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1 Introduction 

In the following chapter, we introduce healthcare operations management and frame the 

problem of our work before providing an outline of the structure of the thesis. 

1.1 Healthcare operations management and problem definition 

The cost of healthcare has outgrown economic growth in all industrialized countries in recent 

years (OECD Publishing 2015). This trend is expected to continue in the future, while an 

unfavorable demographic development might even increase healthcare cost as percent of the 

gross domestic product. On the one hand, an aging population leads to increasing demand for 

healthcare; on the other hand, the number of individuals financing the healthcare system is 

declining. Consequently, societies in general and healthcare providers in particular are faced 

with increasing economic pressure. 

Across all member countries of the Organization for Economic Co-operation and Development 

(OECD), hospitals account for approximately one third of total healthcare expenditures (OECD 

Publishing 2013). The thesis at hand addresses this cost block, and in particular its two largest 

single cost items, personnel costs and logistics-related costs (Poulin 2003, Ross & Jayaraman 

2009). It is supposed that costs can be reduced while maintaining or even improving the quality 

of patient care (Jarrett 1998). 

Optimization of personnel costs in hospitals has been identified as one key cost containment 

lever. Academics and practitioners alike acknowledge the potential (Brucker et al. 2011). While 

sophisticated personnel scheduling techniques have been developed for a variety of industries, 

healthcare is clearly the largest field of application for personnel scheduling. Within healthcare, 

most attention has been paid to nurse scheduling (Van Den Bergh et al. 2013). Physician 

scheduling has received far less attention in the past, but the increasing number of publications 

in recent years signals growing interest from academia (Brunner et al. 2009, Erhard et al. 2016). 

In contrast, hospital logistics management has not been given high priority in the past, 

especially when considering the high relevance of logistics optimization in other industries, 

such as manufacturing. Nevertheless, research attention has grown considerably in recent years 

(see Chapter 2). One major research stream examines the application of sophisticated logistics 

concepts in hospitals. 

The thesis at hand addresses the introduction of a sophisticated logistics concept in hospitals. 

The concept comprises the introduction of a new type of employee, referred to as logistics 

assistant to take over tasks unrelated to patient care and relieve medical staff of activities 
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outside their core business. We present integrated shift and task scheduling problems that may 

arise in the course of the introduction of the new employee type. 

Shift scheduling typically comprises an iterative process that starts with demand modeling 

based on predefined task schedules or staffing level requirements that are initially derived from 

the patient mix and their needs in terms of care (see Chapter 4 and Ernst et al. 2004). Often, 

demand is determined based on historical data and fixed inputs. Previous research suggests that 

replacing fixed inputs with integrated, multiple decision-making holds promising optimization 

potential in personnel scheduling (Van Den Bergh et al. 2013). 

In the work at hand, we integrate shift and task scheduling into one holistic model. We derive 

the resource supply in the shift scheduling part of our work and define the resource demand in 

the task scheduling part. In both areas, we assume a high degree of flexibility. On the resource 

supply side, we incorporate flexibility in the employees' shift schedules. Unlike traditional shift 

scheduling approaches, there are no explicit shift patterns to be scheduled. Instead, we rely on 

highly flexible implicit shift scheduling. On the demand side, we schedule tasks in order to 

minimize peaks and create demand patterns that fit well with the available resources. The work 

at hand addresses two optimization problems that occur in the course of the introduction of 

logistics assistants, namely the strategic workforce sizing problem and the tactical shift and task 

scheduling problem. For both optimization problems, we present optimal solution procedures, 

i.e., a column generation algorithm and a branch-and-price approach. Throughout this work, we 

aim to leverage the flexibility incorporated in both shift scheduling and task scheduling to find 

optimal solutions. 

Our goal is to answer the following research questions with this thesis: 

(1) Which areas of hospital logistics management have been addressed by the previous 

literature and which areas are most promising for future cost optimization? 

(2) What is the optimal number of logistics assistants in hospitals when fully leveraging 

the flexibility incorporated in shift and task scheduling? 

(3) What is the impact of flexibility in shift and task scheduling on the optimal number of 

logistics assistants? 

(4) What are optimal shift and task schedules when workers are employed with different 

degrees of flexibility and at different costs? 
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1.2 Structure of the thesis 

The thesis at hand comprises three major chapters, apart from the introduction (Chapter 1) and 

the conclusion (Chapter 5). Research question (1) is addressed in Chapter 2. It provides a 

literature review on material logistics in hospitals. We present and discuss publications along 

four research streams and work out future research directions. Particular focus is given to 

publications that apply quantitative methods. In Chapter 3, we address research questions (2) 

and (3). We introduce the integrated shift and task scheduling problem that arises when 

introducing logistics assistants. In particular, the chapter addresses the strategic workforce 

sizing problem. We present a column generation-based solution approach to solve the problem. 

We then address the subsequent tactical scheduling problem in Chapter 4 to address research 

question (4). There, we aim to define shift and task schedules for a given number of employees 

with varying degrees of flexibility and costs. A branch-and-price approach to solving the 

problem is presented. The final Chapter 5 provides the conclusion and presents overarching 

future research opportunities. In the following, we provide a more detailed overview of the three 

key chapters of this work. 

1.2.1 Material logistics in hospitals: A literature review 

Hospital logistics management has been identified as one key cost containment lever to cope 

with steadily increasing healthcare costs in industrialized countries. In the countries of the 

OECD, healthcare expenditures have grown at an average of 4% per year between 2000 and 

2009 (OECD Publishing 2015). The purpose of Chapter 2 is to provide an overview of the state 

of the art of research on material logistics management in hospitals, whereby particular focus is 

given to publications that apply quantitative methods. The contribution of this chapter is 

threefold: First, we provide research guidance by categorizing the literature and identifying 

major research streams. Second, we discuss applied methodologies; and third, we identify future 

research directions. We take a systematic approach to identify the relevant literature from 1998 

to 2014. Applicable publications are categorized thematically and methodologically, and future 

research opportunities are identified. In total, this work identifies and discusses 145 

publications. The literature is categorized into four research streams, i.e., 

(1) supply and procurement, 

(2) inventory management, 

(3) distribution and scheduling, and 

(4) holistic supply chain management. 
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The use of optimization techniques is steadily growing importance. The number of related 

publications has continually grown and has peaked over the last three years in scope. 

Optimization has been successfully applied in research streams (1), (2), and (3). Research 

stream (4), holistic supply chain management, comprises a rather qualitative research field of 

literature dealing with supply chain management issues. 

This chapter is based on Volland, Fügener, Schoenfelder, et al. (2016)
1
. 

1.2.2 A column generation approach for strategic workforce sizing 

In order to cope with steadily increasing healthcare costs, hospitals introduce a new type of 

employee, referred to as logistics assistants, to take over logistical tasks from specialized nurses. 

As described in the introduction, hospitals are faced with the task of dimensioning their number. 

We present a mixed-integer program that allows the optimal number of logistics assistants to be 

defined, given predefined task requirements. We combine flexible shift scheduling with a task 

scheduling problem, incorporating flexibility both in terms of shift and task scheduling in order 

to define the minimum number of workers. We present a column generation-based solution 

approach that finds optimal solutions, and compare decomposition approaches with one and two 

subproblems. Neither the general model nor the solution approach are limited to logistics 

assistants but can also be applied to other problem settings in the healthcare industry and 

beyond. The approach is tested with 48 problem instances in total and compared against 

benchmarks. As part of our solution approach, we present a new lower bound for staff 

minimization problems with an unknown number of available workers. We show that flexibility 

in shift and task scheduling can lead to a decrease of 40 to 49% of the required workforce, 

compared to the non-flexible case. 

This chapter is based on Volland, Fügener & Brunner (2016)
2
. 

1.2.3 A branch-and-price approach for tactical shift and task scheduling 

We present an integrated optimization model that simultaneously performs shift and task 

scheduling. Problems of this type occur, for example, in the healthcare industry when logistics 

assistants are introduced in hospitals to take over tasks unrelated to patient care from medical 

staff. In our model, we simultaneously schedule flexible shifts relying on an implicit 

formulation and tasks respecting start time windows and precedence constraints. The goal is to 

                                                      

1
 http://dx.doi.org/10.1016/j.omega.2016.08.004 

2
 http://dx.doi.org/10.1016/j.ejor.2016.12.026 

http://dx.doi.org/10.1016/j.omega.2016.08.004
http://dx.doi.org/10.1016/j.ejor.2016.12.026
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define shift and task schedules for a given number of employees. In this tactical optimization 

problem, we consider different worker categories that are employed under different shift 

parameters and work at different costs. We propose a branch-and-price solution approach that 

relies on two subproblem types, namely shift and task scheduling. In shift scheduling, we 

consider two worker categories, flexible and inflexible workers. As part of the presented 

solution approach, we introduce a new network flow formulation for the shift scheduling 

subproblem that is solved with a shortest path-labeling algorithm. We present a numerical study 

that demonstrates the superiority of the new subproblem formulation and illustrates the validity 

of the branch-and-price approach. 
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2 Material logistics in hospitals: A literature review 

Chapter 2 introduces material logistics management in hospitals by providing a literature review 

on previous publications in this field of research. 

2.1 Introduction 

In the countries of the OECD, total healthcare expenditures have grown at an average of 4% per 

year from 2000 to 2009 (OECD Publishing 2015), with hospitals accounting for 29% of total 

healthcare expenditures (OECD Publishing 2013). Of hospital costs, more than 30% are linked 

to logistics activities (Nachtmann & Pohl 2009). This makes logistics costs the second largest 

cost block after personnel costs (Poulin 2003, Ross & Jayaraman 2009). Material management 

and logistics have not been given high priority in hospital management research in the past 

compared to other industries. Possible reasons are the high complexity of healthcare supply 

chains and their merely supporting role in the foremost objective of hospital management, i.e., 

effective treatment of patients (Beier 1995). However, in the last 15 to 20 years, logistics has 

been identified as one key lever in managing healthcare costs (Dacosta-Claro 2002, De Vries 

2011). The research suggests that efficient logistics management can eliminate around half of 

the logistics-related costs in hospitals (Poulin 2003). 

The potential of hospital logistics optimization within the healthcare sector is considered 

significant by academics and practitioners alike. The most obvious upside from optimizing 

material logistics is that cost reductions do not directly affect the quality of patient care (Jarrett 

1998). Currently, logistics-related activities are often performed by medical staff, taking away 

time from patient care activities. In a recent survey among registered nurses in the U.S., time 

wasted on activities other than patient care, such as restocking supplies, was the major driver 

that negatively impacted nurses' time at the bedside (Jackson Healthcare 2014). Relieving 

nurses from activities not related to patient care can thus improve the quality of care. 

The aim of this chapter is to present the state of the art of research on material logistics 

management in hospitals. In the discussion, we set a distinct focus on publications that apply 

quantitative methods. Relevant papers are discussed in detail, e.g., by providing tables with 

deep-dive analyses on the applied methodologies. Our contribution is threefold: First, we 

provide research guidance by categorizing the literature and identifying major research streams. 

Second, we discuss applied methodologies; and third, we identify future research directions. 

There exist rather general literature reviews on healthcare operations research and operations 

management (e.g., Rais & Viana 2011, Hulshof et al. 2012, Fakhimi & Probert 2013). 

Additionally, there are a number of reviews on supply chain management (SCM) in healthcare, 

e.g., De Vries & Huijsman (2011), that focus on the question of whether or not there are 
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parallels between the industrial sector and healthcare services. Dobrzykowski et al. (2014) 

thematically assess a more general scope than this work, as they include operations management 

topics like service management, planning, and scheduling. Furthermore, they limit their review 

to publications from only seven U.S. journals and review a different time period (1982 to 2011). 

Consequently, to the best of our knowledge, there is currently no comprehensive review of 

material logistics in hospitals with a focus on quantitative methods. This chapter fills that 

research gap. 

The remainder of this chapter is structured as follows: Section 2.2 presents the methodology of 

the literature review and introduces a framework to cluster the relevant literature thematically. 

Section 2.3 provides a quantitative overview of topics, applied methodologies, and the regional 

coverage of assessed publications, as well as an overview of all publications. Sections 2.4 to 2.7 

discuss the literature along this framework and point out future research potential. We present a 

conclusion and a summary of research opportunities in the final section of this chapter. 

2.2 Methodology 

Scope. This chapter reviews all relevant publications regarding the logistical activities involved 

in handling physical goods in hospitals. Physical goods comprise all items that are directly 

linked to patient care, such as pharmaceuticals, medical consumables, food, laundry, sterile 

items, laboratory samples, and waste, etc. Pharmaceuticals represent 70% to 80% of the supply 

costs, while medical-surgical materials account for 20% to 25% (Rego et al. 2013). Products 

unrelated to the care of patients, such as office supplies or mail, are excluded. Further, although 

partly included in logistics activities, flow of information is excluded. Due to its distinct 

characteristics, such as the irregularity of supply and the lack of comparability with the items 

mentioned above, blood products are out of scope of this review. Comprehensive reviews on 

SCM of blood products are available in the literature (Beliën & Forcé 2012, Rossetti et al. 

2012). Considering the supply chain of goods from manufacturing to use, this review starts with 

the supply chain partners one step upstream of the hospital, i.e., typically the hospital-supplier 

interface. One exception is Subsection 2.4.4, where we shed light on the interface between drug 

manufacturers and wholesalers and the implications for hospital purchasing. Also, reverse 

logistics are not in particular scope of this chapter; however, we refer to Srivastava (2008) for 

designing a reverse logistics network. Logistics activities associated with outpatient treatment, 

like home delivery of meals or outpatient medication, are out of scope. As an example, Liu et al. 

(2014) present related work. Our restriction of the scope is in line with the existing literature, as 

hospital-internal logistics activities are the major source of competitiveness within healthcare 

material management (Rivard-Royer et al. 2002, Landry & Philippe 2004). Personnel planning 



Material logistics in hospitals: A literature review 8 

 

and scheduling that is not directly related to logistics activities, as well as bed and patient 

transportation, are out of scope of this chapter. 

Identification of publications. In order to identify the relevant literature, we undertook a five-

step approach. First, we searched Google Scholar and Science Direct for relevant keywords, 

e.g., "hospital" and "logistics". Second, we performed a forward and backward search of the 

most relevant publications. Third, we developed the categorization framework presented below 

and classified the literature accordingly. Fourth, we performed another Google Scholar and 

Science Direct search applying relevant key words within the respective category. Fifth, we 

concluded the search process with a final forward and backward search within those 

publications. We limit our research to English articles published in peer-reviewed journals. 

Books, theses, PhD dissertations, conference articles, and working papers are neglected. Our 

focus is on publications after the year 1998 until year-end 2014. Of the papers published earlier, 

only the most often cited ones are included. A review of previous work is included in Jarrett 

(1998). 

Literature classification framework. The literature is thematically classified along the 

framework in Figure 2.1. We identify four major research topics in the literature. Categories (1) 

to (3) comprise the supply chain that material follows before being used in hospitals. (1) Supply 

and procurement contains the literature regarding the purchasing of material as well as all 

activities related to the hospital-supplier interaction, for example outsourcing and means of 

supplier collaboration. Furthermore, the literature on demand forecasting is presented in this 

section. (2) Inventory management includes the literature on inventory policy, location 

planning, as well as classification schemes and practice-oriented inventory publications. Drug 

inventory management and drug shortages are also discussed. (3) Distribution and scheduling 

covers all material-linked distribution activities within and outside the hospital. In research topic 

(3), we focus on the actual transportation or distribution rather than the location of the goods, as 

well as on the handling of sterile medical devices. (4) Holistic supply chain management takes a 

comprehensive and mostly qualitative approach to optimizing the supply chain. 

All four research topics including their subtopics are presented and discussed. The focus is on 

areas where quantitative methods are applied; however, for the sake of completeness and to 

provide insights on related research directions, the remaining research areas are also presented. 

The literature search yields 145 publications that are categorized along the presented 

framework. Where multiple categories are addressed, the publication is assigned to the most 

relevant category. Six methodological categories are distinguished: optimization (containing an 

operations research (OR) model), simulation/scenario analysis, empirical research, literature 
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review, theory/conceptual (introducing or discussing a new theory or concept), and case study 

(findings from practical research projects, etc.). 

 

Figure 2.1: Literature classification framework 

2.3 Publication meta-analyses 

The subsequent section provides a quantitative assessment of the identified publications. 

Publications in this section are assessed from three perspectives: thematic, methodological, and 

regional. Thereafter, an overview is provided and research opportunities are identified. 

Thematic categorization. We generally limit the scope to publications published from 1998 

onwards. However, eight earlier publications are included due to their pivotal importance for the 

relevant literature streams. The development of publications over time and the thematic scope 

along our review framework is provided in Figure 2.2. The different shadings reflect the 
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Figure 2.2: Thematic categorization 

The number of publications has grown considerably over time. The increasing relevance of 

hospital material logistics in academia is indicated by the fact that the number of publications 

nearly doubled between 2009 to 2011 and 2012 to 2014 . The categories with the highest growth 

rates over the last years are (3) distribution and scheduling and (2) inventory management. 

These two categories combined account for an increase in publications from 14 between 2009 

and 2011 to 34 between 2012 and 2014. Over the entire period, the majority of publications, 66 

papers, were published in (2) inventory management. 

Methodological categorization. The methodologies applied in the reviewed publications are 

presented in Figure 2.3. In the chart, the color of the shapes indicates the quantitative nature of 

the applied methodologies. Over the period, the largest number of papers were published in the 

field of case studies, with 47 publications, and theory/conceptual, with 32 publications. The 

category of optimization experienced a large increase in publications from 4 in 2009 to 2011 to 

15 in 2012 to 2014. This indicates a further evolving interest in the field of operations research 

on hospital materials management. The second quantitatively-focused category, 

simulation/scenario analysis, also peaks in the latter time segment, underlining the importance 

of quantitative research in hospital materials management. 
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Figure 2.3: Methodological categorization 
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publications worldwide. Within Europe, the U.K. and the Netherlands lead, with nine and six 
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Figure 2.4: Regional coverage of publications 

Overview of publications. A thematic and methodological overview of all publications is 

presented in Table 2.1. We determine that optimization techniques are mostly applied in (2) 
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2.4 Literature on topic (1) supply and procurement 

A natural approach to minimizing material costs is to reduce the actual purchasing costs. Supply 

chain costs constitute a major part of hospitals' operating expenses. For example, U.S. hospitals 

spent $27.7B on drugs alone in 2009 (Doloresco et al. 2011). Hospital material management 

literature focuses mainly on four areas. The first is bundling purchasing volumes to increase 

purchasing power. This stream of literature chiefly discusses hospital group purchasing 

organizations (GPOs). Hospitals strive to increase their purchasing power against suppliers by 

combining their respective purchasing volumes. The second stream of literature primarily 

discusses hospital inventory outsourcing approaches, e.g., stockless inventory systems or 

vendor-managed inventory (VMI), with regard to supplier integration. The third subsection 

offers an overview of demand forecasting, which is of high relevance for the hospital-supplier 

interface, while the last subsection sheds light on specifics of the upstream pharmaceutical 

supply chain and potential implications for hospital buyers. All four streams are presented 

below. 

2.4.1 Purchasing 

Hospitals are mostly organized in GPOs, i.e., voluntary alliances aggregating hospitals' 

purchasing volumes. In the U.S., 90% to 98% of hospitals are organized in purchasing alliances 

(Burns & Lee 2008). GPOs help to reduce material costs in two ways. First, they allow 

economies of scale to be leveraged due to purchasing volume bundling. Second, they enhance 

price transparency and create price ceilings through framework contracts in which agreed-upon 

price bands (Burns & Lee 2008). A qualitative comparison of advantages and disadvantages of 

GPOs is provided by Burns & Lee (2008) and Rego et al. (2013). In line with the remainder of 

this chapter, publications containing optimization models are displayed separately (see Table 

2.2) and discussed in depth. 

Rego et al. (2013) present a decision support tool helping hospital purchasing managers identify 

and assess alternative GPO forms. For a defined group of hospitals willing to cooperate, the tool 

presents the number, size and composition of GPOs, and a financial assessment. A 

metaheuristic comprised of a two-module hybrid variable neighborhood search (VNS) and tabu 

search is applied to solve the optimization problem. The tool allows alternative cooperative 

purchasing strategies to be evaluated and is applicable to a wide range of purchasing groups. 

Ross & Jayaraman (2009) focus on the single-hospital level. They assess how products should 

be bundled when placing orders at suppliers. They focus particularly on bundling new products 

with refurbished products, an option several U.S. healthcare providers have recently started to 

explore in order to reduce material costs. Examples of refurbished products include investment 
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goods such as medical devices or electric beds, which are bundled with (new) consumable 

products. The authors develop a mixed-integer program (MIP) aiming to minimize the total 

purchasing costs. They build a heuristic based on simulated annealing (SA) to find near-optimal 

purchasing strategies, i.e., which products to buy from which supplier, and decide whether to 

conduct a bundled or single-item purchase. Potential item surpluses in bundles exceeding the 

buyer's requirements are minimized in the objective function (apart from purchasing costs). Hu 

& Schwarz (2011) assess the general role of GPOs in the healthcare supply chain and their 

impact on pricing mechanisms with a Hotelling duopoly model. They find that GPOs indeed 

achieve lower prices for healthcare providers through increased competition among 

manufacturers. However, they also point out downsides of GPOs like reducing incentives for 

manufacturers to innovate and enhance their existing product portfolio. 

Table 2.2: Purchasing publications containing optimization models 

 

Non-optimization-focused publications include the following: Oumlil & Williams (2011) 

discuss strategic purchasing alliances in the healthcare sector in terms of both organizational 

and personal factors. Organizational factors include the hospitals' type and size, while personal 

factors comprise, e.g., the education and experience levels of purchasing managers. They find 

that selected demographic characteristics of purchasing managers are linked to decisions on 

alliances. For instance, job experience and the success of the alliance are related. Burns & Lee 

(2008) provide an empirical study on the utilization, services, and performance of hospital 

purchasing alliances from the hospital material management's point of view. The authors find 

that purchasing alliances achieve cost reduction by lowering product purchasing prices, 

especially for commodity and pharmaceutical products. They stress that alliances further reduce 

transaction costs, as contracts are jointly negotiated. However, cost-benefit realization is 

hindered for service products or when physicians prefer certain items. Burns & Lee (2008) 

further present several literature streams – not necessarily related to operations management – in 

the field of purchasing alliances, such as pooling alliances and value chain alliances. 

Another empirical study states that purchasing groups are subject to lifecycle stages (Nollet & 

Beaulieu 2003). The authors identify critical characteristics influencing the development of 

Publication Problem description Model 

characteristics

Objective function Type of 

goods

Hu & Schwarz (2011) Role of GPOs in healthcare supply chain and 

cost reduction potential

Hotelling duopoly 

model

Minimize costs Not 

specified

Rego et al. (2013) Decision support to set number of GPOs,  size 

and composition for hospitals willing to 

cooperate

Metaheuristic 

(hybrid VNS/ tabu-

search)

Minimize hospitals' shared 

supply chain costs

Not 

specified

Ross & Jayaraman (2009) Purchasing strategy for bundled refurbished 

medical products 

Mixed-integer 

problem solved with 

SA heuristic

Minimize total acquisition 

costs of purchasing plan

Durable 

items (new & 

refurbished)
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purchasing groups. These include payers' intervention, the nature of benefits, procurement 

strategy, the nature of relationships with suppliers, structure, and resources. They further 

develop a lifecycle model to show the evolution of GPOs and the changing importance of these 

characteristics. 

Regarding future research opportunities in terms of methodology, Ross & Jayaraman (2009) 

underline the combinatorial complexity of practical problems in healthcare logistics, marketing, 

and purchasing. They propose the development of heuristics in order to cope with large problem 

instances. Generally, there seems to be a bias in this research stream towards manufacturing 

industries; thus, healthcare in particular provides further research opportunities (Oumlil & 

Williams 2011). Other potential research fields include the assessment of performance 

determinants of GPOs to facilitate comparisons across purchasing alliance characteristics, e.g., 

in terms of size or management. Such research would furthermore allow identification of the 

potential to differentiate between GPOs (Burns & Lee 2008). Also, assessing outsourcing 

activities compared to GPOs seems worthwhile for future research. Past publications indicate 

that the attractiveness of outsourcing logistics is positively correlated to hospital size (Oumlil & 

Williams 2011). 

2.4.2 Outsourcing and supplier collaboration 

It is widely accepted that outsourcing logistics activities to third-party providers can generate 

significant efficiency advantages for both parties due to economies of scale and scope, reduction 

of fixed costs, and a focus on core competencies (Azzi et al. 2013, Iannone et al. 2014). There 

are many general studies on logistics outsourcing, but literature concerning healthcare is rather 

scarce, which is in line with the overall tendency in the healthcare sector to embrace new SCM 

practices only slowly (McKone-Sweet et al. 2005). However, outsourcing inventory decisions to 

healthcare providers has recently gained importance, especially in practice, where outsourcing 

concepts are widely applied (Nicholson et al. 2004). Kim (2005) stresses the potential of VMI in 

the healthcare sector. The author finds that hospitals can significantly reduce inventory stock. 

However, he states that supply chain integration might be hindered by the absence of standards 

for information sharing and a lack of participation of pharmaceutical manufacturers in 

collaborations. 

In order to assess outsourcing opportunities, scenario modeling is applied in several 

publications. Azzi et al. (2013) consider different outsourcing options for a healthcare network 

in central Italy, comprising several hospitals and one centralized logistics hub. The authors 

evaluate three scenarios with varying outsourcing degrees both qualitatively and quantitatively: 

logistics self-management, partial logistics outsourcing, and total logistics outsourcing. The 
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qualitative assessment is mainly based on an extensive literature review, while the quantitative 

assessment of outsourcing options is performed using a system dynamics simulation. The 

authors state that logistics outsourcing is often the most economical option for different sets of 

distribution network layouts. Van Donk (2003) develops a tool to assess several potential supply 

chain designs between a hospital and its supplier of medical and non-medical gases. Nicholson 

et al. (2004) compare inventory costs of an in-house three-echelon distribution network versus 

an outsourced two-echelon distribution network (i.e., direct delivery to the care unit) for non-

critical medical items. For a detailed analysis of this paper, see Subsection 2.5.1. 

