubic potential (2.10) one may calculate % (E) explicitly for all

E in terms of the Gauss hypergeometric function (Abramowitz and Stegun
1968), with the result

1 T 11
W(E):mwoRéﬁ(—R)S/ZZZF(—Z’Z;z’z>' (Bl)
The quantities in the expression above are explained as follows: ¢ is the smallest
root of
1 2 2E
3 __ == -
c 3c 77 <1 o >, (B.2)
and

1/ 2\
z= §[<3—c> — 1:|. (B.3)

Note that — 0 <c< —%and —} <z < 1for w0 > E/vg > 0. Consequently,
# (E) is an analytical function for Re E > 0.
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Consider now the expressions (2.68) and (2.69) for D(E) and T, respectively.
According to the concluding comments of section 2.2, the approximation @),
where D(E) = exp[ — (1/h)# (E)], may be used for low temperatures. There, we
require #'( E) only for small values of E. An appropriate expansion* of eq. (B.1)
leads to

1 1 | 360y 43204
— =— — El —E | B.4

Thus, we may write

- 1 @ E 1 3603 4321)3
T 22 _Em g |). s
ZnhZofo dEeXp( kT hwo[ s Elg E]) (B.5)

If vg is large compared to k7, hw,, we may evaluate the integral by steepest
descent. In the limit T — 0, we recover indeed the decay rate as given by egs.
(2.17) and (2.24). For the sake of completeness, we remark that at finite temper-
atures, we obtain nominally an exponent

.%(T)=E%[35—6—432exp<—%>] (B.6)

However, the finite temperature correction is irrelevant, particularly in compari-
son with the correction of the normalization Z(z,).

For large temperatures, we approximate % (E)~ ¥’ 1(E) according to eq.
(2.71) whence we find that

kTy = hwy/2m. (B.7)
Thus, eq. (2.72) may be written in the form

WMo 1

o
2n 274 sin(hwe/2kT)

e BT, (B.8)

Note that 2Zsin (hwo/2kT) — 1 for kT > hw,; this confirms €gs. (2.2) and (2.3).
The divergence of eq. (B.8) for T — T + is a consequence of grossly over-

estimating the small energy contribution in the replacement %~ — ¥, (see fig. 6).

Therefore, it seems reasonable to make use of the following approximation

f:

G _
—E/T (] 4 (UN#¥i(E)7-1
2nhZo_[ dEe {[1+e ]

]
+ O(UB _ E)[e*(l/h)wz(E) _ e—(l/h)#’x(E)]}, (B.9)

*One should make use of the appropriate linear transformation formulas (Abramowitz and
Stegun 1968).



The decay of a metastable state in a multidimensional configuration space 209

where #,(E) is given by eq. (2.77). For the present case, we have

L (2" B.10
k_T2_<18kTBuB> ‘ (B.10)

In the form (B.9), we may extend the lower limit of integration to — co. Thus, we
obtain

e vB/kT r _ T
2nhZ, sin(nTg/T) T — Ty

T2 12 T2 T2 Tz T2 2
22 fol =2 — -2 22220 LBt
M o A (B.11)

Clearly, in the region of the crossover temperature T ~ Ty, the first two terms in
the curly brackets vanish and one recovers Affleck’s prescription (iii), which
has led us to eq. (2.79). It appears that we have to require that
T,/Ty ~ (vg/hwo)'’? > 1 in order to have this approximation to be meaningful.

In the limit of high temperatures, we obtain the classical result including
gquantum correction:

[ — @0 o-vn/kt 1 (hoo\* 57 (hor)? 1
F=orc [”12( kT) 9 klvs | (812

The second term in the brackets represents quantum corrections already found
by Wigner (1932). The third term is a much smaller correction in the limit
vg > kT.

Appendix C. Gaussian fluctuations about complex paths

In a quasiclassical approximation to the path integral (2.55) it is necessary to
calculate the contributions of Gaussian fluctuations about the extremal path r,,
which is presently a complex path.