There is a large stream of literature presenting and discussing case studies without quantitative 

methods or simulation/scenario analyses. One example that is thematically linked to the 

previously discussed publication is the work by Rivard-Royer et al. (2002). They present a case 

study in a Canadian hospital that applies a hybrid stockless inventory management system. 

Hybrid means that suppliers have two options to deliver to the hospital: Either they supply 

goods to the hospital's central warehouse, which is the traditional approach, or they pack 

products according to the needs of the respective care unit and deliver direct. The authors find 

that the hybrid model may yield marginal benefits compared to the traditional approach. They 

also show that different forms of packaging are a significant source of cost savings. This 

packaging issue is analyzed in more detail in the publication of S. Kumar et al. (2008). The 

authors empirically assess whether package design plays a significant role in hospitals' 

purchasing decision-making processes. They find that packaging and environmentally friendly 

supplies currently do not play a pivotal role in purchasing decisions in the U.S. Further case 

studies regarding VMI concepts in the hospital setting are presented in Mustaffa & Potter 

(2009), Bhakoo et al. (2012), Guimarães et al. (2013), and Matopoulos & Michailidou (2013). 

All publications provide a good overview of the overall concept as well as its application in the 

hospital setting. Bhakoo et al. (2012) state that VMI has been widely ignored in the healthcare 

industry. They qualitatively assess different collaborative arrangements between hospitals and 

pharmaceutical suppliers, such as the "ward box", a variant of VMI where hospitals place direct 

orders for required items in a specific ward and the suppliers deliver to the ward without taking 

the detour to a central warehouse. Remarkably, they find that hospital material managers are 

more willing to undertake collaborative arrangements along the supply chain than their 

suppliers. Guimarães et al. (2013) present an assessment of VMI with regard to its benefits, 

risks, barriers, and enablers. They further conduct a case study of a multi-location hospital that 

aims to create transparency along its value chain. Matopoulos & Michailidou (2013) study the 

application of co-managed inventory (CMI), a form of VMI where hospitals remain partly 

responsible for inventory. The authors present a case study for a Greek hospital. Mustaffa & 

Potter (2009) assess a private hospital in Malaysia and its supplier relations and identify two 
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issues: urgent orders and stock availability at the wholesaler. Based on their findings, they 

propose the introduction of a VMI setup in order to cope with these difficulties. Bhakoo & Chan 

(2011) summarize complexity factors around pharmaceutical healthcare supply chains and 

present factors that hinder the implementation of e-business processes in the procurement area 

of healthcare supply chains: lack of consistency, poor data quality, and the global nature of 

supply. 

Comparable to VMI approaches are consignment agreements in the hospital sector, where 

ownership of goods remains with the suppliers until they are consumed. This approach is mostly 

applied to expensive items, such as implants (Epstein & Dexter 2000). Compared to VMI 

approaches, recent literature on consignment agreements is rather scarce and focuses on case 

studies (Bendavid et al. 2010, Bendavid et al. 2012). The authors present an RFID-based 

traceability system for consignment and high-value products. Compared to other systems in the 

market, such as RFID-enabled cabinets or smart shelves, the system is rather simple and has 

lower technological requirements. 

One obvious future research area is the extension of the outsourcing degree from VMI, where 

suppliers take over responsibility for hospitals' inventories, towards just-in-time (JIT) delivery. 

JIT means that suppliers provide goods to point-of-use locations in hospitals without 

intermediate buffer inventories. There seem to be some obstacles to the implementation of JIT 

concepts in hospital supply, however. Identifying the underlying reasons and providing ideas on 

how to overcome those difficulties could be an interesting future research field. For a continued 

discussion on the general applicability of JIT, please refer to Subsection 2.7.2. Also, as 

mentioned above, the availability of information across the supply chain might obstruct the 

applicability of more integrated supply chain concepts. Identifying ways to increase data 

transparency while respecting intellectual property rights and legal constraints might hold future 

research opportunities. Another potential research area could be the application of optimization 

techniques in outsourcing. So far, optimization models have not been applied in this research 

field. Potential questions include determining the characteristics of products that could be 

outsourced or defining the optimal degree of outsourcing, i.e., determining which product 

categories are appropriate for outsourcing. 

2.4.3 Demand forecasting 

One major obstacle for a better integration of hospitals and their suppliers is the unpredictable 

nature of hospital demand. Numerous researchers argue that the patient mix and the resulting 

demand for materials is very hard or impossible to predict (Haijema et al. 2007, Little & 

Coughlan 2008, Bailey et al. 2013, Cruz & Marques 2013, Hof et al. 2015). However, as 
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contracts with suppliers occasionally build on minimum purchase quantities, accurate demand 

forecasting is of high relevance for hospital purchasing managers. Brennan (1998) stresses the 

importance of regular demand forecasts based on clinical guidelines linking patient groupings' 

requirements with the resulting materials demand. To tackle unreliable resource demand 

predictability, Varghese et al. (2012) apply demand forecasting algorithms. Haavik (2000) 

stresses the importance of sharing hospital demand information with suppliers, e.g., by 

implementing VMI software able to forecast demand and placing orders with suppliers 

accordingly. Danas et al. (2002) reduce demand uncertainty by bundling several point-of-use 

inventory locations to one large virtual inventory. For further reading, we refer to Jack & 

Powers (2009), who provide a literature review on demand management and capacity 

management in healthcare services, and to Narayana et al. (2014), who investigate the redesign 

of the pharmaceuticals supply chain, not limited to hospitals. Improving forecasting 

mechanisms for hospital demand seems to hold worthwhile future research opportunities. 

2.4.4 Upstream supply chain 

In this subsection, we offer a brief overview of changes to the upstream drug supply chain, i.e., 

the interface between drug manufacturers and wholesalers. We specifically point out one aspect 

that has an impact on hospital pharmacies. 

Starting in the year 2005, the payment and distribution scheme of the U.S. pharmaceutical 

supply chain went through a significant transition. Drug manufacturers and wholesalers changed 

their collaboration model from a buy-and-hold (BNH) to fee-for-service (FFS) system (Iacocca 

et al. 2013). In the BNH scheme, one of the wholesalers' major revenue sources was to speculate 

on drug price increases. When wholesalers held high stock levels and manufacturers increased 

their prices, wholesalers would pass the higher price on to their buyers, namely hospitals 

pharmacies. Apart from high stock levels, this scheme resulted in several other disadvantages, 

such as considerable fluctuation in wholesalers' order quantities, revenue losses for drug 

manufacturers, and unstable and unpredictable wholesaler revenues (Zhao et al. 2012). In the 

FFS scheme, however, the wholesalers agree to reduce or eliminate drug investment buying in 

return for fees paid by drug manufacturers to hold inventory and fulfill their distribution role 

(Iacocca et al. 2013). According to Fein (2007), the FFS scheme comes with two major threats 

for hospitals: First, the wholesalers' discount range is reduced as they share detailed order, 

inventory, and shipment data with drug manufacturers. This reduces their volume buying 

potential and, consequently, their discount range. Second, as inventory levels at wholesalers are 

reduced, the threat of drug shortages is significantly higher in the new scheme (see Subsection 

2.5.6). 
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Table 2.3: Upstream supply chain publications containing optimization models 

 

In this research area, two publications might be of interest for hospital pharmacy buyers (see 

Table 2.3). Zhao et al. (2012) investigate the design and benefits of FFS contracts and derive 

implications for inventory policies and their parameters for drug manufacturers and wholesalers. 

Iacocca et al. (2013) compare the differences between the two schemes and a third payment and 

distribution scheme, the direct-to-pharmacy (DTP) agreement, where wholesalers manage drug 

distribution and inventory for a fee, but the manufacturers remain the owner of the drug until it 

reaches the point of use. As the focus of the presented publications lies mostly on the 

manufacturer-wholesaler interface, we believe that future research should focus on the explicit 

implications for hospital buyers. 

2.5 Literature on topic (2) inventory management 

While the management of inventory systems has been widely discussed in the industrial context, 

healthcare managers have traditionally paid little attention to the management of inventories 

(Nicholson et al. 2004, De Vries 2011, Kelle et al. 2012, Rossetti et al. 2012, Guimarães et al. 

2013). However, in recent years, the management of inventories has been identified as one key 

lever to realize efficiency improvements without negatively affecting the patient care. Scholars 

estimate that 10% to 18% of hospitals' net revenues are spent on inventory costs (Jarrett 1998, 

Nicholson et al. 2004). Hospitals in the U.S. and in France hold an average amount of $4,000 

and $5,720 per bed, respectively, in medical supplies alone (Aptel & Pourjalali 2001). 

In hospitals, the distribution of goods is typically designed as a multi-echelon inventory system. 

A central warehouse receives goods from suppliers. The central warehouse is commonly closely 

connected to the central pharmacy, being in charge of pharmaceuticals handling and the 

production of perishable drugs, e.g., intravenous fluids. The central warehouse regularly 

delivers to the point of use inventories that are typically located close to patient care locations 

(see Figure 2.5; similar figures may be found in Rivard-Royer et al. (2002) and Bijvank & Vis 

(2012)). Apart from this "traditional" method, two other goods distribution systems are typically 

applied in practice. In the semi-direct delivery, the suppliers skip the central warehouse and 

deliver directly to the point-of-use location. The third approach, direct delivery, is closest to JIT, 

meaning that the supplier takes responsibility for reacting to patient demand and refilling 

Publication Problem description Model 

characteristics

Objective function Type of 

goods

Iacocca et al. (2013) Comparison of effectiveness of buy-and-hold, 

fee-for-service, and direct-to-pharmacy 

contracts

Mathematical 

programming

Maximize profits Pharmaceut.

Zhao et al. (2012) Comparison of investment-buying and fee-for-

service setup, definition of optimal policies 

and policy parameters

Multiperiod, 

stochasitc inventory 

problem

Maximize profits Pharmaceut.
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supplies at the point-of-use locations (Aptel & Pourjalali 2001). Scholars distinguish between 

the hospital-external and hospital-internal supply chain. While external supply chain integration 

efforts receive most of the attention in the area of SCM, the internal supply chain remains the 

weak point of the chain as a whole (Landry & Philippe 2004). 

 

Figure 2.5: Illustrative supply chain 

Regarding the setup of hospital inventory systems, several studies argue that hospital inventory 

management is to some extent comparable to that of other industries. Thus, proven concepts can 

be transferred to the healthcare industry. Due to the storage space constraints at the point of 

delivery, i.e., the care unit, laboratory, or operating theater, Little & Coughlan (2008) argue that 

the respective inventories are comparable to those in retail. Another retail inventory 

management aspect that could be incorporated in the healthcare environment is the application 

of "actual-use inventory management", meaning the use of point-of-use data in the upstream 

supply chain (Varghese et al. 2012). Danas et al. (2006) see strong similarities with the case of 

spare part inventories for production machines in industrial plants. Decision-makers are faced 

with a trade-off between the cost of production delays and the cost of safety stock. The literature 

on hospital inventory management is presented in the following section. The discussion starts 

with the most relevant field of literature, inventory policy, followed by publications in inventory 

location planning, inventory item classification, and practice-oriented inventory. We then 

present specifics and additional requirements for the management of drugs in pharmaceutical 

inventory management. The section concludes with a subsection focusing on drug shortages and 

strategies for avoiding them. Future research directions are provided at the end of each 

subsection. 

External supply chain

Supplier Central warehouse PatientsPoint-of-use location

Internal supply chain

Phar-
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2.5.1 Inventory policy 

The following subsection presents the literature regarding inventory policy. The most widely 

discussed topic is the choice of a suitable inventory policy, which comprises the definition of 

the inventory review cycle (periodic or continuous) and parameter-setting for the reorder point, 

the reorder quantity, and/or the order-up-to level. All presented publications include 

optimization models. Aspects of hospital inventory management literature reviews may further 

be found in the following publications: Bijvank & Vis (2012) frame their problem with a brief 

review of replenishment policies for hospital inventory systems, De Vries (2011) gives an 

overall introduction of inventory management, and Rosales et al. (2014) introduce their research 

with a general review of inventory models and briefly discuss related quantitative models in the 

hospital setting. 

The subsection starts with an overarching discussion of the inventory review logic. The 

publications are then clustered along the inventory locations that they address. It starts with 

multi-echelon, followed by the central inventory. The focus then shifts towards the patient, i.e., 

the point-of-use location. At the end of the subsection, we present future research opportunities. 
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Table 2.4: Inventory policy publications containing optimization models 
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Inventory review logic. As the notation in the literature varies, we introduce the following 

notation in order to make policies comparable: T (review cycle time), s (reorder point), Q (order 

quantity), S (order-up-to level), and c (can-order point). An overview of the basic inventory 

policies is provided in Figure 2.6. We distinguish between periodic review and continuous 

review. Periodic review comprises the (T, S) policy, which is also called "par level policy". It 

means that, after each review cycle T, orders are triggered so that the order-up-to level S would 

be in stock. Continuous review comprises two basic policies: The first is the (s, Q) policy, 

where a refill quantity of Q is triggered whenever inventory levels fall under reorder point s. 

The second continuous policy is the (s, S) policy, where instead of a fixed reorder quantity Q, 

orders are triggered so that the order-up-to level S would be in stock, as soon as storage falls 

below reorder point s. N/A indicates that the policy framework is not applicable. A performance 

comparison of periodic fixed order size replenishment policies and order-up-to policies is 

provided in Bijvank & Vis (2012). Regarding stock, we distinguish between safety stock, being 

i.e., the average buffer inventory, and the cycle stock, which is the average inventory above the 

safety stock (Kelle et al. 2012). 

 

Figure 2.6: General inventory policies 

The relevant literature containing optimization models is presented in Table 2.4. Most 

publications apply a periodic inventory review policy, which is in line with historic and current 

practice in hospitals, especially at point-of-use inventory locations such as the wards (Nicholson 

et al. 2004). In light of the ongoing modernization of point-of-use technologies, like the 

introduction of advanced identification technologies such as barcodes or radio-frequency 

identification (RFID), researchers have recently started investigating new types of 

replenishment policies, such as hybrid policies (Rosales 2011, Bijvank & Vis 2012, Rosales et 

al. 2014). Rosales et al. (2014) develop such a hybrid replenishment policy. They generally 

perform a cost-efficient periodic review; however, in order to avoid costly stock-outs, they also 

permit continuous review. While PhD theses are not in the scope for this review, due to its 
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importance we refer to Rosales (2011), who elaborates on technology-enabled new inventory 

policies for hospitals. Kelle et al. (2012) study an automated ordering system, which allows for 

a continuous review. Uthayakumar & Priyan (2013) argue that periodic inventory review 

policies are not applicable in practical healthcare settings due to the uncertainty of patient 

arrivals and resulting demand. Most of the discussed publications incorporate capacity 

constraints in their inventory models, as space is a limiting factor in the hospital setting, 

especially at the point-of-use inventories. 

When implementing the defined inventory parameters in practice, some typical obstacles exist. 

Inventory par levels often reflect the desired inventory levels of physicians and nurses rather 

than the calculated inventory levels. Thus, par levels tend to be experience- or policy-driven 

rather than data-driven (Prashant 1991). Furthermore, it appears to be common to keep "hidden" 

safety stock in several locations at care units due to difficulties in policy implementation, 

personal judgment, and silo-structured organizations (Guimarães et al. 2013). 

Multi-echelon inventory. In the following publications, supplier inventories are discussed in 

parallel to hospital inventories. Baboli et al. (2011) provide a cost comparison for a joint 

optimization of a pharmaceutical supply chain from a retailer and hospital perspective. They 

take into account inventory and transportation costs and consider two cases where costs are 

optimized; a decentralized and a centralized case. In the decentralized case, companies 

independently optimize their costs, while in the centralized case, several participants in the 

supply chain are considered as a single organization. They focus on products with high demand 

and assume that demand for the respective products is deterministic. Uthayakumar & Priyan 

(2013) take an entire value chain perspective in the case of pharmaceuticals. In their inventory 

model, they include production and distribution of pharmaceuticals. They develop an algorithm 

to find the optimal inventory lot size, lead time, and number of deliveries with minimum costs 

under a continuous review policy. The algorithm is based on a Lagrange multiplier approach. In 

a second work, Priyan & Uthayakumar (2014) extend their model to cover a fuzzy-stochastic 

environment, discrepancies between ordered quantities and actually received quantities, and 

lead times consisting of mutually independent components. Based on the signed distance 

method, the environment is defuzzied and an optimal inventory policy is determined using the 

same Lagrange multiplier approach as in the first paper. Nicholson et al. (2004) assess the 

differences between an in-house three-echelon inventory system and an outsourced two-echelon 

distribution network, where the replenishment activities are performed by an outside agent who 

delivers directly to the point-of-use inventory locations in the hospital. The authors develop two 

optimization models to minimize the holding and backorder costs and apply a heuristic to solve 
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their problems. They find that outsourcing the distribution of non-critical items is a viable 

choice, enabling staff to concentrate on patient care activities. 

Guerrero et al. (2013) develop a methodology to find near-optimal inventory policies for multi-

echelon inventory networks, i.e., one central inventory and n point-of-use inventories. They aim 

to minimize the total stock on hand for the entire system and employ a Markov decision 

process. The reorder points at both echelons are derived by means of a probability calculation, 

while the optimal order-up-to level is one unit higher than the reorder point at the point-of-use 

inventories. The near-optimal order-up-to level at the central inventory is derived from a 

heuristic algorithm. Their approach is especially suitable for non-critical goods, such as infusion 

solutions. In summary, publications cover inventory parameter-setting as well as cost 

comparisons within and outside the hospital. 

Central inventory. Dellaert & Van De Poel (1996) develop a simple and easily applicable 

inventory control rule for the hospital's central warehouse. The new policy, called "(R, s, c, S) 

policy", is in our notation a (T, s, c, S) policy, which is an extension of the (T, S) policy that 

incorporates a can-order level c. Whenever inventory levels fall below c at the review, an order 

up to level S can be triggered; if inventory levels fall under s, an order must be triggered. For a 

periodic review with given review cycles, the inventory parameters are determined using a 

simple algorithm that minimizes ordering costs based on order bundling. A special case 

regarding the management of the central inventory is studied by Vila-Parrish et al. (2012). They 

discuss inpatient medication with two stages: raw materials and finished goods. This holds, for 

example, for intravenous fluids that are produced in the hospital pharmacy. All goods are 

perishable, but finished goods are of a more perishable nature. The authors model production 

and raw material ordering using a Markov decision process. 

Point-of-use location. This part discusses the inventory closest to the patient, the point-of-use 

location. Bijvank & Vis (2012) determine the optimal inventory policy for hospital point-of-use 

inventories. The authors develop two exact models: a capacity model and a service model. In 

the capacity model, they maximize the service level subject to capacity restrictions, while in the 

service model the strategy is vice versa. They develop a simple heuristic inventory rule that can 

be easily applied by hospital staff for the capacity model. Little & Coughlan (2008) provide a 

constraint programming-based algorithm that finds optimal inventory parameters, which are 

service level, delivery frequency, and order-up-to amount for a periodic inventory policy (T, S). 

They especially stress space restrictions and criticality of items. 

The two-bin replenishment system, a special replenishment system used in practice, provides 

for two equally-sized bins in the care units; one bin from which goods are taken and one reserve 

bin. Once one bin is empty, replenishment is triggered, mostly relying on Kanban logic. This 
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system is discussed in the following publications. Rosales et al. (2015)
3
 study the two-bin 

replenishment inventory system in combination with RFID tags and assess the applicability of 

different replenishment policies. Generally, a periodic replenishment policy is applied. Rosales 

et al. (2015) assess two ways of optimizing the two-bin replenishment system: through 

parameter optimization for periodic review and through replenishment policy optimization 

shifting to a continuous replenishment policy. For parameter optimization, the periodic 

replenishment policy is modeled, and it is demonstrated that the average cost per unit time is 

quasi-convex, thus allowing for a simple search to find the optimal review cycle. The policy 

change-driven optimization is enabled through the incorporation of RFID tags, allowing for 

continuous replenishment. Using a semi-Markov decision process (SMDP), the optimal 

replenishment policy is modeled and heuristically determined. Landry & Beaulieu (2010) 

discuss the two-bin replenishment inventory system extensively and assess which lean concepts 

it addresses. 

Automated inventory systems at the point of use are discussed by the following two 

publications: Kelle et al. (2012) provide the reorder point s and order-up-to level S for the point-

of-use inventory of an automated ordering system in a continuous review setting. These 

inventory parameters are derived by means of a near-optimal allocation policy of safety stock 

and cycle stock. Parameters are derived using an iterative heuristic algorithm. Rosales et al. 

(2014) develop a hybrid inventory policy for point-of-use hospital inventories, called "(s, S, R, 

Q) policy". They combine a periodic (T, S) policy with a continuous (s, Q) policy. 

Consequently, in our notation this equals a (T, S, s, Q) policy. During the review cycles, reactive 

replenishments are allowed. This new policy is applicable in particular to automated dispense 

machines (ADMs) at point-of-use inventory locations. The authors develop a simulation-based 

heuristic to determine the parameter values for the reorder points, the order-up-to level, the 

order quantity, and the review cycle. They find that hybrid policies may provide substantial cost 

benefits versus purely periodic or purely continuous reviews. 

Although a multitude of publications exist in the field of hospital inventory policy, this area 

remains promising for future research. Potential research includes the unpredictable nature of 

demand in hospitals and its implications on inventory policies. A majority of the presented 

publications focus on goods with high turnover and predictable demand. However, demand with 

low volume and lumpy characteristics and its potential effects on workload and policy-setting is 

hardly considered. This area of research is highlighted by Little & Coughlan (2008) and Kelle et 

al. (2012). Furthermore, most papers assume that demand for the different goods is independent 

                                                      

3
 The publication was available online in 2014 and therefore included in the review 
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(Nicholson et al. 2004, Kelle et al. 2012). Including dependencies in inventory models could be 

an interesting research field. Regarding the characteristics of inventory items, it could also be 

beneficial to incorporate expiration dates or special storage requirements such as cooling 

(Guerrero et al. 2013). Further, the effects of substitution products on service levels in case of 

stock-outs could be assessed, as proposed by Bijvank & Vis (2012), as could the fact that 

emergency deliveries from other care units would be possible, and at little cost for many goods. 

For multi-echelon inventory settings, a further research area could be to incorporate lead times 

in inventory models, especially between outside suppliers and the hospital, as proposed by 

Nicholson et al. (2004). A detailed assessment of the review cycle length at point-of-use 

inventories and lead times of respective suppliers could therefore be beneficial (Bijvank & Vis 

2012). Emphasizing the hospitals' need for simplicity and ease of use could also be a potential 

future research area. Staff dealing with logistics activities in hospitals typically do not have the 

same technical background and knowledge as their counterparts in manufacturing industries. 

Consequently, implementing sophisticated inventory systems may be difficult in hospitals. 

Examples where the use could be facilitated include simple inventory policies for large-scale 

inventory systems (e.g., Rosales et al. 2014) or materials handling of ADMs. 

2.5.2 Inventory location planning 

Danas et al. (2002) provide a publication related to inventory layout planning. The authors 

introduce the concept of a virtual hospital pharmacy that bundles the inventories of several 

hospitals in a specific geographic region to allow for a more efficient use of storage capacity. 

Pasin et al. (2002) use a simulation tool to assess the impact of inventory pooling. They show 

that significant efficiency improvements can be generated when centralizing inventories of 

multiple hospitals. Thomas et al. (2000) assess placing an ADM in the point-of-use inventory 

for an operating room. The authors show that benefits can be realized through the reduction of 

medication preparation and setup time. For emergency medications, the preparation and setup 

time could be reduced from 15 to 5 minutes. 

In the context of manufacturing industries, strategic planning of inventories like inventory 

location or layout planning is a large research area. Apart from defining inventory locations, the 

question of where goods should be stored in a multi-echelon inventory setting has been 

addressed (Cattani et al. 2011). However, in the healthcare context, inventory location or layout 

planning is a rather untouched research field. One potential justification is that, in the process of 

designing a hospital, planners focus on medical aspects, such as the location of operating 

theaters and wards. Logistics planning is often performed at a later stage, which leads to 

immature solutions that are not optimal from a materials management perspective (Dacosta-
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Claro 2002). Future research opportunities could lie in the development of an integrated 

approach for hospital layout planning that better incorporates logistics aspects on a strategic 

level. 

2.5.3 Inventory item classification 

One lever to efficiently manage inventory is to categorize inventory items and establish 

individual inventory policies for these categories. This allows for standardized treatment of 

items within the same category, e.g., in terms of safety stock levels, required management 

attention, purchasing strategies, etc. In a case study by Beier (1995), 45% of U.S. hospital 

pharmacies were using a classification scheme to distinguish important items. Potential 

categorization methods include ABC analyses, meaning categorization along the items' 

monetary value and rate of consumption, and VED (vital, essential, and desirable) analyses, a 

classification scheme based on the criticality of items or combinations of the above. Khurana et 

al. (2013) develop a combination of ABC and VED classifications in order to define the 

management attention required for the different item categories. A case study for a combined 

ABC/VED classification is provided by Gupta et al. (2007). Danas et al. (2006) transfer the 

MASTA logic (multi-attribute spare tree analysis), a concept that was developed in the context 

of industrial spare parts, to the hospital inventory case. The idea is to classify each drug item 

along a classification tree in order to determine its stock and inventory strategy, and thus to 

ascertain whether that drug needs a safety stock within the respective clinic, hospital, or 

geographic region, or whether it can be supplied as a JIT item. Classification is performed along 

four dimensions: patient treatment criticality, supply characteristics, inventory problems, and 

usage rate. We further refer to Al-Qatawneh & Hafeez (2011), who present a multi-criteria 

inventory classification model based on criticality, cost, and usage value, acknowledging that 

conference proceedings are not in the scope of this review. Gebicki et al. (2014) incorporate 

drug characteristics in their inventory policy. They achieve higher patient safety and lower 

overall costs compared to traditional inventory management approaches. They evaluate the 

performance of several inventory policies with regards to total costs and service levels using 

event-driven simulation. The policies differ in the levels to which they incorporate information 

about the drugs, such as criticality or availability, cost components (e.g., whether stock-out or 

waste costs are included), and the application of sophisticated techniques, such as conditional 

demand forecasting. 

Future research potential lies in the extension of the previously presented models in order to 

assess correlations between drug characteristics and the applied policy versus stock-out costs 
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and the individual cost components (Gebicki et al. 2014). Inventory item classification is further 

required for the use of innovative inventory systems, such as virtual pharmacies. 

2.5.4 Practice-oriented inventory 

Several practical case studies and empirical publications on inventory management exist. 

Huarng (1998) assesses materials management practices in Taiwan across several hospitals in 

an empirical study. Purchasing strategies, inventory turnover rates, and inventory fill rates are 

compared across the participating hospitals, and significant performance disparities are 

identified. An exploratory case study performed by De Vries (2011) underlines the complexity 

of inventory management in hospitals. The author indentifies and assesses the relevant 

stakeholders and their interests in the process of redesigning a hospital inventory system. Beier 

(1995) assesses inventory policies from a U.S. data sample and identifies cost improvement 

potential in inventory management and the collaboration with suppliers. Poley et al. (2004) 

present a case hospital containing two pharmacy inventory and distribution systems, i.e., a 

multi-echelon system and a patient-oriented ready-to-use distribution system. Both systems are 

systematically compared and differences in their cost structures are highlighted. 

Future practical research on inventory management should be conducted in order to better 

understand the concrete differences between industrial settings and hospitals. Furthermore, 

reports on past inventory projects in hospitals would be highly beneficial in order to understand 

the dynamics and potential obstacles in the hospital setting (De Vries 2011). 

2.5.5 Pharmaceutical inventory management 

Pharmaceuticals impose high requirements on inventory management. According to 

Almarsdóttir & Traulsen (2005), inventory management for pharmaceuticals differs from other 

medical product categories based on its specific characteristics. While hospital inventory-related 

publications on pharmaceuticals were already discussed in detail above, we refer to Kelle et al. 

(2012), Uthayakumar & Priyan (2013), and Priyan & Uthayakumar (2014) who evaluate 

pharmaceutical supply chain specifics from the hospital's perspective. For a general introduction 

to hospital inventory management for pharmaceuticals, we refer to Vila-Parrish & Ivy (2013). 

Based on regulatory constraints, hospitals must make sure that information about the 

manufacturer, production lots and/or dates, shipping information, etc. must be registered and 

known (Çakici et al. 2011). In order to fulfill these identification requirements and prevent 

medication errors and costly return deliveries, hospitals rely on means of identification, namely 

barcodes and RFID. In the following subsection, both technologies and their application in 
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hospitals are presented. The subsection concludes with a brief overview of drug handling 

techniques. 

The use of barcodes is the most widespread identification technology today. According to a 

cost-benefit analysis by Maviglia et al. (2007), hospitals can achieve significant savings when 

applying a barcode-based identification and dispensing system instead of a manual system. In 

their specific case, the break-even point for the upfront investment was reached within one year 

after the implementation of the new system. Poon et al. (2006) find that implementing a 

barcode-based hospital pharmacy system can significantly reduce the rate of dispensing errors. 

Pitfalls of such a system are presented by Phillips & Berner (2004). The work by Koppel et al. 

(2008) concentrates on workarounds that are performed by medical staff when barcode 

medication administration systems (BCMA) are in use. Another work by Patterson et al. (2002) 

presents a case study on implementation problems when using BCMA. The second and more 

technologically sophisticated identification technology is RFID. Key advantages include easier 

scanning and high product visibility along the supply chain, albeit at a high implementation 

cost. A general introduction to the supply chain implications of using RFID – not limited to 

healthcare – is provided by Lee & Özer (2007) and Irani et al. (2010). For RFID applications in 

the healthcare industry, we refer to Coustasse et al. (2013) and Fosso Wamba et al. (2013), who 

provide comprehensive literature reviews. The former find that, despite the rising penetration of 

RFID in healthcare, few empirical studies exist that assess the actual potential of RFID. An 

exception is the work by Abijith & Fosso Wamba (2012), who assess the financial impact of 

RFID-enabled transformation projects in the healthcare sector. Lee & Shim (2007) investigate 

the rationale behind introducing RFID in the healthcare industry. A highly practice-relevant 

work is provided by Chang et al. (2012), who elaborate on where to mount RFID tags on 

products from a material handling perspective. Potential future use cases for the information 

generated through the application of RFID are presented by Meiller et al. (2011) to further 

optimize material handling and reduce safety stock levels. A comparison of barcodes and RFID 

is provided by Çakici et al. (2011) and Chan et al. (2012). Regarding inventory policies, Çakici 

et al. (2011) find that continuous review is superior to periodic reviews whenever real-time 

information is available, which is the case for RFID-enabled inventories. 

Regarding pharmaceuticals inventory design and drug distribution, hospitals employ either a 

traditional ward stock system or a unit dose drug inventory and distribution system. In the 

traditional system, inventory is held at the wards and can be divided into standard and patient-

specific medication. In a unit dose system, drugs are picked in the central pharmacy according 

to the patients' actual needs (Piccinini et al. 2013). New material handling technologies are 

commonly first adopted in the central hospital pharmacy, where manual picking is replaced by 
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ADMs. There are case studies at hand examining their effects and learning from their 

implementation: The publications by Fitzpatrick et al. (2005), Franklin et al. (2008), and 

Piccinini et al. (2013) in particular evaluate ADMs in hospital pharmacies. Major effects include 

a significant reduction of dispensing errors, reduced picking times, increased staff satisfaction, 

and better use of storage capacity (Fitzpatrick et al. 2005, Franklin et al. 2008). Piccinini et al. 

(2013) present and analyze an automated picking workstation as part of an automated pharmacy 

distribution center for a group of hospitals. They focus on the actual picking step and assess 

how to pick very diverse and complex objects available on belts or in bins. Novek (2000) and 

Granlund & Wiktorsson (2013) more broadly assess the implementation and implications of 

automation in hospital-internal logistics. For a literature review on types and causes of 

dispensing errors, we refer to Beso et al. (2005) and James et al. (2009). Future research should 

further explore new handling technologies emerging in other industries with a focus on their 

applicability in hospitals. 

2.5.6 Drug shortages 

In recent years, drug shortages have occurred more and more often, having notable implications 

for hospital material management in general and inventory management in particular. 

Historically, the problem of drug shortages has been most common in either niche drug 

segments or developing countries. However, since the early 2000s, it has been reported that 

several drug groups are insufficiently supplied in the U.S. – a trend which experts argue is also 

prevalent in Europe, while exact data to prove this is missing (Fox & Tyler 2003, Le et al. 2011, 

Huys & Simoens 2013). Most of the existing literature focuses on drug shortages in the U.S. A 

number of publications assess the causes of drug shortages and their implications on the 

healthcare system. Reasons for shortages include the unavailability of raw material, production 

ramp-downs or manufacturing difficulties, mergers and acquisitions of drug manufacturers, 

voluntary recalls, regulatory issues, unexpected demand, natural disasters, and labor disruptions 

(Gu et al. 2011, Mangan & Powers 2011, Ventola 2011). Drug shortages have significant 

negative financial effects on the healthcare system as well as the quality of patient care (Baumer 

et al. 2004, Kaakeh et al. 2011, Alspach 2012). Nowadays, pharmacists and pharmacy 

technicians spend an average of eight to nine hours per week on drug shortage-related activities 

(Kaakeh et al. 2011). 

Several authors present very hands-on suggestions on how to cope with drug shortages from a 

hospital logistics perspective. One key measure is to take proactive action, which includes 

purchasing strategies as well as the implementation of concrete action plans that ought to be 

developed before shortages occur. The plans include lists of substitute products and hospital 
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organizational issues, such as to define responsibilities in case shortages occur. The introduction 

of substitute products might have significant effects on logistics processes. For example, the IT 

and inventory systems must be able to cope with short-term changes to drug names, etc. (Mazer-

Amirshahi et al. 2014). In inventory management, one lever for coping with drug shortages is 

changing the inventory policy and updating the order points and order quantities. Additionally, 

inventory sharing and pooling, as well as rationing and prioritizing policies should be 

considered (Johnson 2011). Having transparency on upcoming or expected shortages and the 

actual inventory level of respective drugs helps to be able to act proactively (Johnson 2011). 

Apart from the rather practical action plans discussed in the previous publications, there are also 

publications that present general guidelines on how to prepare for (potential) drug shortages 

(Fox et al. 2009, Vaillancourt 2012, Gupta & Huang 2013, McLaughlin et al. 2013, Rider et al. 

2013). We also refer to a number of studies that focus on the effects of shortages for certain 

drug groups (Griffith et al. 2012, Hall et al. 2013, McBride et al. 2013, McLaughlin et al. 2014). 

According to pharmacists, there is a lack of information needed to manage shortages, e.g., 

actual inventory data throughout the hospital (Kaakeh et al. 2011). Consequently, one future 

research area could be to further enhance data transparency and availability of up-to-date stock 

information. 

2.6 Literature on topic (3) distribution and scheduling 

This section discusses hospital-internal and hospital-external distribution and scheduling topics. 

Due to its distinct characteristics, the logistics of sterile items is presented in a third category. 

Hospital-internal distribution comprises mainly routing and scheduling problems of goods 

within the hospital, primarily from the central warehouse location to the respective care units. 

External distribution relates to inter-hospital transports as well as waste management. Sterile 

items handling comprises both transportation tasks and the actual sterilization process. 

2.6.1 Hospital-internal distribution and scheduling 

In the field of hospital-internal distribution and scheduling, four publications are identified that 

contain optimization models (see Table 2.5). "Traditional" pharmacy delivery is scarcely 

addressed in the literature (Augusto & Xie 2009). However, fairly specific issues are discussed, 

such as routing and scheduling problems of combined storage/delivery material management 

systems, e.g., mobile medicine delivery closets. Interestingly, due to the different delivery tools 

and setups, there are hardly any standards and common practices on how to transport materials 

in hospitals. 
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Michelon et al. (1994) and Augusto & Xie (2009) explore delivery problems of sophisticated 

inventory storage and delivery systems, i.e., medicine closets and twin trolleys. Augusto & Xie 

(2009) consider a hospital pharmacy delivery problem. In their study, pharmacy delivery is 

performed in a manner such that care units are equipped with mobile medicine closets. 

Periodically, these closets are collected and transported to the central pharmacy for inventory 

stock assessment and refill. The problem consists in creating a transportation and supply plan. 

The aim is to have a balanced workload for the two limiting human resource types, i.e., 

transporters and pharmacy assistants. The problem is formulated as a MIP, and a near-optimal 

schedule is determined using a standard solver. In a second step, a simulation model is applied 

to redesign the pharmacy delivery process in a case study. Michelon et al. (1994) compare two 

supply distribution systems. In their research case, supplies are delivered in a twofold way: First 

through so-called "twin trolleys" that contain most of the regularly required supplies, which are 

always doubled. One trolley is in use at the point of use and the "twin" is located at the central 

inventory location. Second, there are "non-twin trolleys" containing non-medical items, e.g., 

meals or cleaning products. Each of those trolleys is assigned to a number of point-of-use 

locations. In their publication, Michelon et al. (1994) assess whether it is beneficial to change 

the allocation of items to the twin or non-twin trolleys relying on a tabu search heuristic. 

Table 2.5: Hospital-internal distribution and scheduling publications containing optimization models 

 

Linen delivery is modeled and optimized by Banerjea-Brodeur et al. (1998). The transportation 

system is reviewed based on shortfalls that regularly require emergency deliveries to the care 

units. The authors set up a periodic vehicle routing problem (VRP) in order to optimize delivery 

routing, scheduling, and quantities. To solve the VRP, a tabu search heuristic is applied. 

Dean et al. (1999) focus on scheduling pharmacists who visit care units in order to trigger 

medication orders. In their model, drug prescriptions are added to the patient files, which are 

typically mounted to the bed of the respective patient. The study demonstrates that changing the 

time of day when the visit is performed affects the delay of medication arrivals. 

Publication Problem description Model 

characteristics

Objective function Type of 

goods

Augusto & Xie (2009) Transportation and supply plan for mobile 

medicine closets located at care units; weekly 

replenishment in central pharmacy

Mixed-integer linear 

progamming, 

simulation

(1) Minimize number of routes 

(2) Minimize workload

Pharmaceut.

Banerjea-Brodeur et al. (1998) Deliver quantity and schedule of regular linen 

delivery from central laundry to care units

PVRP solved with 

tabu search heuristic

Minimize total cost Laundry 

(linen)

Lapierre & Ruiz (2007) Multi-item inventory replenishment schedule 

under storage and manpower capacity 

constraints

Mixed-integer non-

linear prob., meta-

heuristic search

Minimize total inventory cost 

and minimize deviation of 

workload equilibrium

Not 

specified

Michelon et al. (1994) Comparison of mobile inventory & 

distribution systems with varying amout of 

items kept locally in care units

Tabu search 

heuristic

Minimize number of tasks that 

cannot be performed by 

respective system

Medical, bed-

related, 

meals, etc.
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The publication by Lapierre & Ruiz (2007) assesses scheduling activities and logistics 

optimization. The authors state that, in the context of hospital supply systems, basically two 

approaches exist to plan logistics activities. First, the inventory-oriented approach, where orders 

are placed in multi-echelon inventory settings whenever reorder points are met. In this 

predominant approach in the literature, the main focus lies on ensuring sufficient stock levels 

(see Section 2.5). However, according to the authors, this approach neglects further questions 

such as planning of scheduling activities and human resources. Consequently, the second 

approach focuses on scheduling and answering questions that include: When should employees 

work? How often should replenishments be performed? How often and when should supplies 

occur? Lapierre & Ruiz (2007) propose to schedule replenishments, purchasing activities, and 

supplier activities to avoid stock-outs and respect resource availability. The authors formulate a 

mixed-integer non-linear scheduling problem that balances employees' workloads. They 

develop a tabu search meta-heuristic algorithm for solving the problem. 

Scheduling and questions around goods distribution of hospital-internal logistic activities appear 

to be a promising field for future research. Three potential research areas have been identified. 

First, the introduction of sophisticated inventory and delivery systems in hospitals raises 

optimization potential for associated activities. These systems include, for example, mobile 

medicine closets, twin trolleys, or the two-bin replenishment system. The motivation behind 

their introduction derives from hospital specifics that limit the applicability of standard 

solutions from other industries. Relevant characteristics include limited storage space at point-

of-use locations or staff that are untrained in the use of the logistics system. Moreover, 

legislative constraints in drug handling make healthcare-specific solutions necessary. A 

corresponding use case is presented by Augusto & Xie (2009). The authors schedule 

pharmacists and transporters used when introducing mobile medicine closets. The case of twin 

trolleys is discussed by Michelon et al. (1994), while Dean et al. (1999) optimize the scheduling 

of pharmacist visits to wards. A topic that has not been touched so far is the two-bin 

replenishment system and associated scheduling requirements. Related scheduling activities, 

such as when to refill stock and in which overall schedule, have not yet been addressed. The 

work by Lapierre & Ruiz (2007) initially covers logistics-related scheduling tasks around 

hospital inventories. However, many potential areas for optimization remain. Second, as the 

majority of the presented publications apply heuristics to solve their models, the development of 

exact solution procedures could provide further interesting research areas. A third promising 

field is the extension of existing logistics-related scheduling activities to personnel planning and 

shift planning. Respective questions might appear when logistics activities are transferred to 

non-medical support staff. 
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2.6.2 Hospital-external distribution and scheduling 

Hospital-external distribution and scheduling is hardly covered in the literature. In total, there 

are five relevant publications including optimization models (see Table 2.6). They handle inter-

hospital transports, transports between suppliers and hospitals, as well as the collection and 

disposal of waste. In the context of this work, only hospital-related publications are discussed. 

Bailey et al. (2013) investigate an alternative supply route for time-critical items to hospitals, 

which usually travel in conjunction with regular goods. They demonstrate that an unattended 

locker box can serve as an alternative delivery solution for urgent items, allowing those items to 

be separated from regular material flows. The authors use a hill-climbing optimization 

algorithm to identify the optimal size of a locker box to cover a certain service level in a typical 

hospital. Combined with results of staff interviews, they find that the introduction of unattended 

locker boxes would be beneficial in terms of speed of delivery and healthcare quality. Kergosien 

et al. (2013) address a two-level VRP with time windows, a heterogeneous fleet, multi-depot, 

multi-commodity, and split deliveries. The first level addresses fleet routing for collection and 

delivery of pharmaceuticals and hospital consumables. The second level addresses routing of 

employees between hospital unit buildings and sizing of warehouse employees. To solve the 

problem, two metaheuristic algorithms are presented; a genetic algorithm and a tabu search 

algorithm. Swaminathan (2003) discusses the allocation and distribution of scarce drugs to 150 

hospitals in California. An optimization model is developed for that purpose that is solved based 

on an allocation heuristic. 

Table 2.6: Hospital-external distribution and scheduling publications containing optimization models 

 

The collection and disposal of waste is considered a separate field of research that mainly deals 

with VRPs. Due to its relevance for hospital logistics, publications that cover hospital waste 

disposal are briefly presented. For more detailed information on waste collection and waste 

Publication Problem description Model 

characteristics

Objective function Type of 

goods

Bailey et al. (2013) Feasibility demonstration of unattended 

locker box delivery system; specification of 

locker box characteristics

Hill climbing 

optimization 

algorithm

Maximize number of orders to 

be stored within locker box

Urgent items

Kergosien et al. (2013) Transportation flow design between hospital 

units; warehouse employee dimensioning

2-VRP sol. w. meta-

heuristics (generic 

alg. & tabu serach)

Minimize the sum of delays and 

minimize required number of 

employees

Pharma-

ceutilcals, 

consumables

Medaglia et al. (2008) Optimal facility location for hospital waste 

treatment network

Biobjective facility 

loc. prob. (MIP), sol. 

with heuristic

Multiobjective:

(1) Minimize transport. cost 

(2) Min. affected population

Waste

Shih & Chang (2001) Route and schedule for periodic waste 

collection of hospital network

PVRP and MIP to 

assign routes to 

days of week

(1) Minimize transportation 

cost (2) Minimize daily travel 

mileage in a week

Waste

Swaminathan (2003) Decision support for allocating scarce drugs 

to hospitals

Multiobjective 

optimization model, 

solved with heuristic

Minimize total value of drug 

budget left over / maximizing 

total value of allocated drugs

Pharma-

ceuticals
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management, we refer to the literature review by Beliën et al. (2012). Medaglia et al. (2008) 

design a hospital waste disposal network in Columbia. They formulate the problem as a bi-

objective obnoxious facility location problem (BOOFLP) that incorporates the trade-off 

between finding the cost-optimal facility locations and the negative effects on the population 

close to waste treatment facilities. They solve their model with a multi-objective evolutionary 

algorithm. Shih & Chang (2001) develop a periodic VRP to model a routing and scheduling 

problem for the collection of infectious hospital waste. They develop a MIP to assign routes to 

particular days of the week in a second step. An overview of infectious waste management in 

European hospitals is provided by Mühlich et al. (2003). 

Three potential future research areas have been identified: First, it could be promising to assess 

the robustness of the presented VRPs and their modifications, e.g., through the application of 

discrete-event simulation as proposed by Kergosien et al. (2013). Second, referring to Section 

2.5, where we identified hospital layout planning as one potential future research area, 

incorporating inter-hospital transportation issues into layout planning could be a promising 

future research field. Third, emergency deliveries within hospital networks could furthermore be 

assessed within this context. 

2.6.3 Sterile medical devices 

The handling of sterile medical items is a distinct field of research within hospital distribution 

and scheduling. Fineman & Kapadia (1978) were among the first to address this problem in the 

OR literature. For a brief introduction of sterilization logistics, see Di Mascolo & Gouin (2013). 

There are two kinds of sterile medical items: single-use and reusable medical items. We 

consider the latter because of the complexity of the repetitive sterilization process, which is not 

necessary for single-use items. Typically, reusable sterile items such as surgical instruments are 

sterilized after usage either in a hospital-internal sterilization department or by external service 

providers. 

Table 2.7: Sterile device publications containing optimization models 

 

Publication Problem description Model 

characteristics

Objective function Type of 

goods

Ozturk et al. (2014) Near optimal parallel job batch definition for 

washing step of sterilization process for 

sterile medical devices

Heuristic based on 

branch and bound

Minimize makespan of 

sterilization process

Sterile 

medical 

devices

Tlahig et al. (2013) Comparison of decentralized in-house vs. 

central sterilization service of hospital 

network

MIP, solved via 

addition of approp. 

customized cuts

Minimize total cost 

(transportation, sterilization, 

resource transfer, acquisition)

Sterile 

medical 

devices

Van De Klundert et al. (2007) Sterilization cost minimization (transportation 

and inventory costs) for outsourcing 

sterilization of medical devices

Dynamic 

programming

Minimize total cost Sterile 

medical 

devices
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An overview of publications in this research stream applying optimization models is presented 

in Table 2.7. Ozturk et al. (2014) assess the washing process itself, which they claim to be the 

bottleneck of the sterilization process. They provide a branch-and-bound-based heuristic in 

order to optimize the washing machine schedule. Van De Klundert et al. (2007) state that 

hospitals intensively attempt to outsource sterilization activities in order to save costs and free 

up space in the central sterilization service departments (CSSDs). However, outsourcing comes 

with downsides, for example longer transportation distances and potentially lower availability. 

In their work, the authors formulate an optimization problem aiming to minimize inventory and 

transportation costs as a lot sizing and transportation model, which is solved in polynomial time 

by dynamic programming. Further, they extend the model to a dynamic, non-deterministic 

setting addressing the value added by real-time information availability, e.g., when applying 

RFID. Additionally, they present a bundling problem regarding the composition of medical item 

nets. Tlahig et al. (2013) assess two different setups of sterilization services. They compare 

decentralized in-house sterilization against centralized sterilization services in a hospital 

network. In their model, they aim to find the general setup (centralized versus decentralized), 

the optimal location, and the optimal capacity. The problem is modeled as a MIP and solved 

based on the addition of appropriate cuts. Di Mascolo & Gouin (2013) also aim to improve 

sterilization services in hospitals. They assess the implications of changes to the processes and 

the organization. To do so, they develop a generic discrete-event simulation model, allowing the 

authors to represent and quantify any sterilization service in the respective health establishment 

in France. 

Future research may focus on further assessing the performance of different sterilization 

services in hospitals (Di Mascolo & Gouin 2013), as well as different organizational setups. 

These include mixed forms, where some sterile items might be treated within the hospital, while 

others are sent to external service providers (Tlahig et al. 2013). Also, the incorporation of 

uncertainty in scheduling the washing process seems to be a worthwhile research field (Ozturk 

et al. 2014). 

2.7 Literature on topic (4) holistic supply chain management 

This section presents publications regarding the management of the entire supply chain. They 

do not contain optimization models, but are qualitative or conceptual. Consequently, all 

presented areas offer new perspectives on incorporating and developing optimization models. 

We classify the publications into three categories. The first, "business process redesign", covers 

all topics associated with the assessment and redesign of logistics processes and the 

organization of the hospitals' logistics function. The second, "transfer of logistics concepts from 

other industries", presents publications that assess whether logistics concepts that are 
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successfully implemented in other industries, such as lean, can be transferred to hospital 

logistics. The final part, "benchmarks, best practices, and cost analyses", discusses practice-

related publications, mostly case studies that assess logistics cost and its components, as well as 

cost comparisons across countries or within hospital departments. The major discussion points 

and most relevant conclusions are presented. 

2.7.1 Business process redesign 

In this subsection, publications are presented that aim to improve hospital business processes. 

Several approaches according to the literature are shown and tools are presented. Generally, it is 

accepted that logistics processes in hospitals hold significant cost improvement potential. One 

relevant lever is to redesign logistics processes by implementing SCM practices (e.g., Haavik 

2000, Poulin 2003, A. Kumar et al. 2008, De Vries 2011). 

Landry & Philippe (2004) generally consider the role of logistics and show how it can serve 

healthcare and improve the quality of care. A number of publications focus on reengineering the 

hospital-internal logistics processes, which are the major weak point in hospital logistics (Born 

& Marino 1995, Coulson-Thomas 1997, Jayaraman et al. 2000). Chandra (2008) discusses 

trends, issues, and solution techniques for hospital SCM and presents a generic supply chain 

problem modeling methodology. Kriegel et al. (2013) evaluate what role external contract 

logistics service providers can play in the German hospital sector. Zheng et al. (2006) and 

Iannone et al. (2014) assess the potential of the supply chain integration through enhanced IT 

integration, e.g., data and information sharing. This enables a higher visibility of inventory data 

and a reduction of lead times and safety stock. In order to analyze the healthcare supply chain, 

several tools are at hand to support the decision-making process. The tools comprise process 

modeling techniques (A. Kumar et al. 2008, Di Martinelly et al. 2009, Iannone et al. 2013) and 

simulation techniques (Jun et al. 1999, Abukhousa et al. 2014). 

2.7.2 Transfer of logistics concepts from other industries 

Whether logistics concepts that have been successfully implemented in other industries, e.g., car 

manufacturing or retail, are transferable to the healthcare sector, is an intensively debated topic 

in the literature. Most publications conclude that, in general, these concepts are applicable in 

healthcare, but that there are major obstacles that need to be overcome. Young et al. (2004) very 

broadly discuss the applicability of industrial processes to healthcare, i.e., lean thinking, theory 

of constraints, Six Sigma, and scenario simulation. They conclude that all concepts are 

applicable to the healthcare sector. However, they state that they cannot be expected to deliver 
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improvements immediately, but will typically need to undergo an iterative implementation 

process in order to be successful. 