In this section, we are concerned with a one-dimensional system. Accordingly,
we have

Rz:rr+zn Z=X+iy,
1
W, = ;u”(r,) =U,+ iV, (C.1)

the second-order contribution to the action is given by

0

92=%mj de {72 + W22} = &4 + i¥}. (C2)
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Since Gaussian fluctuations have to be calculated for zero boundary (ZB)
conditions z,, = z,, we obtain by partial integrations

<5plZ = %mj de {xt(—it + Urxr - V:,V:) + yr(j}r - Uz,Vz - err)}

0

y/Z/ = %mf dr{xt(—j.)f + Uryt - Vtxz) + yr(—jer + Urxr - V;yr)} (C3)
¢}
Next, we introduce the two-component set of functions (x,, y,) which satisfies
the equations

vt eo )T oG-+ ()

71
f dt(xy Xy + YnYn') = Opw- (C4)
0

One may convince oneself easily that (x,, y,) = (yz, — x5) is also an eigenfunc-
tion and that its eigenvalue is 4, = — A;. It is important to note that this set with
positive and negative eigenvalues is complete. Therefore, we may expand

(5)-2<(2) €

and inserting eq. (C.5) into eq. (C.3), we arrive at

1 2
y’2=7mzlncn’
n

b= —imY) cacadn, (C.6)

where 71 is so defined that A; = — 4,.

The path integral in eq. (2.55) is now replaced by Gaussian integrals with
respect to the expansion coefficients c,. For these integrals to converge we must
restrict the expansion (C.5) to such values of n for which 4, > 0. In that case we
have #3 = 0. We may interpret the restriction as follows: For each degree of
freedom n there is only a one-dimensional integration in the complex c,-plane;
furthermore, the integration contour is in the direction of steepest descent from
the saddle point;* the direction of steepest ascent — corresponding to a rotation
by 47 in the complex plane — is excluded.

Let us introduce the Jacobi fields

zj(t; §) = x;(1; §) + iy;(n; &), j=12, (€7

*Of course, the sign problem ( “which way to cross the mountain pass”) mentioned in section 2.6
[eq. (2.65)] remains.
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which are solutions of the equation

. 10 0 1 1 oo\/x)_
frereo(a )= o) G0 e

subject to the initial conditions

zj(0;8)=0, Q¢ =1, (0= —i (C.9)
Observe, that for £ = 0 we have

(=0 + U, + i¥)z;(1; 0) = O; (C.10)
whence it follows that

z,(1; 0) = —iz(1; 0). (C.11)

We now construct a linear combination (with real coefficients) of z,(z; £) and
z,(t; &) that satisfies the boundary con litions

ayzi(ty; &) + a225(14;€) = 0. (C.12)

Separating the real and imaginary parts of eq. (C.12) leads to a homogeneous
system of equations that has a nontrivial solution only if

Im(z;(ty; EM22(T15 E)T*) = x1(715 E)yalty; &) — yi(T1; ) xa(ty5 ¢) = 0.

(C.13)
Next we compare the eigenvalues above with those derived from
we = lv”(O) =U® 4iy@
m b
U© = o2, Vo =, (C.14)

and define the ratio (denoting zero boundary conditions by the subscript ZB)
+ AO 2 AO

R%B — <Hll+ ﬂ) — l_[n n

Hn j-n ZB Hnln

where the superscript + in the product above denotes restriction to positive
eigenvalues A,. For further progress, we compare the expressions

[1.(&” = §)
Hn(ln - 5)

1 0 0 1 10
det{(— 2 + U<°>)< )- V“”( )— 5( )}
0 —1 10 0 1
= (C.16)

w5 ) )6 )

(C.15)

5
ZB

ZB
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and
Im (z0(zy; &) [2P(x1; E)1*)
Im(zy(ty; &) [2a(t15 €)% °

where z{? and z{’ are defined analogous to egs. (C.8) and (C.9), with W, replaced
by W . Evidently, both expressions (C.16) and (C.17) have simple poles for
& = 4, and zeros at & = A and approach 1 as |&| - .

Therefore, we conclude that both expressions coincide in the entire &-plane.
Putting £ = 0 and using eq. (C.11) we conclude that

(C.17)

Ry = |1 1Y C.18
e P i
By definition, the time derivative of the classical path 7, obeys the equation
(=02 + U +iV)f, =0; (C.19)
whence it follows that
zy(1; 0) = r'or',f dr'rz2. (C.20)
¢}
Furthermore,
1
20(t; 0) = ——smha)or (C.21)
Do
and we find that
] sinhwgt
|Fol*Rzp = t—(’,iz“- (C.22)
wol fo dtF 2|

We observe that for an analytical potential

f der 2= fﬁdrr’_3 (C.23)
o

does not depend on the particular form of the orbit as long as it encloses the two
turning points of classical motion (cf. fig. 4). From the definition of t,, we find
that

2
faric> = -mT— - TLLE. €29

OE

Let us now consider fluctuations with periodic boundary conditions. Al-
though the eigenvalues and eigenfunctions are different from those for zero
boundary conditions, we will for the sake of simplicity, use the same labeling.



The decay of a metastable state in a multidimensional configuration space 213

We define
[1.4

+A(0) 2
RlZ’B = (l_[n+ " ) = p
l_[n j'n PB l_[nln

where [[, means restriction to positive eigenvalues and [], means that the
eigenvalue zero (corresponding to the eigenfunction oc 7.) is to be omitted.
In order to control the zero eigenvalue, let us first define a modified ratio

20
(Rbp)? = ’]—[ d

(C.25)

>
PB

n | PB

1 0 01
_det{(—6,2+ U‘°’)<0 _1>— V<°><1 0)}
- gl O)_ (01 ’
ot +vn(y _V)-n(To)} |

where Uz = U, + ¢.
We now introduce four Jacobi fields zi(r; £) that satisfy eq. (C.10), with
U, replaced by U, subject to the initial conditions

(C.26)

25,08 =0, 508 =1, 50¢) = —1,
540;8)=0, 250;¢) =1,  20;¢) = —1i. (C.27)

For £ = 0 we have relations similar to egs. (C.11) and (C.12). In particular,
251 0) = —1zi(7;0),  zi(r; 0) = —iz5(z; 0). (C.28)

We now form linear combinations of z;(t; £) with feal coefficients that satisfy
the periodic boundary conditions. This can be done in two steps. First, we form
two independent solutions

15 &) = 2(r; O — 25(r1; &) + 25(r; )2 (115 &),

5(1; &) = (1, 3)~(2,4). (C.29)
For ¢ = 0 we have, on account of eq. (C.28),
5(t; 0) = —iZ4(z; 0). (C.30)

Secondly, we construct a linear combination of Z$(r; ¢) that satisfies
Y wZi0¢) = Y wZi;é), (C.31)
1=1,2 1=1,2

The condition for this system to have a nontrivial solution is

Im{[Z5(cy; &) — Z5(0; &)1 [Z5(x1; &) — Z5(0;€)]*} = 0. (C.32)
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By reasoning similar to that leading to eq. (C.18), we conclude that
ZP@,;0 - ZP©; 02

4 (150) — 250;0) |
where we have made use of eq. (C.30).

Now we eliminate the two eigenvalues close to zero. For ¢ =0, let the
eigenfunctions to the double-degenerate eigenvalue zero be (xo(1), yo(1r)) and

(yo(1), — x0(1)), respectively. To first order in ¢ the matrix elements of the
perturbation

o 1)

in the two-dimensional subspace are

Ty 2 4,2
sJ' dr<x° Yo 2XoYo ). (C.34)

2 2
0 2x0¥0 Y6 — X§
T1
drz3
0

(Rbp)* =

(C.33)

The product of the two eigenvalues is then
1 2 Ty 2
—82{[j dr(x(z,—y(z,):l +|:2j dtxoyo] }= —&?
o o

which leads to

Tt
drz3
0

We now make use of the fact that

2

B

(C.35)

Z0(t,;0) = Z(0;0
fim ¢ 29 f( | (C.36)
-0 Zi(11;0) — Z9(0; 0)

RPB =

3425 (5;0)z0(1) — Z3(1; 0)o(r)} = eZ' (53 0)zo(v). (C.37)
Furthermore, since zy(t) solves the equation (C.9) with ¢ = 0, we may write
2o(1) = 20(0) 21(7; 0) + 20(0)z3(; 0)- (C.38)

Since z4(7) is periodic (z¢(t) = r.), we may use the condition z4(t,) = 20(0) to
deduce from eq. (C.29) that to zeroth order we have

z1(71:0)
20(0)
From eq. (C.37) we obtain by integration

Zi(x;0)=

Zo(7). (C.39)

£
20(0)

Z5(150) — Z5(0,0) = Ll dr Z(z; 0)zo(), (C.40)
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which, by virtue of eq. (C.39) leads to

zy(r1; 0) [
Z(2>(0) 0

Since z¢ is normalized to unity, we have

Z%(11;0) — Z5(0;0) = ¢ dtz3(1). (C.41)
120(0)|2 = |Fol? / f de|r?]. (C42)
(4]

Inserting egs. (C.20), (C.41) and (C.42) into eq. (C.36), we finally arrive at the
following expression:

i 1ZP(1150) — Z9(0; 0)]

R dz|r)? = .

pro 7|7 IIB‘ R (C.43)

We observe now that

)., 1 N O/

23t 0) = o sinhwgt, 25°(7; 0) = coshwyt,
0

. . . WoTy

Z(1,;0) — Z,(0; 0) = 4sinh? — (C.44)