Lean thinking emerged in operations in the early 1990s, in service operations management in 

the mid-to late 1990s, and in the healthcare sector in the early 2000s (Laursen et al. 2003). The 

applicability of lean thinking to healthcare, not necessarily related to material logistics, is 

conceptually discussed by Kim et al. (2006), Fillingham (2007), Kollberg et al. (2007), Young 

& McClean (2008), De Souza (2009), and Mazzocato et al. (2010). These authors find that lean 

thinking has been applied successfully in a wide range of healthcare applications, but while lean 

thinking usually takes a holistic approach to problems, healthcare often remains limited to 

narrower applications with limited organizational reach (Mazzocato et al. 2010). Although there 

seems to be a general agreement on the potential of lean healthcare, it remains challenging to 

quantify the potential and critically assess its impact. Compared to other industries, such as the 

automotive industry, healthcare lags behind regarding the implementation of lean concepts (De 

Souza 2009). Also, there is no clear definition of the term "value" in healthcare, hindering the 

reduction of non-value-adding activities, as is standard in industry operations (Young & 

McClean 2008). However, Kim et al. (2006) rather optimistically conclude that, in the 

healthcare sector, and especially in hospitals, lean thinking can provide significant process 

improvements and thus improve the quality and efficiency of patient care. A range of 

publications encompasses case studies where lean concepts have been implemented in 

healthcare. Trägårdh & Lindberg (2004) provide a study of a lean production-inspired 

transformation project in the healthcare sector in Sweden. Landry & Beaulieu (2010) present the 

case of a two-bin Kanban system for point-of-use inventories and discuss its implications for the 

inventory system. Venkateswaran et al. (2013) show that by applying the 5S (sort, set to order, 

shine, standardize, and sustain) methodology in hospital warehouses, significant increases in 

inventory turnover can be achieved. 5S represents activities that are required to create a desired 

work environment. Varghese et al. (2012) assess whether actual usage inventory management 

practices used in the retail industry are applicable in healthcare inventory systems. In particular, 

they evaluate whether ABC classification, demand characteristic classification, forecast-based 

demand planning, and inventory control policies are beneficial in the healthcare setting. They 

create a mathematical model that assesses the possibility of optimizing parameters for a (s, Q) 

inventory policy based on actual usage inventory management practices and real data. The 

authors conclude that, by applying those concepts, cost improvements may be achieved. 

The applicability of JIT to healthcare logistics is assessed in several publications. Jarrett (1998) 

states that the healthcare industry had not implemented JIT at that time and provides examples 

from the literature to prove this point. Already very early, Kim & Schniederjans (1993) 
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demonstrate that JIT or stockless material management can significantly improve hospital 

operations. Heinbuch (1995) provides a case study for the successful implementation of JIT in 

the hospital sector and proves that significant cost improvements can be achieved. Whitson 

(1997) even argues that materials management in the hospital's pharmacy would be an ideal 

candidate for implementing JIT due to its manufacturing-like operations characteristics. Jarrett 

(2006) again underlines the general transferability of JIT concepts to the healthcare sector but 

claims that there is a research gap regarding the actual implementation of JIT in healthcare. 

Organizational modification to support the introduction of JIT is presented by Yasin et al. 

(2003). Contrary to the previously presented papers, Danas et al. (2002) argue that JIT can 

hardly be applied in healthcare due to the unpredictable nature of the patient mix and the 

resulting difficulty in forecasting product demand. S. Kumar et al. (2008) state that one reason 

why the healthcare sector has been slow to embrace SCM practices compared to other industries 

is the danger stock-out situations present to the health of patients. 

More broadly, a variety of publications assesses whether SCM practices from other industries 

can be applied in the healthcare sector. De Vries & Huijsman (2011) identify five future 

research areas in healthcare SCM based on a review of the literature: first, the future role of 

information technology; second, the influence of different stakeholders on establishing SCM 

relationships within and between health service providers; third, understanding the strengths and 

weaknesses of management philosophies like lean/agile manufacturing, business process 

management, and lean Six Sigma; fourth, defining performance metrics of healthcare SCM; and 

fifth, applying SCM techniques not only to logistics, but also to patient flow. Ford & Scanlon 

(2007) discuss SCM performance measurements and supplier contracting principles including 

their applicability to healthcare. Meijboom et al. (2011) assess the applicability of SCM 

practices to patient care. McKone-Sweet et al. (2005) find that, while the importance of SCM in 

healthcare is widely recognized, there is only limited research on the unique challenges of 

healthcare SCM. Operational, organizational, and environmental barriers that hinder the 

implementation of SCM in healthcare are presented. 

2.7.3 Benchmarks, best practices, and cost analyses 

Several practice-related publications, mostly in the form of case studies, compare cost 

characteristics across hospital departments, different countries, etc. and provide benchmarks for 

the hospital logistics costs setup. Aptel & Pourjalali (2001) compare logistics costs and 

differences in hospital SCM of large hospitals between France and the U.S. Pan & Pokharel 

(2007) investigate logistics activities of hospitals in Singapore and specifically assess what 

kinds of activities are performed by the logistics departments. The same field of research is 
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covered by Dacosta-Claro (2002), who studies the tasks and management approaches of hospital 

materials managers. Ferretti et al. (2014) assess implications of reorganizing hospital materials 

processes and organization, while Kafetzidakis & Mihiotis (2012) more generally evaluate the 

awareness of logistics in hospitals in Greece. Potential future research could include a global 

benchmarking tool that allows for comparison of different logistics setups as well as knowledge 

transfer and sharing of lessons learned. 

2.8 Conclusion 

The healthcare sector in general and hospitals in particular face significant challenges due to 

steadily increasing healthcare costs. In hospitals, logistics-related costs are the second largest 

cost block after personnel costs. In order to reduce material-related logistics costs, healthcare 

academics and practitioners alike acknowledge the potential of applying quantitative methods. 

These methods have already proven their potential in other industries, such as manufacturing or 

service, but need to be modified to account for healthcare-specific problem settings. Moreover, 

the existence of several implementation difficulties is obvious due to the operational complexity 

of hospital logistics as well as organizational barriers. Further, staff entrusted with logistics 

activities in hospitals often have no logistics background, which makes implementation of 

sophisticated concepts difficult. Optimal solutions are overruled or tend to be policy- and 

experience-driven rather than data-driven. 

The purpose of this chapter is to present the state of the art of research in hospital materials 

logistics with a specific focus on publications applying quantitative methods. A comprehensive 

literature review is conducted. Our contribution is threefold: First, we provide guidance for 

researchers by categorizing the literature and identifying major research streams; second, we 

methodologically discuss the publications; and third, we identify future research directions. 

Four major research fields are identified, of which three, i.e., (1) supply and procurement, (2) 

inventory management, and (3) distribution and scheduling, apply optimization techniques. The 

remaining identified research field, (4) holistic supply chain management, comprises a rather 

qualitative field of literature. In total, 145 publications are identified, categorized, and discussed 

thematically and methodologically. The largest thematic category in terms of number of 

publications is (2) inventory management (66 publications) over the entire time span, followed 

by (4) holistic supply chain management (38 publications), (1) supply and procurement (25 

publications), and (3) distribution and scheduling (16 publications), respectively. The number of 

publications in the field of hospital logistics has been growing over the last years. For example, 

during the previous three years in scope, the total number of publications nearly doubled 

compared to the years before. Apart from their relevance for academics, the results of this 
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chapter and the overview it provides should also be of interest for practitioners in hospital 

materials management functions. 

Hospital materials management is a steadily growing field of research in which further 

promising research opportunities exist. Opportunities are presented in detail in the respective 

sections. In summary, we identify five overarching research possibilities: First, when integrating 

the four identified major research streams with applied methodologies, it becomes apparent that 

the field of (4) holistic supply chain management offers further research potential with regard to 

the application of quantitative techniques. So far, integrated optimization across the entire 

supply chain has not yet been performed in the hospital logistics context. Second, answering the 

question of how to measure performance in hospital logistics is also a promising future research 

opportunity. Metrics from other industries, e.g., throughput time, are not directly applicable to 

hospital logistics, as they do not take into account the patient care specifics. Third, future 

research should continue to incorporate the healthcare and hospital view into operations 

management, and transfer established concepts from other industries into healthcare while 

accounting for industry specifics. In doing this, it is of pivotal importance to adjust research 

according to regional specifics due to the high importance of national legislation and strongly 

regulated nature of the healthcare industry. Fourth, it could be worthwhile to assess which 

enablers exist that could further push the implementation of sophisticated logistics concepts in 

hospitals. Potential enablers include consistent information technology systems and data 

standards across hospitals, clearly defined data interfaces between hospitals and their suppliers, 

or the introduction of uniform RFID technology. Fifth, in this context, it could be worthwhile to 

more specifically assess why healthcare has not yet reached the same professional level as other 

industries and to identify and evaluate potential implementation barriers. However, as 

healthcare is lagging behind in terms of the implementation of quantitative tools as well as SCM 

practices, other more successful industries should stand as an example for future research. 
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3 A column generation approach for strategic workforce sizing 

In Chapter 3, we address the strategic workforce sizing problem for dimensioning the number of 

logistics assistants in hospitals' logistics divisions. A column generation-based solution 

approach is presented. 

3.1 Introduction 

Healthcare costs have outgrown GDP increases in all OECD countries in recent years (OECD 

Publishing 2015), with hospitals accounting for approximately 30% of healthcare expenditures 

(OECD Publishing 2013). In hospitals, the two single largest cost items are personnel costs and 

logistics-related costs, respectively (Poulin 2003, Ross & Jayaraman 2009). Consequently, one 

major challenge for hospital managers is containing costs, without negatively affecting the 

quality of patient care. A second major challenge results from the current and projected shortage 

of qualified medical staff. This holds, for example, for nurses in Germany and in the United 

States of America (Bundesagentur für Arbeit/German Federal Employment Agency 2014, U.S. 

Department of Labor 2013). Hospital managers found numerous levers for coping with the 

challenges mentioned above. Strong potential has been identified in scheduling workers more 

effectively and efficiently (Van Den Bergh et al. 2013). Additionally, logistics process 

improvements are of high relevance, in particular the application of logistics concepts that are 

already being successfully applied in more mature industries, such as manufacturing (De Vries 

& Huijsman 2011). Another promising cost containment lever lies within relieving medical staff 

of tasks not related to patient care. This allows physicians and nurses to focus on their core 

business, namely caring for patients (Jackson Healthcare 2014). 

In light of the identified levers, hospitals introduce a new type of employee, referred to as 

logistics assistants to take over logistics tasks from medical staff. It is suggested that nurses 

spend approximately 10% of their time on logistics tasks (Landry & Philippe 2004). Relieving 

them of tasks such as stock replenishments and order placements, cleaning, laundry collection 

and distribution, or food preparation and disposal could increase nurses' efficiency in terms of 

net time for patient care, improve job satisfaction, and thus enhance the quality of care. The 

nature of the respective tasks is bivalent: Most tasks are rather fixed in time, because they are 

linked either to patient care schedules, such as food distribution, or to hospital-wide logistics 

processes. For example, this holds for certain material transport tasks that need to be performed 

within fixed distribution slots. Other tasks, however, such as cleaning or inventory 

replenishment, are more flexible in nature, as they merely need to be performed within one day, 

for example. Tasks may be linked by precedence relations, i.e., preceding tasks have to be 

finished before the next task may start. 
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When introducing logistics assistants, hospitals are faced with the problem of dimensioning 

their number. After defining which tasks ought to be reassigned, the number of required 

assistants needs to be defined. Our approach for this strategic optimization problem is twofold: 

First, we leverage the flexible nature of logistics tasks as stated above. Second, we incorporate 

flexible shift scheduling for logistics assistants, meaning that start times and shift lengths are 

arbitrary, while regulatory requirements are fulfilled. Our objective is to find the optimal, i.e., 

the minimum number of logistics assistants and provide a feasible schedule of all performed 

tasks. We do not explicitly assign tasks to logistics assistants, i.e., the task assignment problem 

is not addressed in our work. 

The contribution of this chapter of the thesis is as follows: We develop a new problem 

formulation as a mixed-integer program (MIP) that integrates shift scheduling and task 

scheduling. We introduce a column generation-based algorithm to generate high-quality 

solutions to our problem in a reasonable time. As part of our approach, we present a lower 

bound for staff minimization problems, i.e., with an unknown number of available workers. We 

demonstrate the bound's superior behavior against standard column generation for our test 

instances. We apply our model to the use case of logistics assistants in hospitals. To do so, we 

use three real-world test instances in a hospital with 1,800 beds and approx. 5,300 employees. In 

total, we demonstrate the applicability of our solution approach based on 48 test instances that 

are based on real-world instances and additionally generated instances. Furthermore, we analyze 

the value of flexibility in both shift and task scheduling. Based on our real-world test instances, 

we demonstrate that efficiency gains of 40% to 49% are possible by incorporating flexibility 

compared to a case with reduced flexibility. While we illustrate the applicability of our 

approach based on a use case, the model is limited neither to logistics assistants nor to hospitals, 

but has a wide range of potential application areas in healthcare and beyond, e.g., in production 

support functions or in the service industry. 

The remainder of this chapter is structured as follows: In the following Section 3.2 we frame the 

problem by reviewing the relevant literature. A detailed problem description and the 

formulation of the MIP are provided in Section 3.3. We present our solution approach in Section 

3.4 and perform a numerical study in Section 3.5. Section 3.6 concludes this part of the thesis 

with a summary and provides a short outlook to future research opportunities. 

3.2 Literature review 

Hospital logistics management in general and scheduling problems in particular are growing 

fields of research holding promising research opportunities (see Chapter 2). In this thesis, we 

combine flexible shift scheduling and task scheduling. In order to give an overview of previous 
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work, we outline the relevant literature in the respective fields and provide insights on combined 

approaches. 

Flexible shift scheduling. Comprehensive reviews exits on personnel scheduling in general 

(Ernst et al. 2004, Brucker et al. 2011, Van Den Bergh et al. 2013). Van Den Bergh et al. (2013) 

find that nurse scheduling and scheduling in the healthcare sector comprise the biggest 

application areas for staff scheduling problems. Moreover, there are dedicated reviews on nurse 

scheduling (Cheang et al. 2003, Burke et al. 2004), as well as a review on physician scheduling 

(Erhard et al. 2016). Our model relies on an implicit shift scheduling formulation, which is 

different from predefined shift types. Predefined shift types are characterized by fixed shifts that 

cover daily demand based on a set covering approach. The initial idea of implicit shift 

scheduling originates from Moondra (1976), who defines sets of variables for the amount of 

shifts that start and end in every time period. This idea is picked up by various authors, for 

example Bechtold & Jacobs (1990), who rely on an implicit model formulation to schedule 

lunch breaks. Thompson (1995) presents an implicit model that states that shifts starting in a 

specific time period have to end within one of the subsequent periods. Çezik et al. (2001) 

generate weekly shift rosters with two rest days. Time-based workload considerations are 

included in Burke et al. (2006). A further publication by Côté et al. (2011) employs new implicit 

modeling ideas based on context-free grammars to model shift constraints. In their work, a 

feasible shift is represented by a word. Closest to our approach is the scheduling literature 

building on flexible shift formulations (Brunner et al. 2009, 2010, Brunner & Edenharter 2011, 

Stolletz & Brunner 2012). 

In terms of solution techniques, column generation-based approaches are widely used for staff 

scheduling problems. Bard & Purnomo (2005) rely on column generation to solve a nurse 

scheduling problem that incorporates individual preferences. Brunner & Edenharter (2011) 

employ a comparable column generation-based approach for physician scheduling with 

different experience levels. Beliën & Demeulemeester (2007) focus on decomposition 

approaches and compare staff-decomposed and task-decomposed column generation 

approaches. Building on column generation, branch-and-price approaches are furthermore 

employed in staff scheduling problems in healthcare: Jaumard et al. (1998) employ a branch-

and-price approach for mid-term nurse scheduling, while Brunner et al. (2010) use a similar 

approach but deal with mid-term physician scheduling. Individual preferences are incorporated 

by Purnomo & Bard (2007), while Beliën & Demeulemeester (2006) employ a branch-and-price 

approach for scheduling hospital trainees. 

Task scheduling. Regarding the task scheduling part of our model, there are strong parallels 

with resource-constrained project scheduling problems (RCPSP). Recent developments in this 
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area are covered by a book by Schwindt (ed.) & Zimmermann (ed.) (2015). In particular, some 

parallels exist between our work and RCPSPs with flexible resources or multi-skilled resources. 

For an introduction to this topic, we refer to Correia & Saldanha-da-Gama (2015). A general 

overview of variants and extensions of the RCPSP is provided by Hartmann & Briskorn (2010). 

Integrated approaches. Only few publications exist that integrate shift and task scheduling. 

We present the existing literature in two steps. First, we discuss two previous papers in detail 

that are close to our approach and work out differences and similarities to this chapter of our 

work. Second, we extend the scope of the literature review and provide a broader overview of 

publications that apply integrated models both in the healthcare industry and beyond. 

Table 3.1: Literature on integrated shift and task scheduling applying column generation 

 

There are two publications that use column generation approaches to solve integrated shift and 

task scheduling problems (see Table 3.1). Beliën & Demeulemeester (2008) present an 

integrated model for surgery and nurse scheduling on a tactical level. In the task scheduling part 

of their model, they define surgery schedules, while in the staff scheduling part, the nurses' 

days-off are set in line with an explicit shift model. In surgery scheduling, they allocate resource 

blocks to surgeons subject to capacity constraints. They solve the integrated problem by relying 

on a branch-and-price algorithm. Maenhout & Vanhoucke (2016) present a branch-and-price 

algorithm for integrated project staffing and task scheduling to perform days-on and -off 

scheduling for a homogenous workforce. In a prior work by the same authors, different 

scheduling policies are evaluated for the presented problem type (Maenhout & Vanhoucke 

2015). In staff scheduling, our work differs from the previous publications in that we rely on an 

implicit shift formulation. Regarding task scheduling, Maenhout & Vanhoucke (2016) only 

consider precedence constraints among tasks, while our model also incorporates time windows. 

The problem decomposition of the two previous works differs. Beliën & Demeulemeester 

(2008) decompose their problem into two subproblems, i.e., a shift scheduling subproblem and a 

task scheduling subproblem. The shift scheduling subproblem is solved by relying on a shortest 

path (ShP) formulation. Maenhout & Vanhoucke (2016) include the task scheduling part of their 

Model characteristics Solution approach

Literature Objective Application Methodology

Days

-on/-off

Explicit 

shifts

Implicit 

shifts

Prece-

dence

Time 

windows 1 SP 2 SP IP ShP IP ShP

Beliën & Demeulemeester (2008) Minimize number of 

employees

Nurse and surgery 

scheduling

X X Branch & price X X X

Maenhout & Vanhoucke (2016) Minimize staff 

costs

n/a 

(methodological)

X X Branch & price X X

This section of the thesis Minimize number of 

employees

Sizing of logistics 

assistants

X X X Column generation X X X X

Decomp. Shift SP

n/a

(no T-SP)

Task SPStaff scheduling Task scheduling

n/a 

(surgery sched.)
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work in the master problem and consequently have only one subproblem type. While our 

algorithm relies on a decomposition based on two subproblem types, we also compare both 

approaches in detail in a computational study. Next to our solution approach and the presented 

lower bound, we consider this a contribution of our work. In summary, this chapter of the thesis 

at hand is the first to perform implicit shift scheduling in an integrated model and to incorporate 

time windows in task scheduling. In addition, we present a new solution approach. 

Beyond the presented publication by Beliën & Demeulemeester (2008), integrated surgery and 

staff scheduling has repeatedly been applied in the healthcare sector. Commonly, both tasks are 

performed in an iterative process starting with surgery scheduling, followed by nurse scheduling 

and assignment (Di Martinelly et al. 2014). However, only few attempts have been made to 

incorporate them into one holistic approach: Di Martinelly et al. (2014) integrate elements of 

nurse scheduling with planning and scheduling of surgeries on an operational level. Moreover, 

integrated approaches for surgery and physician scheduling have been presented (Van Huele & 

Vanhoucke 2014, 2015). None of the publications, however, incorporate precedence constraints 

and flexible shifts. Maenhout & Vanhoucke (2013) develop an integrated model that provides 

the required staff level of nurses for several wards. Also, they perform nurse staffing based on 

each ward's staffing policy. A branch-and-price approach is applied to solve their problem. In an 

early work, Venkataraman & Brusco (1996) develop a comparable integrated model in order to 

assess workforce management policies. A recent publication by Kim & Mehrotra (2015) applies 

a two-stage stochastic integer programming approach to schedule nurses and derive staffing 

decisions. 

Beyond the healthcare sector, integrated approaches exist in the area of staff sizing and 

dimensioning. Beliën et al. (2013) integrate shift scheduling of an aircraft line maintenance 

company with staff dimensioning; however, they do not incorporate task scheduling. They 

formulate a MIP that is solved based on problem reformulation and a tabu search algorithm. The 

following publications integrate task scheduling with staff scheduling but do not include either 

task relations or flexible shifts. Moreover, none of the publications below is in the healthcare 

context. An early work in integrated planning and scheduling is the publication by Alfares & 

Bailey (1997), who perform task planning and manpower scheduling. They aim to minimize 

project durations and define the days-off, as well as to minimize staffing costs for construction 

projects. To do so, they present an integer programming-based and a heuristic solution 

procedure. In a related work, Alfares et al. (1999) incorporate multiple labor categories. Bailey 

et al. (1995) similarly integrate project task planning and manpower scheduling and develop a 

MIP that is solved heuristically. In the two latter publications, the integrated models outperform 

the iterative, two-step models. Wu & Sun (2006) develop a mixed-integer, non-linear program 
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for simultaneously planning project tasks for multiple projects and assigning workers to 

projects. They include learning effects of workers and present a genetic algorithm to solve their 

problem aiming to minimize outsourcing costs. The tasks are planned within time windows, but 

unlike in our work, precedence relations are neglected. Heimerl & Kolisch (2010) and Kolisch 

& Heimerl (2012) simultaneously schedule IT projects and assign human resources with 

multiple skills: Heimerl & Kolisch (2010) develop a MIP and show its superiority compared to 

heuristics used in practice. Kolisch & Heimerl (2012) introduce a metaheuristic based on a 

generalized minimum cost flow network that decomposes the problem into a binary scheduling 

problem and a continuous staffing problem. A variation of this problem is the simultaneous 

planning of project tasks and assignment to employees: An exemplary application in the 

chemical industry is performed by Bassett (2000). The output comprises a monthly assignment 

of employees to job roles. Both a mathematical programming model and a simple heuristic are 

developed to solve the problem. Valls et al. (2009) consider a comparable task planning and 

resource assignment problem, which they solve with a hybrid genetic algorithm that combines 

local search with genetic population management. Drezet & Billaut (2008) schedule a project 

and assign employees with different skill levels to the respective tasks. A MIP is formulated to 

which a greedy algorithm is applied to obtain a feasible solution, followed by a tabu search 

algorithm to improve the solution. A related problem is discussed in the work of Smet et al. 

(2014). They assign tasks to a defined number of multi-skilled workers, whose working time 

schedules have been determined beforehand. They introduce a two-phase matheuristic 

approach. A related problem – the combination of shift scheduling and machine job shop 

scheduling – is presented in the following two publications: Artigues et al. (2009) combine 

integer linear programming techniques and decomposition-based constraint programming to 

better balance production costs and employee satisfaction. Guyon et al. (2014) introduce two 

comparable solution procedures for a similar problem. They base their solution strategy first on 

decomposition and cut generation, and second on a hybridization of cut generation with a 

branch-and-bound approach. 

In summary, a number of earlier publications integrate shift scheduling aspects with task 

scheduling. However, to the best of our knowledge, our approach is unique through the 

combination of a task scheduling formulation with implicit shift scheduling. Consequently, this 

chapter of the thesis fills a research gap both from a methodological perspective and through its 

application to healthcare. 
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3.3 Problem description and optimization model 

Section 3.3 comprises three parts. We describe the problem in the first part, then describe the 

MIP in the second. In the last part of this section, we present potential model extensions to our 

generic model. 

3.3.1 Problem description 

The context of our problem in this chapter is strategic in nature, aiming to find the minimum 

number of workers required to fulfill all tasks. We therefore need to define a task schedule 

respecting time windows and precedence relations, as well as shift types and their occurrences. 

The work performed by logistics assistants is considered the resource supply, while the tasks 

represent resource demand. It has to be ensured that at any point in time, resource supply at least 

matches resource demand, meaning that all logistics tasks are performed (see Figure 3.1). By 

leveraging full flexibility in supply and demand, we can ensure that demand is always met. The 

resource supply in any time period constitutes all contracted workers on duty at that time. 

Compared to nurses, logistics assistants can be employed very flexibly. Shifts are flexible, 

meaning that the start time and the duration of each shift are flexible, as long as legislative 

constraints are fulfilled. The resource demand in each time period is the sum of required 

resources in that time period. The required resources derive from the tasks to be performed. Our 

model innovatively combines two existing modeling approaches: flexible shift scheduling (e.g., 

Brunner et al. 2010) for the supply and a task scheduling approach considering precedence 

relations and time windows, as in RCPSPs (e.g., Schwindt (ed.) & Zimmermann (ed.) 2015), for 

resource demand. Consequently, we innovatively apply demand management to shift scheduling 

problems. Please note, however, that we do not solve the operational problem of task 

assignment, i.e., assigning specific employees to tasks, see Ernst et al. (2004). The overall 

model logic is shown in Figure 3.1. We develop the model and our solution approach for the use 

case of logistics assistants in hospitals. However, there are numerous other application areas 

within and beyond the healthcare industry. Within the healthcare industry, we identify 

comparable problem structures when integrating master surgery scheduling and physician or 

nurse scheduling (see Section 3.2). Beyond the healthcare industry, comparable problems occur 

in production support functions. In line production, for example, we think of logistics tasks such 

as buffer stock refilling or other activities that are not directly linked to the assembly line cycle. 

Comparable activities in job shop production settings are also conceivable. Moreover, service 

operations comprise a potential application area beyond healthcare. In particular, we point to 

facility management of large office complexes, which includes cleaning, disposal, and 

maintenance activities. 
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Figure 3.1: Model logic: Matching supply and demand 

3.3.2 Mixed-Integer Program 

We consider a cyclic problem with a planning horizon of one week. This is in line with existing 

approaches in the shift scheduling literature and also reflects the repetitive nature of logistics 

tasks by weeks. Most of the logistics tasks need to be performed daily and in rather fixed time 

windows, e.g., food distribution. Other tasks, however, such as material supply or cleaning, 

have larger time windows and do not need to be performed every day.   is the set of all 

activities/tasks    .   is the set of all time periods    . Possible start windows of each 

task   are depicted in   
     . For each task, the set of possible start periods   

      is defined as 

the range from the earliest start time   
         to the latest start time   

      . Consequently, it 

holds that   
         

             
         . The shifts need to be defined for workers 

           , where   is sufficiently large, i.e., reflecting the labor market for low-

skilled logistics workers. When building the model, we limit the number of workers but have to 

select a sufficiently large number in order to rule out potential infeasibilities. We assume that all 

workers are equally qualified, which is reasonable for logistics assistants. As a consequence, all 

tasks can be performed by all workers. Shifts are flexibly scheduled, meaning that shift starts, 

durations, and consequently their end times are flexible. They are defined by the shift 

scheduling parameters, being the minimum shift length           and the maximum shift 

length          . Moreover, a sequence of shifts is constrained by a maximum weekly working 

time          and a minimum rest time between two consecutive shifts      . All presented 

shift scheduling parameters are measured in time periods. In our model, we assume full 

flexibility of logistics assistants. Thus, we neglect any potential unwillingness to work in 

flexible shifts. However, unlike nurses, logistics assistants are rather low-skilled, which limits 

their bargaining power towards employers. An analysis of how shift flexibility impacts the 

≥
Task scheduling

(Resource demand)

Task restrictions

Shift scheduling

(Resource supply)

Shift restrictions
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required number of logistics assistants is provided in Subsection 3.5.3. Resource demand is 

determined by all active tasks in a time period and their respective demand   . We further 

assume that the duration of each task    is deterministic and known, which is reasonable for the 

logistics tasks in scope. Moreover, the resource demand of each task is constant while it is 

performed. The set   
    

 with     
    

        
    

    constitutes all tasks that are 

direct predecessors of task  . 