A comparison of egs. (C.21) and (C.43) together with eq. (C.44) allows us to
express Ryg in terms of Rpg as follows:

WoTy
coth
mago 2

RZB|7%| = 3 Fo(t1)Rps, (C-45)
where we have introduced

Tt

Folt1) = Lo(lr: ] 1) = ’nj dr | 7. (C.46)

0

At this point, we find it convenient to introduce the notation

det* {—0? + W}
Ryp = ) 47
XB det+{_63 + VV;} XB (C )
Evidently, for W, — U, real, we have
det*{—02 + W} |det{—02+ U@}
- 3 = ; 5 . (C.48)
det*{—0% + W,} det' {—02 + U}
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Using the above definitions and relations, we may express the statistical
matrix p in quasiclassical approximation as follows:

maw, 1/2 det+(—a,2 + W(O)) 12
p(R,R;1y) = . ¥ 2
2nhsinh @y 1, det™(—07 + W) |z8
1
X exp (— ﬁy([rt]; rl)>. (C.49)

We have chosen a representation where a ratio of determinants appears since it
is easier to handle. That the overall constant is chosen properly can be seen by
inserting the trivial path r, = 0, where one expects the result 00,0;7,) =
(mwo/2mh sinh wg )", which is known to be valid for the harmonic oscillator.
Using eq. (C.45) together with Z5 ! = 2sinh w,1, /2, we may rewrite eq. (C.49) as
follows:

Folt1)
2nh|Fol|?

p(R, R;r1)=26‘< >/ Rpf exr)(—%y([rz]))- (C.50)

Calculating the decay current J(R) and the decay rate I according to egs. (2.57)
and (2.60), we obtain the result given previously by egs. (2.44), (2.51) and (2.53),
namely

= Folty) )1/2
F =
< 2nh
Alternatively, we may combine egs. (C.22), (C.24) and (C.45) to obtain
_ 2 W —-1/2 1
F=Z§‘[2nh%] exp(—ﬁy([r,];tl)) (C.52)

which agrees with egs. (2.44)—(2.46).
Eventually, we wish to discuss the possibility of deforming the periodic orbit
r. in the complex r-plane. Evidently, the replacement

roor 4 8T (C.53)

does not change the orbit to O(5), and also it leaves the action & unchanged.
In a formal way, we may consider this to be a consequence of the fact that
(Re 7., Im7,)is a solution of the eigenvalue equation (C.4) to the eigenvalue zero.

However, we have also learned that (Im7,, — Re¥,) is also an eigenfunction
with eigenvalue zero. On the other hand, —if, = Imf, — iReF, is, in the com-
plex plane, perpendicular to 7, and, therefore,

Peo 1, — 187, (C.54)

means a real deformation of the orbit which leaves the action unchanged.

1/2

det* (—02 + W©)
det* {—02 + W)

exp(— % F(Lr.; r1)>. (C.51)

PB
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Clearly, by successive application of this infinitesimal deformation, we may
induce global changes in the orbit. Thus, we may say that it is possible to
construct an orbit which passes through any preselected point R.

With some restrictions, the above argument can also be extended to the
multidimensional case.

Appendix D. Prefactor for the heavily damped object

We consider the fluctuation operator in the denominator of eq. (4.68). Its
eigenvalues A and eigenfunctions v, = v(t), v, = v(w,) can be found by solving
the equation

{mwg + nlo,| + mod}v, — 3mof[Ep.], = Av,, (D.1)

which is written down in terms of Fourier transforms [cf. egs. (4.55) and (4.56)].

In the limit of heavy damping, the extremal path r, (1) = Rcé, is given by
€q. (4.62). (For convenience, we substitute t — 1, by 7 in the following.) Consider-
ing an orbit of multiplicity p, we choose the ansatz

v, =Y Ckexp(iwp,- 1), (D.2)

where the integer k, 0 < k < p, plays the role of a “Bloch index”. Inserting this
expression into eq. (D.1), we obtain*

2 1 |
[(&) (pn + k)* + I;Ipn + kltanhb + l]Cﬁ — 2(tanhb) . Ck e~bin=n
wo ;

_ A Ck, (D.3)

mw}

where v, = 2n/1,.

The case k = 0 was discussed by Larkin and Ovchinnikov (1984). We will now
briefly discuss their procedure. In the limit y > w, we are considering here, and
for the lowest eigenvalues, we may neglect the acceleration which is the first term
in the brackets of eq. (D.3) and we will call this form the truncated eigenvalue
equation.

For k = 0, one may also choose the eigenfunctions to have a definite parity. In
the even case we start from the ansatz

C:=(|n] + C)etinl, (D.4)

*Note that tanh b = t/7, o p depends on p.
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We insert this in the truncated eigenvalue equation (D.3) and arrive at

1 A®
C(tanhb)|n| + C + tanhb — —(In| + C), (D.5)
inh* b mamg
which is satisfied for all n provided that
A° 1 A¢
— =— — h b . D.6
Ctanhb g C —tan hEh mok —C (D.6)

This leads to a second-order equation for C, which is solved to give the
eigenvalues

oa_ My 4 )" (D.7)
mod 2| cosh?b ' '

The remaining eigenfunctions of even parity, corresponding to the eigenvalues
A5 +n, N = 0, are of the type

Ci=(ln|+ C)e™*"l 1+ 4, (D)
where
d,=d_,, dy #0, d,=0 for|n|>N. (D.9)

This leads to the following system of equations:

1
—tanhb{lnlC + (cothh)C + hb} + {|n|tanh b + 1} d,e!"!

N , Ae
— 2(tanh b)e’!"l ¥ d,,,e-b'"-"'=ﬁ{|n|+c+eb'"'d,,}. (D.10)
4]

n'=—-N

Assuming that the equations are valid for |n| > N, we conclude that for n = N

2

Ae
[Ntanhb + 1]dyet™ = mz—aj(’: dye™. (D.11)

Since dy # 0, we must have

2*Y =1 + Ntanhb. (D.12)

mw§
For the odd eigenfunctions we make the ansatz
=(n+ Csgnnje "l 4 g, (D.13)
where

Gn= —G-n> gM#O, gn=0 forn>M (D14)
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and
1, n>0,
sgnn = 0, n=0, (D.15)
-1, n<O.

Thus, we arrive at the system of equations

Csgnn — C(tanhb)n + [|n|tanh b + 1]g, "

M
— 2(tanh b)et"t Y g, e bl

n=-M
A3 =
=2 [n+ Csgnn + g,e*'"]. (D.16)
mamgp
Assuming that the equations are valid for [n| > M, we conclude that for n = M
AO
(Mtanhb + 1)gye?™ = L g, &M, (D.17)
mwg

Since gy # 0, we must have

AO
Y =1+ Mtanhb (M #0). (D.18)
mag

For M = 0 we obtain

— AR —
C(sgnn — ntanh b) = 02 (n + Csgnn), (D.19)
maw}
which holds for all n if
_ o _ A
C=—%C,  —Ctanhp=—2%. (D.20)
mwo mayg ’

Either C = 0, corresponding to A% =0 or C#0 in which case A3/mw2 = 1.

We have now obtained all eigenvalues of the truncated eigenvalue equation.
We introduce the following labeling, which includes all even and odd eigen-
values:

/‘1~0=0,

- 1 4 \2

Ayy=—-mod| 141+ ——

1 meo[ i( +cosh2b> ]’

A, = mw3[(Jv| — 2)tanhb + 1], |v| = 2. (D.21)

For states with large quantum numbers, the acceleration term in eq. (D.3),
which we have neglected so far (truncation), becomes important. In that case we
neglect the last term on the left-hand side of eq. (D.3). Then, the eigenfunction
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corresponding to the eigenvalue

2
20 =ma,g[pzvz<%) +v|tanhb + 1} (D22)
4]
is simply
Cp = .

Including the off-diagonal term by lowest-order perturbation theory, we obtain
the eigenvalues

2
J, = mw%[p2v2<%> +(Iv] — 2)tanh b + 1]. (D.23)
(4]

Comparing egs. (D.21) and (D.23), we recognize that the result (D.21) can be
improved if we put

A, =4, IvI=2. (D.24)
For the prefactor we need also to calculate
2n? mR}
So(lr (0} 1) = j deli, () = oo
2n2mRE| A, A-
iR | b Gkt (D.25)
WG |m m

As an exercise, we calculate the prefactor o/§" of the decay rate for one
primitive orbit completed in time 7,. There

W (ﬁ)m {Hv[wﬁv + 7|opl + 03] }”2
0o - ~
znh nv¢0Av/m

=<mw0R}23__1~>1/2 H:O=1[w12;v+'y|wpv| +(1)(2)] (D26)
Zh YWo Hf=2[w12;v+y|wp(v—2)| +(1)(2,] ’
We now write the above product in the following form