To formulate the MIP, we introduce the following binary decision variables:    
      take the 

value 1 if task   starts in time period   and 0 otherwise. The variables    
      are 1 when a shift 

of worker   starts in time period   and 0 otherwise. When worker   works in period  ,     is 1 

and 0 otherwise. Decision variables   
     equal 1 if worker   is employed and 0 if not at costs 

     . In order to reflect the work demand in period  , the non-negative integer decision 

variables    are introduced. As a modeling device to achieve feasibility in early iterations, we 

introduce the auxiliary non-negative integer decision variables   , representing the number of 

demand undercoverage in period  . Their costs      are set sufficiently high compared to the 

costs of logistics assistants to ensure that no demand undercoverage exists in any optimal 

solution. 

For the remainder of this section, we apply the following notation: Sets are indicated by 

calligraphic capital letters, their cardinality with capital letters. Indices are represented by 

lowercase letters and parameters by capital letters with indices. Decision variables are lowercase 

letters with indices. 

Sets with indices 

   set of time periods with index             

  
      set of possible start periods of task   with index     

      

      
             

          

   set of tasks with index             

  
    

 set of direct predecessors of task   with index     
    

        
    

    

   set of workers with index             

Task scheduling parameters 

    resource demand of task   for each time period (number of workers) 

    length of task   in time periods 

  
         earliest start time of task   
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       latest start time of task   

Shift scheduling parameters 

          minimum shift length in time periods 

          maximum shift length in time periods 

       minimum rest time periods between two consecutive shifts 

         number of working periods per planning horizon, e.g., per week 

Cost parameters 

       cost of employing a logistics assistant 

      cost of assigning an outside worker per period 

Decision variables 

   
       1 if task   starts in period  , 0 otherwise 

   
       1 if worker   starts to work in period  , 0 otherwise 

     1 if worker   works in period  , 0 otherwise 

  
      1 if worker   is employed, 0 otherwise 

    work demand in period   

    amount of demand undercoverage in period   

The objective function is displayed in (1). While the goal of this chapter of the thesis is to find 

the minimum number of employees, we show the objective function for the more general case 

of cost minimization. In order to obtain the minimum number of employees as the objective, 

      has to be set to 1. The first term represents the cost of employing logistics assistants, 

each with a cost of      . The second term represents the cost of assigning demand 

undercoverage at a cost of      per period of an outside assignment. 

Objective function 

                 
    

   

        
   

 
(1) 

The constraints can be divided into three blocks, i.e., the shift scheduling constraints (2) to (12), 

the task scheduling constraints (13) to (17), and the joint constraints (18) and (19). 
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Shift scheduling constraints 

    

   

           
          (2) 

   
                                  (3) 

   
                   (4) 

    

             

   

             
      

       

   
    

             
  

(5) 

    

 

   

     

               

   

             
      

       

   
             

    
  

(6) 

                     
      

       

   
    

             
(7) 

                       
      

       

   
           

      
  

(8) 

        

   

   

         

 

           

         
      

       

              
(9) 

        

   

         

         
      

       

                
(10) 

       
                     (11) 

  
                (12) 

The shift scheduling constraints (2) to (12) define the shift scheduling problem and are similar 

to those of previous work (e.g., Brunner & Edenharter 2011). Constraints (2) ensure that the 

maximum working time is not exceeded by limiting the sum of all working periods in the 

planning horizon for each worker. Constraints (3) link    
      and    , forcing    

      to be 1 if 

    changes from 0 to 1, i.e., a new shift begins. Constraints (4) comparably link    
      and     

for the start of the planning horizon. Non-linear constraints (3) can easily be linearized, as 

shown in the appendix. Constraints (5) and (6) set the minimum shift length. Constraints (6) are 

required to cover the end of the planning horizon. Comparably, constraints (7) and (8) set the 
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maximum shift length during and at the end of the planning horizon. Constraints (9) and (10) 

ensure that a minimum rest time of       is adhered to between two consecutive shifts. 

Constraints (9) are necessary to cover the beginning of the planning horizon when the current 

time period   is smaller than or equal to the minimum rest time      . Constraints (6), (8), and 

(9) make the schedules cyclic. Constraints (11) and (12) are the binary constraints. 

Task scheduling constraints 

    
     

  
      

    
        

        (13) 

     
     

  
      

    
        

      
     

  
      

    
        

    

      

    
    

   

(14) 

        
     

        
       

        
                

 

   

         (15) 

   
                     

      (16) 

           (17) 

Constraints (13) to (17) represent the task scheduling constraints. They are derived from 

standard literature (e.g., Schwindt (ed.) & Zimmermann (ed.) 2015). Constraints (13) ensure 

that each task is performed. Constraints (14) make sure that, for successive tasks, all 

predecessors are finished before the successor begins. Constraints (15) add up the demand of all 

tasks   at time period  , which is represented by auxiliary variables   . Constraints (16) ensure 

that     are binary, while    are non-negative and integer according to constraints (17). 

However, the integrality condition can be relaxed because    will always be integer, with    

being integer and    
      being binary according to (15). 

Joint constraints 

    

   

            (18) 

           (19) 

Constraints (18) ensure that for each time period  , the resource supply at least matches resource 

demand. These constraints link the shift scheduling part of our model to the task scheduling 

model part. Constraints (19) define that variables    are non-negative and integer, while in line 

with   , the integrality condition can be dropped. 
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3.3.3 Model extensions 

The model described above is generic and can easily be extended. In the following, we present 

some possible model extensions known from the shift scheduling literature. Regarding the 

nomenclature, we add lowercase letters to the original reference if additional constraints are 

added, while replaced constraints are named according to their original reference and "*". 

Breaks. Shifts exceeding certain durations usually contain breaks. During breaks, the available 

resource capacities are reduced. Thus, modeling breaks creates more detailed (and more 

realistic) shift rosters, at the price of increased complexity. Breaks could be integrated into our 

model as in Brunner et al. (2009). 

Additional decision variables 

   
      1 if worker   is on break in period  , 0 otherwise 

Additional shift scheduling parameters 

      minimum number of working periods before a break 

       minimum number of working periods after a break 

Constraints 

    
     

                          

        

    
      

       

               
(10a) 

    
     

                 

                          

             

       

   
    

        
  

(10b) 

    
     

   

     
     

   

      (10c) 

   
                     (11a) 

The additional constraints ensure that a break is assigned to each shift, but not before      

periods after the start of a shift (10a) and not after       periods before the end of a shift (10b). 

Constraints (10c) ensure that the number of breaks is equal to the number of shift starts, i.e., in 

combination with (10a) that each shift contains one break. The additional decision variables 

   
      are binary decision variables and are introduced in (11a). The joint constraints (18) have 

to be modified accordingly in order to reflect that workers who are on a break do not provide 

resource supply. The updated constraints are displayed in (18*). 
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            (18*) 

Different qualification levels. Both workers and tasks could inhibit different qualification 

levels. For example, there could be some tasks      that can only be performed by experienced 

workers     , although experienced workers can also perform regular tasks. We present a 

straightforward model extension. 

Additional sets with indices 

      set of tasks that require an experienced worker with index        

                 

      set of experienced workers with index                     

Additional decision variables 

  
   

  work demand for experienced workers in period   

Constraints 

        
     

        
       

        
                

 

      

   
   

      (15a) 

  
   

         (17a) 

    

      

      
   

      (18a) 

The demand for experienced workers is defined in (15a). Constraints (18a) ensure that a 

sufficient number of experienced workers are scheduled. The work demand for experienced 

workers is represented by the non-negative integer decision variables   
   

, which are 

introduced in (17a). 

Full-time and part-time workers. Our base model assumes that all workers work the same 

(maximum) number of periods and are associated with the same costs. However, there might be 

full-time or part-time employees. In an extreme case, each worker could have an individual 

(maximum) number of working periods associated with individual costs. Moreover, the shift 

parameters could be worker-specific, for example due to employment contracts with a varying 

number of maximum working periods. In that case, the cost parameters and shift scheduling 

parameters would be worker-specific, which would be reflected by an additional index   for the 

respective parameter. 
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Linking tasks to workers. Our base model ensures that the required number of workers is 

available in each time period. We do allow task splitting, e.g., one logistics assistant starts 

serving food for 30 minutes and another logistics assistant takes over afterwards. Although this 

is current practice in our partner hospital, there might be tasks that should not be split, or where 

a dedicated assignment of workers to tasks is required. Obviously, this extension leads to a more 

detailed level of planning and to increased computational complexity. We introduce the binary 

decision variables    
     that are 1 if worker   is assigned to task   and 0 otherwise. 

Additional decision variables 

   
      1 if worker   is assigned to task  , 0 otherwise 

Constraints 

   
              

            

      

   

          
          (18b) 

    
    

   

         (18c) 

    
     

 

              

     
     

 

              

      
        

     

          , 

   

      
           

            

    
  

          

  
         

   
  

(18d) 

   
                      (19a) 

Constraints (18b) ensure that if a task is started and a worker is assigned to that task, the worker 

is assigned to a shift during all periods the task is active. Due to (18c), enough workers are 

assigned to each task, and (18d) forbid any overlap between two activities assigned to the same 

worker. Constraints (19a) define that    
     are binary decision variables. 

Controlling days-off. Our generic model limits the maximum number of working periods, but 

not the maximum number of working days in the planning horizon. One might wish to ensure 

that a minimum number of days-off is adhered. In the formulation presented below, a day-off is 

defined as a day without a working period. Please note that other definitions are possible, for 

example a day without a shift start. In this case, one would need to replace     with    
     . 

Additional sets with indices 

   set of working days with index             
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Additional parameters 

      minimum number of days-off in the planning horizon 

Additional decision variables 

   
   

  1 if day   is a day-off for worker  , 0 otherwise 

Constraints 

         
   

 

    ,       

 
      

 
           

(10d) 

    

    

            

      
   

     ,     (10e) 

    
   

   

           (10f) 

   
   

                 (11b) 

We introduce the set  , which represents all days of the planning horizon. The newly 

introduced binary decision variables    
   

 are 1 if day   is a day-off for worker   and 0 

otherwise (11b). Ensuring that a minimum number of days-off is adhered can be incorporated 

by adding additional constraints. Constraints (10d) ensure that, whenever there are active shifts 

during a day, this day must not be a day-off. In parallel, constraints (10e) ensure that when there 

are no working periods during one day, that day is a day-off. We ensure that a minimum number 

of days-off      is adhered in constraints (10f). 

3.4 Solution approach 

In Section 3.4, we present our approach to solve the integrated strategic shift and task 

scheduling problem. The presented MIP cannot be solved with a standard solver within an 

acceptable time (see Section 3.5). The model described in Subsection 3.3.2 is a combination of a 

flexible shift scheduling problem and a task scheduling problem. By fixing the supply vector, 

i.e., eliminating shift flexibility, our model can be reduced to a RCPSP. As the RCPSP is known 

to be NP-hard in the strong sense (Blazewicz et al. 1983), our integrated problem is NP-hard in 

the strong sense as well and can consequently only be solved efficiently for small problem 

instances. 

We propose an exact algorithm for our problem that comprises three major steps: First, we 

develop a tight lower bound for our problem. In order to do so, we apply a Dantzig-Wolfe 
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decomposition and use a column generation approach to solve the reformulation, which we 

terminate once the best lower bound has been proven. In the second step, we heuristically find a 

feasible start solution for our optimization problem, leveraging the columns generated in the 

first step and additionally generated columns using a sophisticated heuristic procedure. Third, 

our problem is solved as a MIP in the formulation as presented in Subsection 3.3.2 with a 

standard solver, albeit benefiting from the information gathered in steps one and two. We 

provide the lower bound as a hard constraint and use the start solution to warm-start the MIP 

(see Figure 3.2). 

In the following three Subsections 3.4.1 to 3.4.3, we present the problem reformulation and the 

resulting master problem and subproblems. In Subsection 3.4.4, we introduce our lower bound 

to terminate the column generation. We then present the method to find a valid start solution 

(see Subsection 3.4.5), after which we summarize the solution algorithm. Additionally, we 

present an alternative decomposition approach. 

 

Figure 3.2: Overview of the solution approach 

3.4.1 Master Problem (MP) 

We reformulate the MIP based on a Dantzig-Wolfe decomposition. The problem decomposes 

by shift schedules and task schedules, which yields two subproblems (SPs) and one master 

problem (MP). The MP coordinates the SPs and contains the joint constraints (18) and (19). S-

SP, i.e., the shift SP, contains the shift scheduling constraints (2) to (12) and generates feasible 

shift schedules. T-SP, i.e., the task SP, generates task schedules and contains the task scheduling 

constraints (13) to (17). For the remainder of this chapter, we apply the following nomenclature: 

A shift schedule is a sequence of working periods, indicated by 1, and off-periods, indicated by 

0. The resource supply is defined by the sum of all active shift schedules multiplied with the 

number of logistics assistants working in the respective schedule. Shift schedules are 

represented by the set  , with     representing one element thereof. In order to indicate 

Solve MIP building on (1) and (2)

Find lower bound Find good start solution
1 2

3

 Column-generation approach: Master problem coordinates 

two subproblems

 Early termination once best lower bound has been found

 Choose high quality task schedules

 Generate well fitting shift patterns

 Solve master problem as integer program relying on 

columns from (1) and additionally generated columns

 Set lower bound from (1) as hard constraint

 Leverage start solution from (2) to warm-start solution 

procedure

 Solve enhanced MIP to optimality
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whether a period is a working period or an off-period in schedule  , we introduce the binary 

parameter     that describes the parameter vector     for all  . A task schedule constitutes all start 

periods of every task   in the planning horizon and is represented by set  . As a consequence, 

task schedule     defines the resulting resource demand vector      that describes    for all  . 

In the MP, the respective demand in period   of task schedule   is represented by the 

parameter    . We further introduce additional decision variables. The binary variables    

indicate whether task schedule   is selected, while the integer variables    represent the number 

of employees working in shift schedule  . 

Sets with indices 

   set of task schedules with index             

   set of shift schedules with index             

Parameters 

     1 if shift schedule   is active in period  , 0 otherwise 

     work demand of task schedule   in period   

Decision variables 

    1 if task schedule   is selected, 0 otherwise 

    number of workers in shift schedule   

In the following, we state the MP. 

Master problem 

                 
   

        
   

 
 

(20) 

             

      
   

       

   

           (21) 

   

   

    (22) 

           (23) 

           (24) 

              (25) 
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The objective function (20) minimizes the total costs and is equal to the objective function of 

the (original) MIP. The total costs constitute the number of employees working in one specific 

shift schedule    multiplied with the cost per shift plus the cost for demand undercoverage. 

Constraints (21) are the key joint constraints that ensure that in any period  , the total resource 

supply at least equals resource demand. They equal constraints (18) of our MIP formulation. 

Constraint (22) forces that one task schedule is chosen. For modeling reasons, we do not claim 

equality (= 1) but use a greater-than-or-equal-to relationship. As selecting more than one task 

schedule negatively impacts our objective, only one schedule is chosen in all optimal solutions. 

Constraints (23) and (25) set the newly introduced decision variables    non-negative integer 

and    binary, respectively. If all potential shift and task columns are included in MP, it is 

equivalent to the original MIP formulation as presented in Subsection 3.3.2 with a huge number 

of columns. 

We add columns to our MP by solving the two subproblems iteratively. During column 

generation, the search for new columns is guided by the dual problem of the linearized MP. In 

this restricted MP, the integrality and binary conditions of constraints (23), (24), and (25) are 

dropped and    and    are treated as continuous variables. As the solution space of both 

subproblem types is bounded, their solutions mark extreme points of the Dantzig-Wolfe 

reformulation, i.e., the MP-LP model. Please note that we apply the following nomenclature: 

We refer to the restricted problem as the linear programming master problem MP-LP. In 

contrast, we refer to MP-IP when the integrality conditions of constraints (23), (24), and (25) 

are adhered to. The corresponding dual problem of MP-LP is provided below. 

Dual master problem 

             (26) 

             

            

   

        (27) 

      

   

          (28) 

             (29) 

          (30) 

     (31) 
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For the dual MP-LP, we introduce additional decision variables, namely   , which are the dual 

variables of constraints (21) and   being the dual variable value of constraint (22). The 

objective function and the constraints are derived from duality. 

3.4.2 Shift scheduling subproblem (S-SP) 

Once the primal MP-LP is solved to optimality with the existing subset of columns, we use S-

SP to generate new shift schedules. New shift schedules are shift columns with negative reduced 

costs, i.e., we are looking for dual infeasibility cuts. The objective function of S-SP, depicted by 

   , is the negative reduced cost of a new shift schedule and is derived from the dual of MP-LP. 

With      being the dual value of constraints (21) of MP-LP, the objective of S-SP is 

depicted in (32). It minimizes the reduced cost of a feasible shift schedule. They are 

independent from worker  , thus we drop index   and decision variables   
     in our S-SP 

formulation. Additionally, we allow    and   
      to be manually set to 0 for periods where no 

tasks are performed, such as during nights. Apart from these changes, the constraints of S-SP 

are the same as the shift scheduling constraints of our MIP, namely constraints (2) to (12). 

                    

   

  (32) 

             

   

   

           (33) 

  
                          (34) 

  
             (35) 
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  (39) 
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                     (40) 

       

   

         

        
                       (41) 

     
                 (42) 

As long as there are feasible solutions of S-SP with      , LP optimality of MP-LP has not 

been proven, i.e., the identified column is dual infeasible and can consequently be added to MP-

LP. Once S-SP is solved to optimality and negative, we add the hereby obtained column to MP-

LP. The new column takes the following shape: 

 

        

   

 

  

      and     are parameters that characterize the new shift schedule. The parameter     

comprises a vector of length   of on- and off-periods 1 and 0, which denotes the new shift 

schedule, where elements    are equal to 1 if in the solution of the subproblem,    equals 1 and 

0 otherwise for all    . 

3.4.3 Task scheduling subproblem (T-SP) 

Comparable to S-SP, where we generate shift schedules, we use T-SP to generate task 

schedules. The objective function of T-SP derives from the dual problem of the MP-LP, with 

    being the dual value of constraint (22) of the MP-LP. New, promising columns have 

negative reduced costs. The objective is to minimize the costs of new task schedules. The 

constraints (44) to (48) of T-SP are the same as the task scheduling constraints of the MIP 

presented in Subsection 3.3.2. In line with the shift scheduling subproblem, we allow    
      to 

be manually set to 0 for periods where no tasks are performed. The T-SP objective function is 

presented in (43). 

              

   

    (43) 

             

    
     

  
      

    
        

        (44) 
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(45) 

        
     

        
       

        
                

 

   

         (46) 

   
                     

      (47) 

           (48) 

In line with S-SP, we call T-SP as long as feasible solutions with       exist. We solve T-SP 

to optimality and add the resulting column to MP-LP. This column contains the demand profile 

of the respective task schedule, which is represented by parameter      of length     Elements 

      represent the demand resulting from the T-SP solution     for all      The task 

column is represented by: 

    

 

     

 

  

We call S-SP and T-SP iteratively one after another. When neither of the subproblems yields a 

valid solution, i.e., no further columns with negative reduced costs are obtained, the solution of 

the MP-LP is proven to be optimal. We have found a valid lower bound of MP-IP and 

consequently of our original MIP (see Subsection 3.3.2). 

3.4.4 Lower bounds 

When running the presented column generation, a large number of iterations is necessary until 

optimality of MP-LP is proven. Optimality is achieved once the optimally solved subproblems 

no longer price out, i.e., no dual infeasibility cuts are found. The slow convergence of the MP-

LP is known as the tailing-off effect, which was first observed by Gilmore & Gomory (1963). 

As our goal of employing the column generation is to find a good integer lower bound of our 

problem, we can terminate column generation before achieving optimality of MP-LP. 

To find a valid lower bound, we leverage information we obtain from the column generation. 

The basic idea is to build on information from MP-LP as well as the two subproblems. Our goal 

is to terminate column generation at iteration   when our current lower bound   
   is larger than 

or equal to our current objective value of MP-LP   , i.e.,   
       We present the lower bound 

in (49). It is valid at any main iteration of column generation, where    and    represent the 
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column indexes of optimal solutions generated by the S-SP and T-SP, respectively. 

Consequently,      and     represent the objective values of the optimal solutions of S-SP and T-

SP. We initialize   
   with    and set   

            
     

   . 

  
              

   

       (49) 

In the less general case where the cost of assigning a worker to one shift schedule is fixed to 1, 

i.e.,         and           , which holds for our test instances, Lübbecke & Desrosiers 

(2005) present a comparable lower bound. For all our real-world test instances, both lower 

bounds yield the same results. Vanderbeck & Wolsey (1996) likewise leverage dual information 

in order to prune nodes in their branch-and-price approach. If the number of employees to be 

scheduled is fixed, lower bounds have been presented by Wolsey (1998) and Brunner & Stolletz 

(2014), which are well known as the Lagrangian bound. Comparably, if there is an upper bound 

for the number of workers to be scheduled, lower bounds applied to the bin-packing problem as 

presented by Pisinger & Sigurd (2007) could be used. We provide a proof of the lower bound 

below. 

Proposition. The following lower bound is valid at any main iteration of column generation, 

where    and    represent the column index of optimal solutions generated by the S-SP and T-

SP, respectively. We initialize   
   with    and set   

            
     

   . 

  
              

   

       (50) 

Proof. As presented previously,     and     represent the reduced cost of a shift/task schedule 

column that have been added to MP, respectively. It holds for all shifts: 

                

   

           
   

   

           (51) 

Comparably, the following holds for all task schedules: 

          

   

       
   

   

             (52) 

     and      represent the objective values of the optimal solutions of S-SP and T-SP, 

respectively. We now can compute   
   as shown below. 
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The first inequality derives from constraints (29) of the dual restricted MP. The following 

reformulation as well as the second inequality are based on equations (51), with         . 

The third reformulation builds on constraints (21) from the restricted MP, with     . The 

reformulation after simplifying the term is based on expression (52), with     . The second 

to last inequality is again based on (52). The last inequality follows from constraint (22) of the 

MP-LP. As we are in a minimization context with an integer objective value, we round up   
  to 

the next integer number (see (50)).                □ 

3.4.5 Start solution and improvement procedure 

After computing the lower bound, the second step of our solution approach is to identify a good, 

feasible start solution. If the solution of MP-LP is integer incidentally and equals our lower 

bound, we have found the optimal solution and skip the following step. If not, we generate a 

start solution by solving MP-IP. The number of task schedule columns strongly impacts the 
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solution time of MP-IP, so we only select a subset of all generated task schedule columns. In 

order to identify high-quality columns, we search schedules with flat demand. In this context, 

"flat" indicates schedules whose maximum demand in one time period    is small. This method 

turned out to be effective in preliminary testing, as peaks strongly impact the workforce size. By 

avoiding schedules with peak demands, we realize a good match to shift schedules and 

consequently achieve a low number of workers. For each task schedule  , we define the 

maximum demand   
             . We finally select a portion of task schedules with the 

smallest   
   . 

As a preliminary testing result, 10% and a total maximum of 15 task columns proved to be an 

appropriate portion. High numbers of task columns negatively affect the solution time. The 

testing showed that by tripling the share, the solution time of MP-IP was 15 times higher than 

with a share of 10%, not taking into account the additional time needed to generate the 

additional shift columns. The objective value of MP-IP, however, remained the same. Including 

too few task columns in MP-IP had a negative effect on the solution of MP-IP. The impact of 

shift columns on the solution quality of MP-IP is different from that of task schedule columns. 

While the negative impact on the solution time is significantly smaller, the solution quality 

increases with the number of shift schedules. Consequently, we add additional shift columns to 

the MP-IP. In order to find high-quality shift schedules that fit well with the selected task 

schedules, we employ a simple heuristic, which we present in the following. The basic idea is to 

generate well-fitting shift columns for each of the selected task schedules. We do so by 

modifying the objective function (32) of S-SP. The new objective is given in (53). 

           
 
  

   

 (53) 

We generate shift schedules that maximize the coverage of the selected demand profile resulting 

from a specific task schedule. We call the updated shift problem iteratively and update   
 

 in 

each iteration. We update by subtracting the chosen shift schedule    for all   in   from our 

demand profile, which results in the new demand vector   
 
   

 
   . We terminate for task 

schedule   once    
 

      and continue with the next task schedule until all selected task 

schedules have been considered. The constraints of the shift SP remain unchanged. While we 

acknowledge that this procedure already provides valid solutions to our problem, we further 

improve the obtained solutions in the subsequent steps. 

In the next step, we solve MP-IP. We rely exclusively on the selected high-quality task 

schedules. Regarding shift schedules, we include all schedules generated to find the lower 

bound, as well as the columns additionally generated by our heuristic. Preliminary testing has 



A column generation approach for strategic workforce sizing 69 

 

shown that the resulting solution represents a good, feasible start solution and upper bound to 

the original MIP (1) to (19). 

In the last step of our solution procedure, we optimize the start solution by applying the MIP 

presented in Subsection 3.3.2. We provide the MIP with the start solution that allows a warm 

start of the search procedure. In addition to the start solution, we can further speed up the 

solution by limiting the size of the set of workers   to the smallest required employee number 

of a feasible solution, i.e., the best known the upper bound. Furthermore, we provide the MIP 

with the lower bound and include it as an additional hard constraint, which allows us to cut-off 

the search tree in the branch-and-cut procedure of our standard solver. Compared to our 

benchmark, the MIP is significantly accelerated (see computational study in Subsection 3.5.2). 

 

Figure 3.3: Illustrative flow chart of the solution approach 

To summarize our solution approach, we provide an overview in Figure 3.3. The three major 

steps of the algorithm are indicated by the areas highlighted in gray. Step 1 comprises the 

column generation to find the lower bound. In each iteration, we check whether the lower bound 

has already been found. The objective values of the two subproblems are initialized with 

negative infinity, so that we can calculate the lower bound from the first iteration onwards. If 

the lower bound has been found, we terminate column generation early and proceed with step 2, 

i.e., the search for a good, feasible start solution. If not, we iteratively call the two subproblems 
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one after another. We call T-SP in every even iteration and S-SP in every odd iteration. When 

the respective subproblem prices out, we add the resulting column to MP and solve MP-LP. If 

both T-SP and S-SP no longer price out, the standard stopping criterion of the column 

generation is fulfilled. In this case, we proceed with step 2 of our algorithm and select the best 

lower bound until that point. In this step, we solve MP-IP with the selected high-quality task 

columns and all generated shift columns. In the final step 3, we improve our start solution by 

calling the MIP with our lower bound. A pseudo-code of our solution approach is shown in the 

appendix. 

3.4.6 Alternative problem decomposition 

Instead of decomposing the problem into MP, T-SP, and S-SP, which we call 2SP, one could 

also include the task scheduling in MP and only work with one subproblem, S-SP, called 1SP. 

This approach has been suggested in a previous publication by Maenhout & Vanhoucke (2016). 

The performance of the different decomposition approaches is compared in Subsection 3.5.4. 

Below, we present MP-IP for 1SP using the notation introduced previously. 
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3.5 Numerical study 

In this section of the thesis, we present and discuss numerical results for the strategic workforce 

sizing problem. It is divided into four parts: First, we demonstrate the convergence behavior of 

our lower bound. Second, we illustrate the performance of our solution approach for real-world 

problem instances. To do so, we rely on three scenarios, i.e., small, medium, and large, which 

are based on real data and which differ in the number of tasks that need to be planned. We 

discuss the solution quality and solution times compared to solving the benchmark MIP 

described in Subsection 3.3.2 with a standard solver. Third, we assess the impact of flexibility 

on the required number of employees and runtimes. To do so, we rely on the three initial real-

world instances and vary the degree of flexibility so that we obtain a total of 12 instances. 

Fourth, we investigate our solution approach based on a computational study with 36 

additionally generated test instances and compare our problem decomposition into two 

subproblems with the alternative problem decomposition with one subproblem as presented in 

Subsection 3.4.6. To solve the linear and integer programs, we use standard solver IBM ILOG 

CPLEX Optimization Studio Version 12.6.1 on an i5-4300 bi-core CPU with 1.90 GHz, 64-bit, 

and 8 GB RAM, running on a Windows 7 operating system. 

3.5.1 Early termination of column generation 

In this subsection, we provide a comparison between our introduced lower bound stopping 

criterion and the convergence of the MP-LP objective value. When using our lower bound, we 

are able to terminate column generation early once the lower bound value   
   exceeds the 

current objective value    of MP-LP. Without this lower bound, the column generation process 

terminates whenever the subproblems no longer price out. 

We illustrate the convergence behavior for our medium-sized problem instance of 200 tasks (see 

Subsection 3.5.2). The convergence behavior is depicted in Figure 3.4. The horizontal axis 

represents the number of column generation iterations, while the vertical axis represents the 

MP-LP objective value    and the current value of the lower bound at iteration  . Applying the 

lower bound stopping criterion, the column generation can be terminated significantly earlier 

than when the regular stopping criterion is used. In this particular instance, we terminate the 

column generation after 109 iterations (2 minutes) compared to 620 iterations (22 minutes); this 

equals 18% in terms of iterations or 9% in terms of time compared to the regular stopping 

criterion. A comparable behavior is observed for the other instances: The small problem 

instance terminates after 120 iterations instead of 130 (92%), while the large instance terminates 
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after 257 iterations compared to 448 iterations (57%) of performing the entire column 

generation procedure. As later iterations consume more solution time, the positive effect is even 

higher in terms of time required to solve the problem than in terms of iterations. 

 

Figure 3.4: Convergence of objective value and lower bound 

3.5.2 Investigation of real-world cases 

In the following, we provide a comparison of the solution quality and time between our solution 

approach and a benchmark. The benchmark is the MIP formulation as presented in Subsection 

3.3.2, which is solved with the standard solver CPLEX. 

Parameters. The planning horizon of our model is one week, which is in line with the logistics 

task scheduling horizon of our real-world data. One time period represents 15 minutes, resulting 

in a planning horizon of 672 time periods. We use three problem instances, which are based on 

real data from the pediatric clinic of a large German hospital with 200 beds and 8 care units. 

Based on the available data, we generated three test instances, namely small, medium, and large. 

The task number has been scaled in order to represent different problem size settings. The small 

instance reflects the size of the original pediatric clinic in terms of required employees. The 

medium-sized test instance, in contrast, could be an average hospital, while the large instance 

reflects a large hospital. 

When translating the real data into our test instances, we identified two task types. First, we find 

day-long tasks that last eight hours, i.e., a typical working day. These could include, for 

example, background tasks like refilling stock in the central warehouse. The second task type 
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represents flexible tasks, which have rather short start windows, such as food preparation or 

disposal. Such tasks are linked to other logistics processes within the hospital. This category 

also comprises tasks that can be performed over a longer timeframe, for example cleaning or 

refilling stock at wards. Consequently, tasks vary in their duration and in the size of their start 

windows. While our model allows more than one resource to be allocated to each task  , we set 

the resource demand of each task     . An overview of the tasks is provided in Table 3.2. 

In our base case, we set the shift parameters as follows: The minimum shift length           is 

set to 16, which equals 4 hours, while the maximum shift length           is 40, i.e., 10 hours. 

The rest time between two consecutive shifts       is 48, which accounts for 12 hours. Over the 

entire planning horizon, we limit the maximum number of working periods          to 160, 

which equals 40 hours and is in line with German labor contracts. The cost parameters, i.e., the 

cost of employing logistics assistants and the cost of demand undercoverage, are set such that it 

is always preferable to employ logistics assistants. We set the relative cost of employing 

logistics assistants        to 1, while the cost of demand undercoverage        is set to 1,000. 

Table 3.2: Problem instances 

 

The parameters of our benchmark instances are the same. However, unlike in our solution 

approach, we need to hand the number of available workers to the MIP. The cardinal number   

of the set of workers heavily influences the solution time of our benchmark, as it impacts the 

number of variables. When choosing  , we aim to provide the MIP with a realistic number of 

available workers to avoid making the benchmark too slow. Additionally, we may not build on 

information that we do not have. Consequently, we select   as follows: For all tasks, we 

multiply their resource demand and length and divide the resulting number by the minimum 

shift length multiplied with a reasonable number of working days (5), which ensures that a 

sufficient number of workers are available. Summarizing, we calculate the initial number of 

workers                         . This results in 30 workers for the small instance, 52 

Instance Small Medium Large

Day-long tasks

Tasks [#] 67 119 140

Number of precedence relations [#] 57 102 120

Average length [Hours] 8.0 8.0 8.0

Flexible tasks

Tasks [#] 63 81 360

Number of precedence relations [#] 80 112 437

Average length [Hours] 0.8 0.9 1.0

Total

Tasks [#] 130 200 500

Number of precedence relations [#] 137 214 557

Average length [Hours] 4.5 5.1 2.9
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for the medium instance, and 74 workers for the large problem instance. Please note that there 

might be potential problem instances where this approach is not an upper bound. 

Performance. We present the performance of our solution approach in the following. We 

compare the results and the runtime of our solution procedure with the MIP as presented in 

Subsection 3.3.2, solved with the standard solver. We limit the computation time for the 

benchmark instances to 10 hours. Once CPLEX is unable to find the optimal solution within this 

time limit, we provide the best solution found until then. 

Table 3.3: Computational results 

 

The performance of our solution approach is presented in Table 3.3. For all instances, we 

compare the runtime and the objective value, and provide information on the intermediate steps. 

The total runtime of our solution approach comprises the three individual steps presented above. 

First, we present the runtime required to find the lower bound. For the small and medium 

problem instances, we find the lower bound within 2 minutes, while the large instance requires 

12 minutes. We generate a total of 869, 777, and 1,810 columns until we find the lower bound 

for the small, medium, and large instance, respectively. Creating additional shift schedules 

based on the updated S-SP takes another 1 to 7 minutes, depending on the problem size. We 

heuristically generate an additional 1,419, 2,187, and 8,770 shift columns. The number of task 

columns is a major driver of the complexity of solving the MP-IP. As we reduce their number to 

10% of all generated columns (max. 15), MP-IP is solved especially quickly and is performed 

within a maximum of one minute. Solving the warm-started MIP to optimality for the small and 

medium-sized instances also runs within just a few minutes, while it takes 39 minutes for the 

large instance. Note that for nights, we force shifts    and tasks    to zero between 6:15 p.m. 

and 6:00 a.m., where no logistics tasks need to be performed. Further, we only allow a 

maximum of five working days per week and one shift per day. Summarizing the performance 

Instance Small Medium Large

Our solution appraoch

Runtime to find lower bound [Min.] 2 2 12

Runtime to generate additional shift columns [Min.] 1 2 7

Runtime to solve MP-IP [Min.] 0 0 1

Runtime of "warm start" MIP [Min.] 1 2 39

Total runtime [Min.] 4 6 59

Lower bound: Column generation [# workers] 16 27 37

Upper bound: Start solution of MIP [# workers] 17 29 47

Final solution: MIP solved to optimality [# workers] 16 27 37

Benchmark

Runtime (interrupted after 600 minutes) [Min.] 600 600 600

Best solution in runtime [# workers] 17 29 36*

(*) plus 2,441 time periods of under coverage
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of our solution approach, all problem instances are solved to optimality within one hour. In all 

three examples, the integer solution equals the lower bound that we obtained from column 

generation, which demonstrates the strength of this lower bound. However, this observation 

might not be valid in general. As we are discussing a strategic planning problem, the presented 

solution times can be reasonably tolerated. Furthermore, the small and medium-sized instances 

are even solved within four or six minutes, respectively. In the final result, the 

average/minimum/maximum number of working hours per employee is as follows: small 

instance: 38.9/35.0/40.0, medium instance: 39.0/33.5/40.0, and large instance: 39.9/39.0/40.0. In 

order to schedule only 40-hour shifts, one could assign additional on-periods to employees 

without negatively impacting the objective value. 

Comparing our solution procedure to the benchmark MIP, we demonstrate that our solution is 

superior in terms of both solution quality and runtime. Within the time limit of 10 hours, none 

of our test instances is solved to optimality. However, the solution of the small and medium 

instance is only one or two workers larger than the optimum. The solution of the large problem 

instance includes hypothetical demand undercoverage: The total objective value is 2,441,036, 

which comprises 36 scheduled logistics assistants and 2,441 time periods of uncovered demand. 

The MIP gap is 13.4%, 11.8%, and 100% for the small, medium, and large instance, 

respectively. 

3.5.3 The value of flexibility in shifts and tasks 

In this subsection, we assess the value of flexibility in our model. Flexibility is incorporated in 

our model in a twofold manner. First, tasks can be scheduled flexibly, provided they are started 

within given start time windows and fulfill the precedence relations. Second, we allow a high 

degree of flexibility in shifts through flexible start times and shift durations. In order to evaluate 

how flexibility impacts the number of required workers, we vary the degree of flexibility in both 

tasks and shifts. We build our analysis on the three instances developed in Subsection 3.5.2. In 

the base case presented there, both task schedules and shift schedules are flexible. In the 

upcoming analysis, we reduce the degree of flexibility for shifts only, for tasks only, and for 

both. 

In order to reduce the degree of flexibility of shifts, we allow only two shift types of the same 

length. In particular, we fix the shift length to eight hours. Furthermore, we allow only two start 

times each day, namely 6:00 a.m. and 10:15 a.m. These two shift types allow demand to be 

covered at any point in time for our test instances. Having two shift types – one morning shift 

and one late shift – is in line with what we see in practice. For the task side, we reduce the 

degree of flexibility by significantly limiting the task start time window. In particular, we leave 
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         unchanged for all tasks, but set   

       at half the length of the original start window. 

Consequently, the start windows are reduced by 50%. 

A summary is shown in Figure 3.5. We provide the number of required workers for all three 

problem instances (large, medium, and small) when we solve them to optimality, as well as the 

utilization. Utilization is defined as the sum of all periods of the selected task schedule demand 

divided by the sum of all periods of the selected shift schedules, i.e., the resource supply. For 

both tasks and shifts, we compare the flexible case to the non-flexible or fixed case, which 

results in four quadrants of the presented matrix. Of the four cases, the upper right FULL-FLEX 

reflects our base case. Here, we see the lowest number of required workers across all three test 

instances. In the bottom left quadrant of our matrix, we show the NO-FLEX, which yields the 

worst results. 

 

Figure 3.5: Number of required workers with different levels of flexibility 

We first discuss the results of the large instance. In NO-FLEX, we need 62 workers to cover our 

demand. Increasing the level of flexibility in tasks and shifts reduces the required employees to 

56 (-10%) and 38 (-39%), respectively. In FULL-FLEX, the optimum is 37 workers, which 

equals a 40% reduction compared to NO-FLEX. In the medium instance, we see the same 

overall direction. In the no-flexibility case, 53 workers are required, compared to 50 (-6%) in 

the case of flexible tasks, or 27 (-49%) in the case of flexible shifts. In FULL-FLEX, 27 
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workers are needed as well. The results of the small instance are similar, with a starting value of 

30 workers in the non flexible case. By increasing task flexibility, this number can be decreased 

to 29 (-3%), or 16 (-47%) when increasing shift flexibility. The joint minimum is 16, which 

equals a total reduction potential of 47%. Increasing flexibility lowers the required number of 

workers but leads to a higher utilization of employees, which results in higher workloads and 

shorter overall rest times. 

A summary of the computational complexity of the different flexibility scenarios is provided in 

Table 3.4. We draw two major conclusions from the analysis. First, we underline that our 

solution approach is superior to the benchmark CPLEX in all problem instances. Especially 

scenarios with a high degree of flexibility are not solvable in a straightforward approach. 

Second, we observe that flexibility increases the complexity of our model and leads to longer 

runtimes. For scenarios with a low degree of flexibility, however, CPLEX can be an option to 

find optimal solutions within the time limit of 10 hours. 

From a managerial perspective, there is significant cost reduction potential in increasing the 

flexibility of shifts and tasks. In our case, the major cost reduction lever is an increase in shift 

flexibility. However, we have to note that in the no-flexibility shift case, the day-long tasks need 

two shifts. Consequently, one could argue that, in practice, different shift schedules would be 

applied. Allowing full flexibility in shifts comes with some downsides. A major drawback is the 

negative effect on employee satisfaction, as shift patterns come with a high degree of variance 

in terms of both shift lengths and daily start times. Additionally, employee preferences for 

certain shift types or working periods are not reflected. A high variability in shifts also leads to 

higher organizational flexibility and a stronger need to provide a high level of transparency on 

shift schedules. Also, in the flexible shift framework it is possible that not all employees work 

the same number of hours. Measures need to be defined to reintroduce the element of fairness. 

Table 3.4: Runtimes of different flexibility scenarios 

 

In summary, we see significant cost reduction potential both from increasing task flexibility and 

shift flexibility. If we assume that NO-FLEX represents the status quo, there is significant 

improvement potential. In order to overcome disadvantages in terms of employee satisfaction 

and organizational complexity, one could reduce the level of flexibility by allowing only 

Instance SMA MED LAR SMA MED LAR SMA MED LAR SMA MED LAR

Our solution appraoch

Runtime (total) [m.] 1 1 5 1 7 23 21 16 62 4 6 59

Best solution in runtime [#w] 30 53 62 29 50 56 16 27 38 16 27 37

Benchmark

Runtime (int. aft. 600 m.) [m.] 32 301 283 26 600 243 600 600 600 600 600 600

Best solution in runtime [#w] 30 53 62 29 51 56 17 28 1,399,036 17 29 2,441,036

NO-FLEX

TASK-FLEX / 

SHIFT-FIX

TASK-FIX / 

SHIFT-FLEX FULL-FLEX
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predefined shift patterns for certain employees (or employee groups). Our approach may be 

used to identify promising shift patterns. 

3.5.4 Investigation of the solution approach 

In the following subsection, we compare the solution approach based on decomposing the initial 

problem into two subproblems, T-SP and S-SP, with the decomposition with only one 

subproblem type S-SP (see Subsection 3.4.6). We demonstrate the applicability of our solution 

approach by solving 36 additional test instances. We start by elaborating on problem instance 

generation and discuss the results of the numerical study thereafter. 

Generating test instances. The real-world instances presented in Subsection 3.5.2 are the 

starting point for the generation of additional test instances. In line with the real-world 

instances, we distinguish between three problem sizes, namely small, medium, and large. In 

order to distinguish the real-world instances from the additionally generated instances, we call 

the latter SMA, MED, and LAR. They differ in the man-hours that are required to fulfill all 

tasks, not respecting shift patterns. The problem sizes largely reflect the real-world problem 

instances and account for: 

 SMA: 600 man-hours per week, 

 MED: 1,000 man-hours per week, 

 LAR: 1,400 man-hours per week. 

Next, we allocate the man-hours to working days. The work is distributed equally from Monday 

to Friday, while we allocate only 70% of a regular week-day demand to Saturdays and Sundays, 

respectively. As a result, we obtain the man-hours per day. We then allocate the man-hours per 

day to task types. Unlike the real-world instances, where we distinguish between two task types, 

we distinguish between three task types in the newly generated test instances. This approach 

helps us to achieve transparency on the effects of time window and precedence constraints on 

the performance of the algorithm. The task types are day-long tasks, peak tasks, and precedence 

tasks. The characteristics of each task type are shown in Table 3.5. 
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Table 3.5: Task type characteristics 

 

We generate three task distribution scenarios S1, S2, and S3 to allocate the man-hours per day 

to task types. S1 is the base case with 2% precedence tasks, 83% day-long tasks, and 15% peak 

tasks. This largely reflects the averages of our real-world data instances. In S2, the share of 

precedence tasks is tripled, while in S3, the share of peak tasks is tripled. The man-hours 

allocated to peak tasks are distributed equally to three time windows during the day (see Table 

3.5). In the subsequent step, we replace the generated man-hours with concrete tasks. Their 

length is randomly generated based on a uniform distribution within their minimum and 

maximum length. Once the defined man-hours are filled with concrete tasks, we stop. With this 

approach, we slightly overshoot the defined working hours for our scenarios. Precedence tasks 

have a large start window but are subject to precedence constraints. In line with the real-world 

instances, they are assumed to be parallel-serial task chains of varying sizes between two and 

five. The described approach for generating test instances results in nine task problem types. We 

double their number by reducing the start time windows by 50% with fixed earliest start times. 

The original start windows are referred to as large window (LW) instances, while the instances 

with smaller start time windows are named SW. Moreover, we assess flexible shifts (FL) and 

fixed shifts (FX). In fixed shifts, we allow only one shift length, namely eight hours, and two 

start periods, one morning and one late shift. Summarizing, we generate 36 additional test 

instances that resemble real-world behavior. 

Task type

Earliest 

start time

Latest 

start time

Minimum 

length

Maximum 

length

Resource 

demand

Precedence 

constraints

(1) Day-long task 6h 10h 6h 8h 1 NO

(2) Peak task -early 6h 8h 1h 2h 1 NO

-mid day 10h 12h 1h 2h 1 NO

-late 14h 16h 1h 2h 1 NO

(3) Precedence task Mon, 6h Fri, 13h 2h 4h 1 YES
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Table 3.6: Results of the computational study 

 

Interpretation of results. The results of the computational analysis are depicted in Table 3.6. 

We compare the time to find the lower bound tlb, the time to generate additional shift columns 

tasc, the time to solve MP-IP tip, and the time to solve the warm-started MIP tmip. We distinguish 

between the lower bound (LB), the upper bound (UB) from solving MP-IP and the final 

solution. Cases in which the final step of the solution approach, i.e., solving the MIP, is not 

required because an optimal solution has already been found are indicated by "-" in the table. 

Solution times of "0" indicate runtimes of less than 30 seconds. In our study, we limit the total 

solution time to three hours and compare the best objective value that we obtained within this 

time. The column generation time is limited to 30 minutes. 

Instance

t lb t asc t ip t mip t total LB UB Fin sol t lb t ip t mip t total LB UB Fin sol

[m.] [m.] [m.] [m.] [m.] [#w] [#w] [#w] [m.] [m.] [m.] [m.] [#w] [#w] [#w]

SMA_S1_LW_FL 2 1 0 1 4 18 20 18 1 0 - 1 18 18 18

SMA_S1_LW_FX 16 1 0 0 18 18 24 18 0 0 - 0 18 18 18

SMA_S1_SW_FL 1 1 0 - 1 20 20 20 1 0 - 1 20 20 20

SMA_S1_SW_FX 1 0 0 0 1 20 26 20 0 0 - 0 20 20 20

SMA_S2_LW_FL 3 1 0 2 6 17 19 17 1 0 - 1 17 17 17

SMA_S2_LW_FX 30 2 0 0 32 17 23 18 0 0 - 0 18 18 18

SMA_S2_SW_FL 1 1 0 1 2 19 20 19 1 0 - 1 19 19 19

SMA_S2_SW_FX 4 2 0 0 6 19 23 19 0 0 - 0 19 19 19

SMA_S3_LW_FL 9 2 0 3 15 17 21 17 1 1 2 4 17 18 17

SMA_S3_LW_FX 30 2 0 0 32 18 27 19 0 0 0 0 18 19 19

SMA_S3_SW_FL 1 1 0 1 2 22 24 22 1 0 - 1 22 22 22

SMA_S3_SW_FX 8 2 0 0 10 24 32 24 0 0 - 0 24 24 24

MED_S1_LW_FL 2 1 0 177 180 28 32 29 1 0 179 180 28 29 29

MED_S1_LW_FX 30 2 0 0 32 28 37 29 0 0 - 0 29 29 29

MED_S1_SW_FL 1 1 0 1 2 32 33 32 1 0 - 1 32 32 32

MED_S1_SW_FX 3 2 0 0 6 33 39 33 0 0 - 0 33 33 33

MED_S2_LW_FL 5 1 0 4 10 27 30 27 1 1 6 8 27 28 27

MED_S2_LW_FX 30 2 0 0 32 27 35 28 0 0 - 0 28 28 28

MED_S2_SW_FL 1 1 0 2 5 29 31 29 1 0 - 1 29 29 29

MED_S2_SW_FX 9 2 0 0 11 30 36 30 0 0 - 0 30 30 30

MED_S3_LW_FL 11 4 1 37 53 27 35 27 1 1 6 8 27 28 27

MED_S3_LW_FX 30 3 0 0 33 29 48 31 0 0 180 180 30 31 31

MED_S3_SW_FL 2 1 0 1 3 34 37 34 1 0 - 1 34 34 34

MED_S3_SW_FX 4 3 0 0 7 40 54 40 0 0 - 0 40 40 40

LAR_S1_LW_FL 3 2 0 175 180 38 44 39 1 0 179 180 38 39 39

LAR_S1_LW_FX 30 7 0 0 37 38 49 40 0 0 0 1 39 40 40

LAR_S1_SW_FL 1 1 0 2 4 43 44 43 1 0 - 1 43 43 43

LAR_S1_SW_FX 5 3 0 0 8 44 53 44 0 0 - 0 44 44 44

LAR_S2_LW_FL 1 1 0 3 5 58 63 58 0 0 - 0 58 58 58

LAR_S2_LW_FX 2 2 0 0 5 58 68 58 0 0 - 0 58 58 58

LAR_S2_SW_FL 1 0 0 - 2 65 65 65 0 0 - 0 65 65 65

LAR_S2_SW_FX 1 0 0 0 1 65 82 65 0 0 - 0 65 65 65

LAR_S3_LW_FL 14 8 1 24 46 37 48 37 1 1 178 180 37 38 38

LAR_S3_LW_FX 30 6 0 0 36 38 65 41 1 0 179 180 40 41 41

LAR_S3_SW_FL 2 1 0 2 5 49 51 49 1 0 - 2 49 49 49

LAR_S3_SW_FX 6 5 0 0 11 54 74 54 1 0 - 1 54 54 54

2SP 1SP
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Figure 3.6: Runtimes 

2SP and 1SP achieve the same final solutions for the small and medium-sized test instances. For 

the large cases, however, one instance cannot be solved to optimality within three hours by 1SP, 

while 2SP achieves the optimal solution. Although in theory 2SP should achieve the same or 

better lower bounds than 1SP, 1SP yields superior lower bounds in six cases. This can be 

explained by the time limit of 30 minutes, which 2SP exceeds in those instances. All cases 

where column generation of 2SP is stopped due to the time limit belong to the "LW_FX" 

instances, namely large time windows in T-SP and fixed shifts. In 1SP, column generation stops 

in most cases as all columns are priced out, while 2SP most often terminates due to the lower 

bound stopping criterion as introduced in Subsection 3.4.4. Solving MP-IP results in the optimal 

solution for the majority of S1 instances, so the step of solving the warm-started MIP can be 

skipped. This behavior is observed in 10 of 12 small instances, 8 of 12 medium-sized instances, 

and 8 of 12 large instances. 

Runtimes for the different test instance sizes for 2SP and 1SP are displayed in Figure 3.6. In the 

first part of the algorithm, i.e., finding lower bounds, 1SP outperforms 2SP. In the second step, 

i.e., solving MP-IP and adding new shift columns for 2SP, we see slight advantages for 1SP as 

well. However, due to the long runtimes of the warm-started MIP, improving the solution 

quality and proving optimality takes very long in 1SP. Consequently, for large problem 

instances, 2SP outperforms 1SP in terms of solution runtimes. 
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3.6 Conclusion 

In this chapter, we introduce a new model that combines shift scheduling with task scheduling. 