2 H?:l(v—pV1)(v—pV2) (D27)

P 2(v = pu)(v — puz)’

where we have introduced the dimensionless quantities

Vi,2 = (@) =72 + /y¥/4 — 0?],
2 = (0) 1= 92 + /74 — 0} + 2y0,]. (D.28)
Using the relation

© r+Ul)r+Uz) F(WI)F(WZ) B )
e T w) = Tonrey)® e (D29)
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the produet can be written in terms of I'-functions:
2 T2 — pui)I(2 — pps)
Pt —pv)I'(1 — pvy)

For very heavy damping, this expression is proportional to y*/w3, which leads
to the following limiting form of the prefactor:*

W mwoRIZ; 1/2 l 7/2
oA ‘(727. ) o R (D.31)

(D.30)

For k # 0 parity is not conserved and we need to generalize the ansatz for the
eigenfunctions

Ck=(aln| + C)e7®I" 4 d, + (an + Csgnn)e~bI"l 4 g,, (D.32)

where d, and g, have the same properties as before. We now insert this ansatz
into the truncated form of eq. (D.3). Observing that

k k k
n+ | =|n|+sgnn-+ =40, (D.33)
p P p

we obtain

— {In|Ctanhb + C + atanh b/sinh? b} — C{ntanh b — sgnn}

k _
+ 1_7{“" + Csgnn + a&|n| + C(1 — 8,,) + 6, 0C}tanh b

+ |:<|n| + f—)sgnn + f—)én,())tanhb + 1:|{d,l + gapebin!

—2(tanh b) Y. (d, + g, )e?!nl=1n=|

2{a|n|+C+&n+6sgnn+(dn+g")eb'"'}. (D.34)
mag

For |n| > N, the above equation reduces to

—{In|Ctanh b + C + atanh b/sinh?b} — C{ntanhb — sgnn}

k _
+ ’ {an + Csgnn + aln| + C(1 — 6, o) + J,,0C} tanh b

— 2(tanh b)Y {d, + sgnn)g, } e

ol {aln| + C + an + Csgnn}. (D.35)

*See also eq. (33) of Larkin and Ovchinnikov (1984).
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Comparing terms with the same n-dependence, we must require that

A
— Ctanhb + li (tanh b)a = —«, (D.36a)
p mwyo
- k /.
— Ctanhb + —(tanhb)a = — 1, (D.36b)
p mawo
-k A =
C + = (tanh b)C — 2(tanh b) } g, " =—C, (D.36¢)
14 n’ mawyo
s k = o A
— C — a(tanh b)/sinh? b + - (tanh b)C — 2(tanh b) Y d, ¢ = — C.
p n’ mamy
(D.36d)

For n = 0 we have the following condition:

k
— C — atanh b/sinh? b + g(tanhb)C + <I—)tanhb + 1>do

— 2(tanhb) Z (A + gn)e b = iz (C + do). (D.36¢)

We obtain the five eigenvalues A* with |v| < 2 from the above equations by
putting d, =0 for n #0 and g, =0 for all n. This leads to the following
eigenvalue equation [after subtracting eq. (D.36d) from eq. (D.36¢)]:

(M* — A/mwd) | do |=0, (D.37)

where the matrix M* (with ¢* = (k/m)tanh b) is given by

0 —tanhb 0 q 0
—tanhb/sinh*b  —1 —2tanhb 0 q-
M = 0 ¢ 1+ ¢* 0 — g
q 0 0 0 —tanhb
0 q 0 0 1
(D.38)
Obviously, for k =0 the odd subspace decouples from the even one and the
product of the three lowest even eigenvalues is (AOA A2 /m3w§) = — 1/cosh? b,

as derived above.
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For k # O the eigenvalue /~1'{, is nonzero and we obtain
T, 00 B3 A, (mod)® = det M*
=(@*(1 + ¢*)(¢* — tanh ). (D.39)

We next consider the case |[v| —2 = N > 1. By virtue of egs. (D.36a—d), the
equations for n = + N reduce to

|:<N+l;>tanhb+1:|(d1v+g~) Az(dN+gN)

A
[(N_E>tanhb+1:|(d1v—gzv)= P}
p mag

We conclude that the eigenvalues are

Ak = mwé[(

As for k = 0 we take account of the finite mass by putting

(dn — gn)- (D.40)

v+§l~2>tanhb+1:|. (D.41)

A% = mL(| gy +4l), (D42)
where

L) = 0® + y( — 20,) + o3 (D43)
We also define

L°(w) = 0? + yo + wd. (D.44)