Our goal is to determine the optimal, i.e., minimum number of workers required for given task 

requirements. To do so, we integrate flexible shift scheduling with task scheduling. In order to 

solve our model efficiently, we present an exact column generation-based solution approach. As 

part of this approach, we develop a lower bound for staff minimization problems with an 

unknown number of workers to terminate column generation early. A focus of our model is the 

incorporation of flexibility in terms of both shift scheduling and task scheduling. We test our 

solution approach for scheduling logistics assistants in a large case hospital and generate 

artificial problem instances based on real-world data. All real-world test instances are solved to 

optimality within a reasonable amount of time, which clearly outperforms a benchmark solved 

with CPLEX. Based on the real-world test instances, we demonstrate that by incorporating 

flexibility, efficiency gains of 40 to 49% are possible, compared to a case with reduced 

flexibility. Also, we randomly generate additional test instances and demonstrate the validity of 

our solution approach. While we apply our model to a specific use case in the healthcare 

industry, we believe that our model and algorithmic approach are limited neither to this type of 

employee nor to this industry, but have a wide range of potential application areas, e.g., in 

production support functions or in the service industry (see Subsection 3.3.1). 

This chapter of the thesis at hand offers several opportunities for future research in terms of 

both model extensions and methodology. Regarding model extensions, one option is to better 

incorporate demand undercoverage, which for now is a modeling device only. We set cost 

parameters in such a way that, in an optimal solution, demand undercoverage does not appear. 

To extend the model, apart from the extensions discussed in Subsection 3.3.3, one could, 

however, include a second type of employee, e.g., nurses that can step in when the number of 

logistics assistants is not sufficient to perform all tasks. This would further strengthen the 

practical applicability of our model and would allow us to include one more source of 

flexibility. Another potential model extension is the inclusion of stochasticity in task 

scheduling. Currently, we assume that all tasks are fixed in length; however, in some 

applications, their length can vary. Apart from extending our model, it could also be worthwhile 

to reformulate the subproblems so that they are solvable even faster, allowing more 

sophisticated solution approaches such as branch-and-price algorithms (see Chapter 4). In this 

case, it might be possible that the decomposition into two subproblems is faster than when only 

one subproblem is considered, as once shifts have been fixed through branching, the resulting 

master problem incorporates a RCPSP. 
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Summarizing our findings, we conclude that there is considerable cost savings potential in 

simultaneously scheduling shifts and tasks of logistics assistants in hospitals and leveraging the 

incorporated flexibility.  
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4 A branch-and-price approach for tactical shift and task scheduling 

After addressing the strategic workforce sizing problem in Chapter 3, we move to the tactical 

shift and task scheduling problem in this chapter. The problem is solved with a branch-and-price 

algorithm. 

4.1 Introduction 

Shift rostering is usually considered an iterative process. It starts with demand modeling, which 

comprises the deduction of workforce demand based on predicted incident patterns. In the next 

step, days-off scheduling, days-off and days-on are allocated to different lines of work. Shift 

scheduling comprises the definition of the type and number of shifts that are required to fulfill 

work demand in each time period of the planning horizon. In a traditional, explicit approach, 

shifts include, for example, morning shifts, late shifts, and night shifts. In the last step, line of 

work construction, individual workable rosters are created for each employee that cover the 

entire planning horizon, which mostly comprises between one and up to several consecutive 

weeks (Ernst et al. 2004). The process is laid out in Figure 4.1. 

 

Figure 4.1: Shift rostering according to Ernst et al. (2004) 

In demand modeling, the literature suggests three alternative incident categories that result in 

demand, namely task-based demand, flexible demand, and shift-based demand. In the first 

category, task-based demand, the respective demand results from predefined tasks that have to 

be completed. The tasks usually have some inherent flexibility, for example, as task start times 

Shift rostering steps Outcome

Demand profile: Number of staff needed in 

each time period of the planning horizon
Demand modeling1

Distribution of rest days and working days 

for different lines of work
Days-off scheduling2

Shift roster for each staff member
Line of work

construction4

...

Number of shift (types) required to fulfill the 

demand
Shift scheduling3
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are subject to certain start time windows. Demand is forecast based on the collection and use of 

historical data in order to define the staffing levels required to fulfill the task requirements. 

Flexible demand forecasting is applied in environments where demand is subject to a high 

degree of stochasticity. Consequently, the likelihood of incidents is incorporated. In the latter 

demand category, shift-based demand, demand is derived from the number of staff that has to be 

on duty in certain time periods, for example hospital nurses that have to be present in care units 

(Ernst et al. 2004). 

This work addresses a task-based demand setting, in which demand results from the tasks that 

have to be performed in a certain time period. However, the setting of this work differs from the 

presented standard hierarchical scheduling process. Instead of assuming an iterative process in 

order to develop individual lines of work, we perform all four steps in an integrated manner. By 

doing so, we make use of the flexibility incorporated in shift and task scheduling. Our aim is to 

reduce inefficiencies, i.e., oversupply or undersupply of work at certain time periods that might 

occur once iterative planning is performed. In line with Chapter 3, we were confronted with this 

problem while introducing logistics assistants in our partner hospital. In the previous chapter, 

we introduce the basic model and a column generation-based solution procedure for solving the 

strategic workforce sizing problem in an integrated manner. In this chapter, we move from 

strategic sizing to tactical scheduling, which comprises the definition of shift and task schedules 

for a given number of employees. In this tactical problem, we allow varying degrees of shift 

flexibility for workers with different shift parameters and different costs. The contribution of 

this chapter is the introduction of a branch-and-price approach to optimally solve the tactical 

shift and task scheduling problem. In the introduction of the algorithm, we present a new 

network flow (NF) formulation of the flexible shift scheduling problem that is solved with a 

shortest path (ShP)-labeling algorithm. 

The rest of this chapter is structured as follows: In Section 4.2, we provide a brief overview of 

the literature on branch-and-price approaches for integrated staff and task scheduling problems. 

We provide a detailed description of the problem in Section 4.3, followed by a presentation of 

the problem formulation and the solution approach in Section 4.4. A numerical study in Section 

4.5 evaluates the solution procedure. We conclude with a brief discussion and point out future 

research opportunities in Section 4.6. 

4.2 Literature review 

This work integrates two research streams, namely flexible shift scheduling and task scheduling, 

and presents a branch-and-price solution algorithm. In order to provide an overview of the most 

relevant literature, we limit the review to publications applying a branch-and-price approach and 
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follow a two-step process. First, we present the literature that relies on branch-and-price 

approaches to solve shift scheduling problems in the healthcare industry. Second, we discuss 

integrated approaches for shift and task scheduling applying a branch-and-price approach. In the 

latter segment, we extend the scope to publications beyond healthcare. For a broader literature 

overview on the combination of shift and task scheduling, as well as the individual research 

areas, we refer to Section 3.2. 

Shift scheduling in healthcare relying on branch-and-price approaches. Branch-and-price-

based shift scheduling is applied to three employee groups in the healthcare industry: nurses, 

physicians, and hospital trainees. Branch-and-price-based nurse scheduling was initially 

performed by Jaumard et al. (1998), who generate shift schedules with a pricing subproblem 

(SP) that is formulated as a resource-constrained ShP problem. In their master problem (MP), 

they ensure that work demand is met while costs are minimized and nurses' preferences are 

maximized considering team balancing. A comparable approach is undertaken by Purnomo & 

Bard (2007), who balance individual preferences while minimizing personnel costs. They focus 

on creating cyclic schedules and evaluate several branching strategies. The authors apply a well-

performing rounding heuristic to find integer solutions in early stages. Maenhout & Vanhoucke 

(2010) focus on the incorporation of multiple objectives and assess several branching and 

pruning strategies for nurse scheduling problems. In a further work by the same authors, the 

solution approach is extended to incorporate nurse staffing and allocation to several hospital 

departments (Maenhout & Vanhoucke 2013). A branch-and-price approach in physician 

scheduling is applied by Brunner et al. (2010). The authors investigate two different branching 

strategies: master variable branching and subvariable branching. Beliën & Demeulemeester 

(2006, 2007) study the scheduling of hospital trainees in two closely related publications. In 

contrast to the other approaches, the authors decompose their problem along activities that have 

to be fulfilled rather than staff members. In the latter publication, a comparison between staff-

decomposed and activity-decomposed solution approaches is provided. 

Branch-and-price approaches for integrated shift and task scheduling. The literature on 

integrated shift and task scheduling is scarce. Only two publications are identified that present 

integrated models and apply branch-and-price approaches. As the two publications have already 

been presented in Section 3.2, we focus on their solution approach and work out similarities to 

and differences from our branch-and-price algorithm. 

Beliën & Demeulemeester (2008) propose an integrated model for master surgery scheduling 

and nurse scheduling. Their basic idea resembles our approach, namely that work demand is not 

fixed but can be altered in order to achieve demand profiles that have a good fit with the 

generated shift schedules. In their work, resource demand for nurses is the result of the master 
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surgery schedule. In line with the decomposition applied in this work, the authors decompose 

their problem into two SPs. The surgery schedules are determined in one SP which is 

formulated as an integer program (IP) and solved with a standard solver. In this surgery 

scheduling SP, resource blocks are assigned to surgeons subject to capacity constraints. This 

differs from our work, as we derive demand from task scheduling subject to start time windows 

and precedence constraints. The second SP generates shift schedules and is formulated as a 

dynamic program. Shift scheduling relies on days-on and days-off scheduling based on explicit 

shifts. In our work, we schedule shifts implicitly, which allows us to incorporate a higher degree 

of flexibility. In branching, Beliën & Demeulemeester (2008) only consider driving the surgery 

scheduling part to integrality, while driving shift schedule solutions to integrality is not 

considered. In the subsequent chapter, we apply a branching logic that addresses both shift and 

task scheduling. 

Maenhout & Vanhoucke (2016) present a project scheduling approach that they combine with 

days-on and days-off shift scheduling. Their general approach resembles the ideas of the 

previously presented work and our approach in that resource demand as a result of task 

scheduling is not fixed but can be integrated with shift scheduling. The shift scheduling part is 

modeled as an IP and is limited to days-on and days-off scheduling. In this chapter, we present a 

NF formulation that solves the shift scheduling SP to optimality in a significantly shorter time 

than the IP formulation. Moreover, our model allows a very high degree of flexibility by relying 

on implicit shift formulations. In task scheduling, Maenhout & Vanhoucke (2016) consider 

precedence relations between tasks only, while our approach also incorporates task start time 

windows. The authors present a branch-and-price solution approach to solve the problem. Our 

problem decomposition differs from that applied by Maenhout & Vanhoucke (2016); they 

decompose the problem into one MP and one SP generating shift schedules, while our 

decomposition considers one SP (type) for shift scheduling and another SP for task scheduling. 

A comparison between the two problem decompositions is provided in Subsection 3.5.4. The 

authors present and assess different branching strategies for both shift and task branching. 

We draw two major conclusions from the literature review: First, we acknowledge that shift 

scheduling problems in the healthcare industry have repeatedly been solved relying on branch-

and-price approaches. Second, we show that integrated approaches that extend shift scheduling 

with task scheduling have received some attention in recent years. Branch-and-price approaches 

appear to be a suitable technique to find solutions to this type of problem. To the best of our 

knowledge, this thesis is the first to propose an optimal solution procedure for the integrated 

shift and task scheduling problem based on two SPs. Moreover, the integrated approach relying 
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on a shift scheduling SP based on an implicit shift formulation solved with a NF ShP approach 

as presented in this chapter is novel. 

4.3 Problem description 

The problem comprises an integrated shift and task scheduling problem for an equally skilled 

workforce, allowing different levels of flexibility in the shift patterns. Varying degrees of 

flexibility come at different costs. In line with Chapter 3, hospital managers are confronted with 

this problem type when introducing logistics assistants in hospitals. While the case of logistics 

assistants was the starting point of our research, we believe that the presented problem setting is 

not limited to this employee group, but has numerous application areas. Potential fields of 

application are characterized by a homogenous, mostly low-qualified workforce and a set of 

tasks with well-projectable occurrence and a known duration. Prerequisites include that all 

employees are able to fulfill all tasks and that there is neither a ramp-up or handover time for 

performing the tasks nor a required break between the distinct tasks. If ramp-ups or handover 

times are to be incorporated in the model, the tasks need to be provided with a buffer covering 

the additional time requirements. Apart from hospitals, promising application areas include 

production support functions and service operations management (see Section 3.3). 

The strategic workforce sizing question is addressed in Chapter 3. The problem addressed in 

this chapter is of a tactical nature. The goal is to define shift and task schedules for a given 

number of employees. In this tactical optimization problem, we consider different worker 

categories who are employed under different shift parameters and work at different costs. In 

order to find optimal solutions, we perform two optimization activities in an integrated manner: 

The basic idea of our approach is to ensure that resource supply covers resource demand in 

every time period. The basic modeling assumptions for resource supply and resource demand 

are the same as in Chapter 3, but shift scheduling, i.e., resource supply, allows for a higher 

granularity by reflecting different levels of shift flexibility. In the following, we elaborate in 

detail on resource supply and resource demand. 

4.3.1 Resource supply 

Resource supply comprises the sum of all contracted employees working in a specific time 

period. Our model relies on an implicit shift formulation. This means that we do not provide 

predefined, explicit shift types. Instead, sequences of on- and off-periods are modeled implicitly 

reflecting collaborative agreements, legislative requirements, and labor contracts. We apply the 

following nomenclature for the remainder of this chapter: A shift schedule is a sequence of 

working periods/on-periods 1, and rest periods/off-periods 0. It is active in a time period when it 
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is an on-period. For a detailed literature review on implicit shift scheduling, we refer to Section 

3.2. We assume that there are two categories of workers that differ in terms of how flexibly they 

can be employed. A higher degree of flexibility results in higher hourly cost of employing 

workers. While neither of the two worker categories is completely inflexible, we refer to 

inflexible or fixed workers for the less flexible category and flexible workers for the more 

flexible category. Inflexible workers' shift patterns typically comprise a working day of a fixed 

length, e.g., eight hours per day. As the name suggests, the second worker category, flexible 

workers, is employed very flexibly. We assume that shift start times, durations, and 

consequently their finish times are arbitrary as long as they comply with the constraints stated 

above. The total number of on-periods is limited by the allowed number of working periods in 

the planning horizon. The number of consecutive on-periods has to be within the minimum and 

maximum shift length. Between two on-periods, we request that a minimum number of off-

periods is adhered. 

4.3.2 Resource demand 

The resource demand is a result of the tasks being performed in a certain time period and their 

respective resource needs. We assume that the duration of each task is deterministic and known, 

and that the number of resources required to perform a task is known and constant during the 

execution of the respective task. Task scheduling is subject to task start time windows and 

precedence relations between tasks. 

4.4 Solution approach 

In Subsection 3.3.2, we present the compact formulation of our basic model. While it does not 

reflect different worker categories, a model extension is straightforward. We show that real-

world problem instances in the compact formulation are not solvable in an acceptable time by a 

standard solver. In this section, we present a branch-and-price approach to solve the tactical 

integrated shift and task scheduling problem. Branch-and-price algorithms are occasionally 

referred to as IP column generation. In what follows, we present a Dantzig-Wolfe 

decomposition of our original problem. It decomposes by shifts and tasks and consequently 

relies on one MP and two pricing SP types for shift and task scheduling. 

The branch-and-price algorithm comprises two major steps. In the first step, column generation 

is applied to find valid lower bounds (LBs) for each node of the search tree. To do so, we 

consider the restricted linear MP, which only contains a subset of columns of all possible shift 

and task schedules and is referred to as the restricted MP or MP-LP. Columns are generated by 

solving the pricing SPs. Promising columns are iteratively added to MP-LP, which is 
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subsequently re-optimized. As we are in a minimization context, we search SP solutions with 

negative reduced costs. Adding columns to MP-LP improves its objective value. The task 

scheduling SP (T-SP) generates task schedules, while shift schedules are generated in the shift 

scheduling SP (S-SP). Please note that there are two S-SP types, reflecting two worker 

categories: flexible and inflexible workers. The column generation procedure is repeated until 

the SPs no longer price out, i.e., there are no SP solutions with negative reduced costs. This 

means that MP-LP is solved to optimality and that we found a LB of our initial problem. In the 

second step of the branch-and-price algorithm, branching is performed in order to drive non-

integer solutions of MP-LP to integrality. For more details on the branch-and-price approach, 

we refer to Vanderbeck & Wolsey (1996), Barnhart et al. (1998), and Vanderbeck (2000). 

The next section is structured as follows: We present the MP in Subsection 4.4.1, followed by 

S-SP including the newly developed NF formulation in Subsection 4.4.2. T-SP is displayed in 

Subsection 4.4.3, and heuristics to find upper bounds (UBs) in Subsection 4.4.4. We conclude 

by elaborating on the branching logic (Subsection 4.4.5) and the overall algorithm (Subsection 

4.4.6). 

4.4.1 Master problem (MP) 

The MP fulfills two functions: First, it coordinates the pricing SPs and second, it ensures that 

resource supply fully covers resource demand in every time period. The basic idea is 

comparable to the MP of Subsection 3.4.1; however, the objective function is different and the 

model presented below allows shift scheduling for different worker categories. In the model, we 

consider a one-week planning horizon in one-hour increments. This approach is in line with the 

shift scheduling literature and supports the repetitive nature of logistics tasks in weeks. The 

set   represents the time periods    , while the set of workers to be scheduled is indicated by 

 , with individual workers    . We distinguish between subsets      for inflexible 

workers and       for flexible workers. 

A shift schedule for worker   is depicted by     . The resource supply in time period   

comprises the sum of all active shift schedules in that period. The binary 

parameter      indicates whether shift schedule   for worker   is active in time period  . It 

describes the binary parameter     of the respective shift schedule. The cost per period for 

employing worker   is depicted by    . The number of workers   working in shift pattern   is 

depicted by decision variables    . The sum of all active periods in shift pattern   is represented 

by   . 
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The demand structure is slightly different, as selecting one task schedule defines the entire 

demand for every time period  . The task schedules are represented by the set   with individual 

schedules    . The decision variables    are the task schedule selection variables. They are 1 

if schedule   is selected and 0 otherwise. The resulting resource demand of that respective task 

schedule   in time period   is displayed in    , which represents the integer demand vector      of 

the respective task schedule. 

As a modeling device, we allow demand undercoverage to already achieve feasibility at the 

beginning of column generation. The amount of demand undercoverage in period   is depicted 

by decision variables   . The cost of demand undercoverage in one time period      is set so 

high that no undercoverage occurs in an optimal solution, i.e., it holds that    equals zero in all 

time periods. 

Similar to Chapter 3, we apply the following nomenclature: Capital calligraphic letters represent 

sets and capital letters stand for their cardinality. Lowercase letters represent indices, while 

parameters are indicated by capital letters with indices. Decision variables are lowercase letters 

with indices. 

Sets with indices 

   set of workers with index            , with flexible workers          

  and inflexible workers        and             ,              

    set of shift schedules of worker   with index               

   set of task schedules with index             

   set of time periods with index             

Parameters 

      1 if shift schedule   of worker   is active in period  , 0 otherwise 

     cost of employing worker   per period 

      cost of assigning an outside worker per period 

    number of working periods in shift schedule   

     work demand of task schedule   in period   

Decision variables 

     number of workers   in shift schedule   
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    1 if task schedule   is selected, 0 otherwise 

    amount of demand undercoverage in period   

Master problem 

The integer MP is presented below. 

                   
       

        
   

  (63) 

             

         
       

       

   

           (64) 

   

   

    (65) 

    
    

        (66) 

                    (67) 

              (68) 

           (69) 

The objective function (63) minimizes the total hourly cost of employing workers and the cost 

of demand undercoverage. In constraints (64), we make sure that resource demand, which 

derives from the selected task schedule, is sufficiently covered by resource supply as a result of 

the number of workers in active shifts and demand undercoverage. In constraint (65), we ensure 

that exactly one plan   is selected. Comparably, we ensure in constraints (66) that, for every 

worker  , one shift schedule   is selected. Constraints (67) and (68) define the binary variables, 

and constraints (69) define that demand undercoverage    are non-negative integer variables. 

It might be necessary to limit the share of the workload covered by flexible workers. In order to 

incorporate that limitation into our model, one would simply add constraint (70), where 

parameter           represents the maximum share of the total workload of flexible workers in 

relation to the total workload of inflexible workers. 

                
          

        
           

    (70) 

MP columns are added iteratively by solving the SPs. The search for new columns is guided by 

the dual version of MP-LP, which is depicted below. In line with Chapter 3, we apply the 
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following nomenclature: When integrality conditions of constraints (67) to (69) are adhered, we 

refer to the integer programming MP or MP-IP. As stated before, the restricted linear MP 

relying on only a subset of shift and task columns is referred to as MP-LP. In MP-LP, the 

integrality constraints of variables    ,   , and    are dropped and the variables are treated as 

continuous variables. We introduce the variables       representing the duals of constraints 

(64), variable     representing the dual of constraint (65), and variables      representing 

the duals of constraints (66). The objective function and the constraints derive from duality. 

Dual master problem 

                

   

  (71) 

             

             

   

                (72) 

      

   

          (73) 

             (74) 

          (75) 

     (76) 

          (77) 

4.4.2 Shift subproblem (S-SP) 

After solving MP-LP to optimality relying on the available shift and task columns, we generate 

new shift columns with S-SP. As presented in Subsection 3.4.2, the shift scheduling pricing 

problem can be modeled implicitly relying on an IP formulation. In that case, the SP objective 

function, depicted by     , equals the negative reduced cost of a new shift schedule. It derives 

from the dual problem of MP-LP and is depicted in (78). The constraints of the S-SP IP 

formulation are shown in Subsection 3.4.2. 

               

   

       

   

     (78) 

In the following, we present a NF representation of the S-SP and a ShP-labeling algorithm to 

efficiently solve the problem to optimality. By way of illustration, we provide a graphical 

extract and a brief example of the network at the end of this subsection. The basic idea of the 



A branch-and-price approach for tactical shift and task scheduling 94 

 

new NF formulation was initially presented by Brunner (2015). Other publications that include 

ideas of NF formulations for shift scheduling are at hand (see, e.g., Jaumard et al. 1998, Caprara 

et al. 2003, Maenhout & Vanhoucke 2010, and Brunner et al. 2013). We display the shift 

scheduling parameters below, as they are required for the NF formulation. They are the same as 

in Chapter 3. The graph representation of the shifts is novel. 

Shift parameters 

          minimum shift length in time periods 

          maximum shift length in time periods 

       minimum rest time periods between two consecutive shifts 

         maximum number of working periods per planning horizon, e.g., per week 

The number of consecutive working periods is constrained by the minimum shift length 

          and the maximum shift length          . The total number of working periods in the 

planning horizon must not exceed a maximum working time         . Moreover, a minimum 

rest time between two consecutive shifts       has to be adhered. 

Network definition. Consider a directed and loopless graph        with a set of vertices   

and a set of edges  . Each vertex     represents a state that is defined by a tuple        . The 

current time period is depicted by            , while                              

represents the number of working periods since the beginning of the planning horizon. An edge 

             
          

     represents a sequence of working periods starting in   , followed 

by a sequence of rest periods ending in     . Consequently, a path through the network is a 

representation of a shift schedule, i.e., sequences of working periods and rest periods. The 

formal definition of all vertices     is given in (79) to (82). 

               (79) 

            
                                 

              
   (80) 

             
                                   

              
   (81) 

               (82) 

There are three types of vertices, represented by sets   ,    , and     . Vertex set    represents 

all vertices within the planning horizon. A state constitutes the current time period      as 

well as the number of all possible working periods   
   until time period   . As shown in (80), 

the number of working periods   
   can be 0 in case that there has not yet been a working 
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period. If there have already been working periods before time period   ,   
   is greater than or 

equal to           and can take a maximum value of         . Moreover, it is implicitly clear 

that   
   must be smaller than           , as otherwise the respective vertex could not have 

been reached by a valid sequence of working periods and rest periods. Vertices     as displayed 

in (81) represent vertices at the end of the planning horizon. As edges 

             
          

     mark a sequence of working periods and rest periods that end 

in     ,     is required in order to represent working and rest sequences that last until the end 

of the planning horizon. Vertex      is the final vertex. In order to indicate the final vertex, we 

artificially set   
   to   . All valid paths end in the final vertex     . Note that an ID is assigned 

to all vertices. The IDs are non-negative integer numbers with zero as the ID of the start vertex. 

We present the formal definition of all edges       in (83) to (88). 

       
          

         (83) 

           
     

           

  
    

    
       

                                 

               
             

   (84) 

  
             

            
            

                (85) 

           
            

        
       

                                 

           
             

   
(86) 

  
             

            
            

              (87) 

           
                          

          (88) 

We distinguish between five different edge types, which are represented by edge 

sets      
          

    , and   . The union of the five edge sets forms edge set  . In each 

vertex  , a sequence of working periods or a rest period can be started. The start of a rest period 

is represented by   
     or   

    . If one of these two edges is selected, the sequence of rest 

periods is extended by one time period.   
     as presented in (85) represents rest edges that 

originate from vertices     . At the end of the planning horizon, rest periods are indicated by 

  
    , as shown in (87). The start of a working period during the planning horizon is 

represented by    (see (84)). Then, we make sure that we start a shift with a minimum of 

          working periods and       rest periods. If we are at the end of the planning horizon, 

we drop the prerequisite of having rest periods at the end of an on/off-pattern. Consequently, we 

only demand that the minimum number of working periods           is adhered. Practically 

speaking, this means that shift schedules are not necessarily cyclic and a shift schedule may end 
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with a sequence of working periods. This case is represented by edge set   , as shown in (86). 

The edge set    (see (88)) represents edges that connect all paths to the final vertex, so that all 

paths start in the source vertex       and end in sink vertex         . 

Please note that the number of edges leaving each vertex      comprises the rest edge plus the 

edges representing all possible shift lengths. In order to make that structure clear, we provide an 

extract of the layout of our graph in Figure 4.2. Let us assume     . Edge (A) represents the 

rest edge. This means that no working period is started in time period        but the sequence 

of rest periods is extended by one time period. Consequently, in the succeeding vertex, the time 

period    is augmented by 1, while the number of total working periods within the planning 

horizon   
   remains unchanged. Edges (B), (C), and (D) represent the start of a working period 

in time period   
  . Edge (B) represents the start of a working period with minimum length, i.e., 

         . Consequently, the number of working periods in the planning horizon of the 

successor   
   is equal to   

            . The respective time period    is the time period of the 

predecessor    plus shift length           plus the minimum number of rest periods      . Edge 

(C) is comparable to edge (B) with the only difference that the sequence of working periods is 

one time period longer. Edge (D), in contrast, represents the start of the longest possible shift 

length in vertex       
   ,           . 