We conclude that the prefactor of an orbit of multiplicity p is similar to eq.
(D.26) with an extra product with respect to the Bloch index k and %, replaced
by p¥,. Thus,

2P = < pZo(lr(@)]; n))”z

1/2

p-lyo N
ank—o (prv kl) ) (D45)

TLI1220 L@y 4 i)

where the prime means that in the product of the denominator the eigenvalue
A5=° should be omitted.
Consider now the product

lv]kl;IOL(iprkl) = UL(lw, 70) { ]J (Iwrl)} : (D.46)

We then write the prefactor in the form

.52/(") .JZ/(P)JZ/(P) ‘ (D.47)

2nh
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ﬁ *Uel)| (D.48)

Lo

and

ﬂ(p)=< pFolt,)m* )”2 ITTE=o §=—2z(|wpv+k|)|1/2 D.49)
2 T\ 21hA%, 4% 4949 PoI I — tanhbl(l + ) Pwd

We can, by introducing g, , and v, , as defined in eq. (D.28), write .o/ {? as
follows:

I(—p ) (= py)
I'(—=v)I'(—vy) )

Using the results (D.25) and (D.41) for %, and for A°, we may write o/ as

2\1/2 5
dP = mpRE\'"? wi?
2 5p—2

P =[1 — 2tanh b]!/? (D.50)

2h')) Wy
ITTE=olTe= —2LIpv + kI = p QLIpv + kI — p ]
[1221p~ ¥*(tanh®b)(p — k)k(k tanh b + p)*/?

1/2

(D.51)

Since the five smallest eigenvalues ;1’3 were calculated for zero mass, we must, for
the sake of consistency, in the expression for .« consider — pu, — y/w, to be
very large, leading to

2

p—1
kf_l H Llpy + k| — ] = (/)72 (D.52)

In the same limit we have
2

ur=2p — 2% — p2 — cothb). (D.53)
Y

1

After some algebraic manipulations, we obtain

7P (ﬂ)”z wjtanhb| I'(2p — pcothb)I'(pcothb) |12
2 2hy B p2r2(p) |I(— peoth b)I'(—2p + pcothb)

(D.54)

Let us now introduce the following abbreviations:

y = T3/T = pcothb, p =y /wi. (D.55)
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In the limit of strong damping,
p=2p—y,  —p=2p+(p— 1y,
== —va=(p— 1y, (D.56)

after some manipulations, we obtain for the prefactor

m \'? p'* |I(1+py+2p—y)
AP = — 2R . D.57
<2hv> O )| T+ py— ) (037
Eventually, we introduce
T 2
20=1+py—y=1+—B<L—l> (D.58)
T (DO
whence we may write
9nvg \'2 (1 \? p'? I'2p + 20)
A P(ry) = I D.5
s ( hen > ) I'(p) Tad) (©-9)

as quoted in eq. (4.69) of the text.

Appendix E. Calculations of the decay rate
of a heavily damped object

For orientation, we first review some characteristic features of the multiple orbit
summation problem already considered in section 2.6 and later in section 4.3.
We have

_ > 1

F=7% (- 1)"“A<P>(r1)exp[— ﬁwm)]. (E1)
p=1

However, we do not wish to define I' »(E) directly as done in eq. (2.66). Rather,

we prefer to consider in addition to eq. (E.1) a representation of the form

*dE

F=7% (—1)P+1f0 =

where AP)(E; 1,) has to be so chosen that a steepest descent evaluation of the
energy integral leads to a term-by-term agreement of both series (E.1) and (E. 2).
We will see that there is some arbitrariness in the energy and time dependence of
A“”(E 71), and we may exploit this ambiguity in order to obtain an expression
for A” which is only weakly dependent on energy. This seems to be a reasonable
choice in a steepest descent approximation, where only E-values near the
minimum of [ Et; + %" ‘P(E)] are supposed to contribute.
For orientation, we first note that

SO0 =pL (), =1/p, W PE)=pW(E) (E.3)

APYE; tl)exp{— % [Et, + W‘”(E)]}, (E.2)
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are pairs of Legendre transforms

6‘5;(1) = E(x), A HE)= —1p (E4)

OE
For illustration, we have for a heavily damped object [see eqs. (4.64) and (4.65)]
P (1) = vp1a[3 — (t8/7)%),
W(E) = 3opts[1 — (E/v)*?],
15 = Tg(E/vp)” ', (E.5)

Evaluating the integral in eq. (E.2) by steepest descent, we find that the energy
is implicity given by

T,=T,/P=1g (E-6)
and that

_ 2o\ 112

APYE; 1)) = <—2nhp 352 ) AP(Ty). (E.7)

It is possible to eliminate the energy dependence on the right-hand side of
the relation above by means of egs. (E.5) and (E.6). Thus, one arrives at the
expression (4.73).

In a heuristic way, let us now eliminate all the p-dependence in eq. (E.7). Thus,
we put p = 7, /15 and obtain (p = y*/wj)

= o0y _ e I'(1 + 2ty /tg + (p — )71 /78)
AE) = i) T+ (0 = Draa)

For temperatures close to the crossover temperature 7; ~ 15, we expect that
energies E ~ vg are of importance. Thus, we put 7y = 7; = 15 and obtain

=F(2 + p)
r'(p)

Now, the series (E.2) can easily be summed over. For the sake of consistency, we
also replace #'(E) by the quadratic approximation #5(E) as shown in eq.
(2.77), where for the present case

1Y _2m E.10

kT,) 3 hvg’ (E10)
Proceeding further according to Affleck’s prescription of eq. (2.76), we arrive at
eq. (4.76); whence we obtain [cf. eq. (2.79)]

KT, TQ + p) T, T, vg 1(T, T,)\2
FA="222 T izenfe 22 - 22 B 22
wh ) "~ o\ )P T\ T/ |

(E.11)

(E.8)

AP(E ~ vp) (E9)
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which agrees essentially with eq. (43) of Larkin and Ovchinnikov (1984), and eq.
(46) of Larkin and Ovchinnikov (1992). Note, however, that the strong energy
dependence in eq. (E.8) casts some doubts on the above procedure.

Therefore, we wish to draw attention to the fact that there is a direct way to
calculate A” for E ~ vg. In order to understand the reasoning, we should recall
that the presentation in eq. (E.1) requires different primitive traversal times t,, for
the different periodic orbits of multiplicity p, and that such a flexibility is given
only in the case of a nonlinear potential. On the other hand, the presentation in
eq. (E.2), requires only data of periodic orbits at a given energy, which can also
be obtained in the limit of a harmonic potential. Thus, for E ~ vg and R ~ Ry,
we may represent V' (R) by a quadratic form which is based on the matrix

1 2*V(R)

U® = (E.12)

Then the problem is separable, and putting & = U®, we may single out the
unstable mode w3, <0 from the remaining ones. Then we obtain for the
relevant part of the action

1
FW(E)= - k—TB(E vg), (E.13)

and for the prefactor

1 det(sinh &y 1, /2)
A(1;) = — sinh 7) oSBT /)
(11) = 3 SN0 (@8, 71 /2) G Ginb gty /2)

Turning now our attention to the Caldeira—Leggett model (1981, 1983, 1984),
we find wp, =i, w, (w; = 2nkT/h), where

(E.14)

Az = (o) (=37 £ [37* + w3)). (E.15)
Concerning the stable modes, we need
Ay 2= (1) (= 3y £ [3y? — w3]'?). (E.16)

Thus, we obtain
sin 4, ﬁ [1— Ay/n]{1 — A,/n]
2nh |,= 2o [1— Ay/n][1 — 43/n]

_sindy I'(1—2A)I'(1 - 43)
©2nh T(1— A)T(1 — Ay)

Z(TI):

(E.17)

We observe that (i) A depends only on 74, and neither on the multiplicity nor on
the energy, as to be expected for a harmonic potential, (ii) in the heavy damping

limit, 4(t3) > A(vs), as given by eq. (E.8) and (iii) that A(c,) together with
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W1(E) leads to the well-known expression

f_kj r(—2)ra —4,) .
T h I'(0— A1 —A4,)

This expression agrees with eq. (47) of Larkin and Ovchinnikov (1984).

Note also that I' of eq. (E.18) can be obtained from the imaginary part of the
free energy calculated from the trivial orbit R = Ry if an additional factor Tg/T
is inserted as shown in eq. (2.74).

Since the I'-functions depend very sensitively on the arguments, the approx-
imations in the transition from eq. (E.8) to eq. (E.9) may not be so good. Thus, we
have introduced in section 4.3 the function ¢(z) according to eq. (4.75), which, in
terms of the variable

t=(1+ 4272 (E.19)

can be expressed through the Legendre function (Abramowitz and Stegun 1968)
as follows:

—on/kT, (E.18)

20 + 1

g P Paea () = Py (0], (E.20)

$D=—0

Using standard numerical routines for the Legendre function, Ludviksson
(1989) has integrated eq. (4.74) numerically, with some of the results given in
Table 1.
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