 

Figure 4.2: Extract of the shift graph 

An illustrative example of the graph for a small problem instance with a time horizon of 

            is shown in Figure 4.3. The horizontal axis represents the time periods  , 

while the vertical axis represents the number of working periods in the planning horizon. The 
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start of a rest period is represented by horizontal edges. In our illustrative example, the path 

through the graph                                  equals a shift sequence of              . 

 

Figure 4.3: Illustrative example of a shift graph 

Edge weights. We present the edge weights in the following. Horizontal edges, which represent 

time periods where no working periods are started, have an edge weight of 0. This holds 

for   
     and   

    . Edges which stand for the start of a working period, i.e.,    and   , are 

weighted corresponding to the negative sum of dual values    associated with the number of 

working periods of the shift that begins. The weights of edges   , namely the edges that flow 

into the final vertex, correspond to the cost per hour     multiplied with the total number of 

working hours during the entire planning horizon          . In our model, the cost per hour 

is constant over the planning horizon, so we can add these costs at the end of each path. This is 

beneficial from an implementation perspective, as we only need to set the respective edge 

weights once when initializing the graph. In later iterations, no update is necessary. If the cost 

per working period were time-dependent, one would need to add the respective costs to the edge 

weights at the start of working periods. 

Labeling algorithm. The ShP through the network represents the optimal solution of S-SP. In 

the following, we briefly describe a simple labeling algorithm that we use to solve S-SP. A 

pseudo-code of the algorithm is presented in Figure 4.4. The algorithm comprises two major 

steps, i.e., a forward labeling step and a backward readout step. The basic idea is to assign a 

label to each vertex     that contains the cost of the ShP from the start vertex to the 

respective vertex and the ID of the previous vertex. The ShP is read in the backward readout 

step. 
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In the labeling step, the algorithm iterates through the vertices of the network, starting with the 

start vertex and moving forward for each time period     from the smallest to the largest ID. 

When going through the network, we label each succeeding vertex with the cost of the ShP to 

the start vertex       
    

           
    

    , with     being the weight of edge    . Moreover, we 

save the ID of the previous vertex. If the respective succeeding vertex has already been labeled, 

we compare the current lowest cost           
    

 with the new lowest cost       
    

 and update the 

label if a lower-cost path has been found. 

Once the labeling step has iterated through all edges, the backward readout step follows. It starts 

with the final vertex and reads the cost of the path. The path cost assigned to the final vertex 

equals the objective value of S-SP without considering the dual values   . The objective is read 

and saved. In order to find the ShP, we go backwards through the path, reading out the IDs of 

the best previous vertex. The backward iteration stops when we arrive at the start vertex. All 

vertices that are visited and that consequently lie between the final vertex and the start vertex 

comprise the shortest path. In the end, we translate the path into a feasible shift schedule. 

 

Figure 4.4: Labeling algorithm 

Once S-SP is solved and it holds that       , i.e., the new column is dual-infeasible, we add 

the resulting shift column to MP-LP. As long as there are feasible solutions of S-SP with 

negative reduced costs, adding columns improves the MP-LP objective value    . To solve 

Labeling algorithm

STEP 1: Labeling

1: reset all vertex labels

2: for all t

3: for all edges (i, j) with

4: calculate

5: if

6: update label

7: end if

8: end for

9: end for

STEP 2:  Readout

10: select final vertex

11: add final vertex to path

12: read label: objective

13: read label: previous vertex

14: while (previous vertex ≠ start vertex)

15: add previous vertex to path

16: previous vertex = read label predecessor

17: end while

18: add start vertex to path
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+     

   ,   
   ℎ

<   , 𝑢𝑟𝑟   
   ℎ

  

 𝐼  ,   ,   
   ℎ

  



A branch-and-price approach for tactical shift and task scheduling 99 

 

MP-LP to optimality, we do not need to solve S-SP optimally. Nevertheless, the presented 

approach solves S-SP to optimality. The shift column we add to MP-LP takes the following 

shape: 

 
 
 
 
 
          

   

   

 

𝐼  
 
 
 
 
 

 

The cost of the new shift column is depicted by          . The parameter     of 

length   represents the new shift schedule as sequences of on-periods 1 and off-periods 0 for 

each time period    . 𝐼  is a binary parameter vector of length   that indicates for which 

worker     the shift schedule has been generated. 

4.4.3 Task subproblem (T-SP) 

New task schedules for MP-LP are generated by solving T-SP. Again, we search for dual 

infeasibility cuts. Solutions of T-SP with negative reduced costs comprise promising columns to 

add to MP-LP. The T-SP presented below resembles the T-SP in Subsection 3.4.3. For reasons 

of readability, we state the T-SP again. We start with the notation. 

Sets with indices 

   set of tasks with index             

  
    

 set of direct predecessors of task   with index     
    

        
    

    

  
      set of possible start periods of task   with index     

      

      
             

          

Parameters 

    resource demand of task   for each time period (number of workers) 

    length of task   in time periods 

  
         earliest start time of task   

  
       latest start time of task   

Decision variables 

   
       1 if task   starts in period  , 0 otherwise 
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    work demand in period   

We rely on the following sets: The set of all tasks   is represented by  , while the subsets 

  
    

 represent the sets of all direct predecessors of task  .   
      represents the potential start 

periods of tasks  . Each task is subject to four parameters.    is the number of workers required 

to perform task  . It is constant during the length of the task    . The task start time window is 

depicted by the earliest start time   
         and the latest start time   

      . The binary decision 

variables    
      indicate the start of task  . They are 1 if task   starts in period   and 0 

otherwise. The non-negative integer decision variables    represent the demand in time 

period    . 

The objective function of T-SP derives from constraint (73) of the dual problem of MP-LP. The 

T-SP is displayed below. 

              

   

    (89) 

             

    
     

  
      

    
        

        (90) 

     
     

  
      

    
        

      
     

  
      

    
        

             
    

   (91) 

        
     

        
       

        
                

 

   

         (92) 

   
                     

      (93) 

           (94) 

The objective (89) is to minimize the cost of a new task schedule. In constraints (90), we make 

sure that each task is performed. Constraints (91) make sure that precedence relations between 

tasks are respected. They state that a succeeding task may only start once all its predecessors 

have been finished. In constraints (92), we add up the respective resource demand    for each 

time period which is required in the objective function. Constraints (93) and (94) set the 

variables    
      binary and    non-negative integer, respectively. 
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A slightly modified formulation was assessed in a pretesting phase. In the alternative 

formulation, we dropped constraints (92) and variables   . Furthermore, we replaced the 

objective function (89) with the following objective function: 

                   
     

    
        

    (95) 

We introduce the matrix     for the alternative formulation. It contains the sum of the dual 

values associated with starting task   in time period  . The matrix is updated every time T-SP is 

called. Unfortunately, preliminary testing showed that by modifying T-SP accordingly, the 

solution procedure could not be accelerated. 

Once the T-SP solution is negative, i.e.,      , we add the resulting column to MP-LP. The 

column takes the following shape: 

 

 

        

 

   

  

The new task column contains the demand profile that results from the T-SP solution. It is 

depicted by vector     , with elements        representing the demand.     is a zero vector with 

elements 0 and a length of  . Please note that, in line with S-SP, T-SP does not need to be 

optimally solved to improve the MP-LP objective value    . Once a T-SP solution with 

negative reduced costs is found, the resulting column can be added to MP-LP to improve the 

objective value    . In this case, we found a column with dual infeasibility cuts. Preliminary 

testing suggests that selecting the first T-SP solution with negative reduced costs is superior to 

solving T-SP to optimality, as we achieve better overall runtimes to solve MP-LP to optimality. 

4.4.4 Upper bound heuristics 

Generating high-quality integer solutions during the enumeration of the search tree can 

significantly speed up the solution procedure. Nodes with LBs higher than or equal to the 

best/lowest UB do not need to be further investigated and can be fathomed. This means that the 

respective nodes are disregarded, as they will not yield better UBs than the current best known 

UB. In order to find high-quality UBs, we rely on two heuristics and an improvement heuristic, 

which we present in the following. The first global UB is obtained in the root node and 

subsequently updated whenever a better UB is found. 

Finding upper bounds. In each iteration, we employ a simple rounding heuristic that works as 

follows: When MP-LP is solved to optimality, we select the task schedule with the highest    in 
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the MP-LP solution and set its value to 1 and all remaining    to 0. We then select the 

highest     for each worker  , set it to 1 and all other     of the respective worker to 0. If the 

selected supply and demand profiles result in demand undercoverage, we add the cost of the 

respective undercoverage. Obviously, the rounding heuristic does not necessarily provide high-

quality solutions, as undercoverage occurs frequently. Nevertheless, the computational 

complexity of the heuristic is very low. In order to find high-quality UBs, we solve MP-IP to 

obtain integer solutions every 50 nodes. As the number of task columns in MP-IP has a negative 

impact on the runtime of MP-IP, we limit their number. In line with the approach presented in 

Subsection 3.4.5, we select task columns with flat demand patterns. We restrict the task column 

number to 5, which proved to be efficient in preliminary testing. Please note that in Subsection 

3.4.5 we limit their number to the minimum of 15 and 10% of all generated task columns. 

There, we solve MP-IP only once, so longer runtimes can be accepted. In the presented branch-

and-price approach, however, we solve MP-IP every 50 nodes, so runtimes must be kept low. 

We consider all generated shift columns when solving MP-IP. 

Improving upper bounds. Once either of the two presented heuristics finds an improved UB, 

we hand the new solution to a simple improvement heuristic. The basic idea is to shorten 

working periods when they are not needed to cover the resource demand. The heuristic works as 

follows: It leaves the selected task schedule unchanged. Based on the task schedule and the 

selected shifts, the heuristic identifies all time periods in the planning horizon where resource 

supply exceeds resource demand. Subsequently, the heuristic aims to reduce this resource 

oversupply. It does so by checking each shift schedule that is active in the respective oversupply 

period if it marks the start or end of a working period. If this is the case and the length of the 

working periods exceeds the minimum number of consecutive on-periods          , we set the 

shift in the respective time period to 0. The procedure terminates when neither of the shift 

schedules can be further shortened. 

4.4.5 Branching 

Once column generation terminates and a LB for the respective node of the search tree is found, 

branching is necessary if the MP-LP solution is fractional. We employ the same general 

branching logic to drive the task scheduling variables    and the shift scheduling variables     

to integrality. We start branching by selecting the most fractional MP-LP variable, regardless of 

whether it is      or   . Depending on which variable is most fractional, we employ task 

branching or shift branching. The branching scheme we apply is a subvariable or constraint 

branching scheme that was first presented by Ryan & Foster (1981). For a comparable problem 
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to ours, the branching scheme is successfully applied by Beliën & Demeulemeester (2008) for 

task branching. 

Task branching. We branch on the demand per period. Let us assume that the most fractional 

MP-LP variable is    . We randomly select another     , say     . We compare the 

respective demand vectors of the two task columns,      and      . Starting with    , we 

select the first period    as our branching periods where it holds that               . The case 

that both demand vectors are equal does not occur, as duplicate columns are not added to MP-

LP. Branching takes place by generating two child nodes in the search tree. In the left node, we 

impose that, if              ,           , while in the right node, we force            . 

In case              , the left node imposes            , while the right node requests     

        . Consequently, we impose a maximum demand value in the left branch and a 

minimum demand value in the right branch for the selected branching period and branch on 

decision variables    in T-SP. In the subsequent node, the branching constraint is incorporated 

into T-SP. Moreover, we exclude task columns from MP-LP that do not fulfill the new 

branching constraints. To do so, we check in each node at the beginning of column generation 

which of the generated task columns fulfills the branching constraints. Moreover, we remove 

task columns that were not in the basis of the MP-LP solution in the last 50 nodes. Columns that 

are excluded from MP-LP are saved and potentially re-included in subsequent nodes. 

Shift branching. In shift branching, we apply the same general approach, i.e., we branch on 

active or inactive shifts per period and worker. If the variable with the most fractional value in 

MP-LP is      , we randomly select another        of the same worker   , say       . In line 

with task branching, our branching period is the first time period    where it holds that         

         . In the left node, we impose that        , and in the right node, we force that       

 . Consequently, we branch on    in S-SP for one specific worker; we impose in the branching 

period that the shift schedule is inactive in the left branch and force the shift schedule to be 

active in the right branch. In order to reflect the branching constraints in our NF representation, 

we remove edges from the graph that represent forbidden shift patterns in the branching period. 

In line with task branching, we exclude shift columns from MP-LP that do not fulfill the 

branching constraints when resuming column generation in the subsequent node. Also, we 

remove shift columns that were not in the basis of MP-LP in the last 100 nodes. Shift columns 

that do not match the branching constraints are stored and potentially reused in subsequent 

nodes. 
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4.4.6 Algorithm 

In the following, we present the branch-and-price algorithm. An illustrative flow chart of the 

solution approach is provided in Figure 4.5. The two major steps – first, defining a LB for each 

node of the search tree by solving MP-LP with means of column generation, and second, 

finding high-quality UBs – are indicated by areas highlighted in gray. 

 

Figure 4.5: Illustrative flow chart of the branch-and-price approach 

MP-LP initialization. We initialize MP-LP by adding artificial supercolumns for tasks and 

shifts. Adding an artificial task schedule is necessary to trigger the creation of new shifts. The 

task schedule supercolumn has a demand vector      with identical elements     at each time 

period of the planning horizon     that are larger than the maximum peaks of the real demand 

profiles. Shift supercolumns need to be added to ensure MP-LP feasibility at the start of column 

generation. Remember that one shift schedule per worker has to be chosen in MP-LP. 

Consequently, we add one shift supercolumn per worker at high costs. Parameters are set so that 

in an optimal solution, MP-LP does not rely on the supercolumns. After adding the 

supercolumns, we start the column generation procedure to find the optimum of MP-LP. 

SP selection. When MP-LP is solved to optimality with the existing columns, we apply the 

following logic for selecting SPs and generating new columns for MP-LP: We iteratively call T-
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SP and S-SP. When calling S-SP, we iterate between flexible and inflexible workers. If we have 

more workers of the same category, we iteratively call the S-SPs of all workers of the respective 

category. Whenever a SP is called and does not find a solution with negative reduced costs, we 

go directly to the next SP without re-calling MP-LP. Once a new column is added to MP-LP, we 

re-optimize MP-LP with the new set of columns. 

Column generation stopping criteria. Column generation for solving MP-LP to optimality 

terminates when at least one of two stopping criteria is fulfilled. The first stopping criterion 

comprises the column generation standard stopping criterion, in which column generation 

terminates when neither of the SPs finds new solutions with negative reduced costs. In that case, 

MP-LP is solved to optimality and adding additional columns would not improve the MP-LP 

objective value. We return the MP-LP objective value rounded to the next integer number      

as the node's LB. Please note that this stopping criterion is only valid when neither of the SPs 

based on the identical dual values find new solutions with negative reduced costs. 

Consequently, T-SP and all S-SPs need to be called and checked. This stopping criterion leads 

to a comparably high number of required column generation iterations before proving MP-LP 

optimality. In the root node, however, it is sufficient to check the solution of one S-SP type 

(flexible or inflexible) due to the symmetry of the S-SPs before branching. The second stopping 

criterion considers the current MP-LP objective value   . When    falls below the integer LB of 

its parent node, we stop the column generation procedure and return the integer LB of the parent 

node, which is equal to     . When we add branching constraints to the child node, the child 

node's solution space is more restricted than that of its parent node. Consequently, an integer LB 

of the child node must be equal to or larger than the parent node's LB. Due to rounding of    , 

however, it is possible that the current node's MP-LP objective value    falls below the parent 

node's (rounded) LB. In that case, the objective value of MP-LP    cannot be reduced as much, 

as this results in a better LB. We therefore terminate column generation once the current node's 

MP-LP objective value falls below its parent node's LB. 

Shift column management. It is possible to have multiple workers per worker category. Each 

worker is assigned to one S-SP. However, for several workers of the same category, e.g., 

flexible workers, the shift parameters are identical. This results in a high degree of symmetry 

among the S-SPs of the same worker category. The symmetry is reduced through branching, as 

different branching rules are applied to the individual S-SPs. We apply the following logic to 

reduce the required S-SP iterations: Whenever we find a new shift column, e.g., for a flexible 

worker, we check whether the generated shift schedule is a feasible solution for all other 

workers of the same category. In this case, we add the generated shift column to MP-LP for all 

flexible workers for which the generated column is a feasible solution. 
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4.5 Numerical study 

In this section, we present and discuss numerical results. It is divided into two parts: First, we 

compare the runtimes of the presented S-SP formulations, namely the IP and the NF 

formulation. Second, we show the behavior of our branch-and-price approach. All calculations 

are performed on an i5-4300 bi-core CPU with 1.90 GHz, 64-bit, and 8 GB RAM, running on a 

Windows 7 operating system. We coded the algorithms in Java and used CPLEX Version 12.6.1 

to solve the mixed integer and linear programs applying the CPLEX standard settings. 

4.5.1 Shift subproblems 

In the following study, we compare the different SP formulations, namely the IP formulation 

solved with CPLEX and the NF formulation solved with the labeling algorithm presented in 

Subsection 4.4.2. As mentioned above, S-SP does not need to be optimally solved in order to 

find a LB at each node of the search tree, i.e., to solve MP-LP to optimality. Whenever a 

feasible solution is found, the resulting column can be added to MP-LP to improve its objective 

value. Consequently, we compare the results of solving S-SP IP to optimality with solving S-SP 

IP without requiring the solution to be optimal. Note that S-SP NF always provides optimal 

solutions. In the study, we do not require T-SP to be solved to optimality but accept the first 

feasible solution. We terminate the column generation procedure once MP-LP in the root node 

is solved to optimality, i.e., the root node LB has been found. 

Generating test instances. We generate 18 test instances building on the instances presented in 

Subsection 3.5.2. Start time windows and task lengths are modified to account for the different 

planning granularity. In Chapter 3, we schedule either only flexible (FL) or only inflexible/fixed 

(FX) workers, which is reasonable for strategic planning. When switching from the strategic 

planning level of Chapter 3 to the tactical planning level of this chapter, we incorporate 

different shift flexibilities into each test instance. We distinguish between flexible and fixed 

workers whose number is defined prior to solving the optimization problem. We determine the 

number of inflexible workers      by allocating 50% of the required man-hour demand over 

the entire planning horizon to this worker category and divide the resulting man-hours by the 

maximum number of working periods in the planning horizon for fixed workers. The number of 

flexible workers       is set so that, when we apply our UB heuristics at the root node, no 

demand undercoverage occurs. The shift parameters of inflexible and flexible workers are as 

follows: Inflexible shifts have a fixed shift length of eight hours, i.e.,                     

 . The maximum number of working periods in the planning horizon          is 40. The 

number of working periods of flexible shifts is between four and six hours, i.e.,             
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and            . Flexible workers can work a maximum of 20 hours in the planning horizon. 

For both worker categories, we set the minimum required number of rest periods between two 

consecutive shifts       to 12. The hourly costs per working period      are two for inflexible 

and three for flexible workers. 
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Table 4.1: Results of the S-SP study 
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Interpretation of results. The results of the numerical study are shown in Table 4.1. In our 

analysis, we compare the root node LB in monetary units (mu), the number of MP iterations 

required to terminate column generation in the root node (#itMP), and the total time required to 

solve the S-SP ts-sp. This includes updating the edge weights of the graph in S-SP NF. 

Furthermore, we display the total time required to terminate column generation in the root node 

ttotal. 

Across all instances, solving S-SP takes longest for S-SP IP optimally solved and shortest for S-

SP NF. When accepting feasible solutions for S-SP IP, runtimes can be reduced by 63% 

compared to S-SP IP optimally solved. From a runtime perspective, S-SP NF provides the best 

results, with a runtime reduction of 98% compared to the runtime of S-SP IP optimally solved. 

Interestingly, when comparing S-SP IP optimally solved with S-SP IP feasibly solved, we find 

that the runtime advantages are overcompensated by an increased number of MP iterations that 

are necessary to prove MP-LP optimality. Across all instances, the number of MP iterations 

increases by 39%, from 4,693 to 6,527 iterations. As a result, the higher number of required 

iterations offsets the S-SP runtime gains. Consequently, dropping the optimality requirement for 

S-SP IP results in an increased total runtime of 13% compared to solving S-SP IP to optimality. 

The best results are achieved by S-SP NF, with a nearly equal number of required MP iterations 

as solving S-SP IP to optimality and a runtime reduction of 23%. An overview of the solution 

times of solving S-SP and proving MP-LP optimality in the root node is provided in Figure 4.6. 

 

Figure 4.6: S-SP runtimes 
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4.5.2 Branch-and-price approach 

In the following study, we demonstrate the behavior of the presented branch-and-price 

approach. When running the column generation part of the algorithm, we do not request T-SP to 

be solved to optimality but accept the first feasible solution that is found. We add the resulting 

task column to MP-LP. To solve S-SP, we rely on the NF formulation solved with the presented 

labeling algorithm. We stop the branch-and-price procedure at a node limit of 200 nodes and 

present the best obtained result. 

Generating test instances. We generate 12 test instances applying the same overall logic as in 

Subsection 4.5.1. In line with the previous data sets, we rely on three task categories: day-long 

tasks, peak tasks, and precedence tasks. In order to generate small test instances for one week, 

we assign one day-long task to each day as well as three peak tasks for the morning, noon, and 

evening of each day. This results in four tasks per day or 28 tasks per week. We add two 

precedence tasks that can be performed from Monday through Friday, which results in 30 tasks 

per week in the base case. In the base demand profile D1, we set the length of each task 

randomly within the given range. This results in a total weekly demand of 68 man-hours. We 

create an additional demand profile by increasing the task lengths respecting the maximum task 

duration, resulting in 86 man-hours, namely D2. The two generated base case demand profiles 

have long task start windows (LW). We create additional demand patterns with reduced start 

windows (SW) in line with our approach applied in Chapter 3. Additional instances are 

generated by deleting the precedence tasks (NO_PREC) and the peak tasks, so that only the 

day-long tasks remain (DAY_ONLY). The approach provides 12 demand profiles that we use in 

our computational study. The shift parameters of inflexible and flexible workers are the same as 

in Subsection 4.5.1. The number of scheduled workers and the total demand in man-hours per 

instance are shown in Table 4.2. In total, we schedule between two and six workers. 

Table 4.2: Number of workers 

 

Interpretation of results. The results of the computational study are presented in Table 4.4. For 
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as the difference between UB and LB divided by the UB. LB and UB are displayed in monetary 

units (mu). Also, we show the number of explored nodes and the ID of the node where the best 

incumbent solution was found. Regarding the solution times, we compare the time to solve the 

MP-LP tmp, the time to solve T-SP tt-sp, and the time to solve S-SP in total ts-sp and per SP, as 

well as the time to find the UBs heuristically tub. In addition, we display the total solution time 

ttotal and the total solution time per explored node. All times are in seconds. 

When terminating the solution procedure at the node limit of 200 nodes, none of the instances is 

solved to optimality. We illustrate that our algorithm finds optimal solutions based on one 

instance for which we omit the node limit. For the remaining 11 instances, a gap between the 

best integer solution and the global LB remains. Nevertheless, the gap in the end node is 

significantly reduced compared to the root node in all instances. While we interrupt the solution 

procedure at 200 nodes, preliminary testing suggests that significantly enlarging the number of 

explored nodes hardly results in better UBs or a proof of optimality. A complete enumeration of 

the search tree requires a huge number of nodes to be explored based on the applied branching 

scheme. Moreover, a problem of solving small instances becomes apparent in the study. As the 

degree of flexibility is limited with small instances, it may be that due to the minimum number 

of working periods in a shift, an oversupply in resource demand occurs that can be neither 

reduced nor "filled" with resource demand. This leads to rather large optimality gaps in the 

small test instances. 

Based on the optimally solved problem instance D2_SW_DAY_ONLY, we illustrate that the 

proposed algorithm finds optimal solutions. In the root node, the column generation procedure 

finds a LB of 110. Solving MP-IP with a subset of task columns and all generated shift columns 

results in an initial feasible solution of 155, which is improved to 152 by the improvement 

heuristic. Consequently, in the root node, there is an optimality gap of 42 or 27.6%. In node 33, 

the rounding heuristic finds an improved feasible solution of 122, which equals an optimality 

gap of 9.8%. In node 100, the MP-IP heuristic is applied, which results in a new UB of 116 and 

an optimality gap of 5.2%. To prove that 116 is the optimal solution, the branch-and-price 

procedure continues until node 253. In node 196, the best LB is increased from 110 to 112, as 

the best LB of all active nodes equals 112. The optimality gap after increasing the LB equals 

3.4%. In the final node 253, the set of active nodes is reduced to zero and consequently, all 

nodes have been explored and fathomed, as their LBs exceed or are equal to the global UB. 

Consequently, we have found the optimal solution and verified its optimality. 
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Table 4.3: MP-IP and improvement heuristics 

 

The proposed heuristic procedures deliver suitable UBs. Of the presented 12 test instances, UBs 

of five instances were generated by the MP-IP heuristic that considers a subset of all generated 

task columns and all generated shift columns. In four instances, the improvement heuristic can 

further enhance the obtained solution. This behavior is displayed in Table 4.3, where we show 

all instances where the MP-IP heuristic provides the final UB and an improvement is successful. 

We compare the UBs of the MP-IP heuristic and the improved UBs and outline the absolute and 

relative improvement. We see that a relative improvement between 3.6% and 11.8% is 

achieved. On average, the UBs are improved by 6.8%. 

Exploring all nodes until the node limit of 200 takes between 20 and 458 seconds. The solution 

time for solving S-SP is the largest block of the different parts of the algorithm. However, when 

considering the number of S-SPs and dividing the total S-SP solution time by the number of S-

SPs, solving T-SP clearly dominates the total solution time. For all D1 instances, solving T-SP 

requires 30% of the total solution time, while for all D2 instances, the share is 18%. The 

average is 22% across all instances. Solving S-SP NF per SP only takes 5% of the total solution 

time, which is significantly less than the time needed to solve T-SP. The time dedicated to 

heuristically generating UBs accounts for 4% of the total solution time, which seems to be a 

reasonable share given the potential advantages of cutting off nodes whose LBs exceed the best 

UB and thus reducing the size of the search tree. The runtime per node is within a range of 

0.101 seconds as a minimum and 2.288 seconds as a maximum. While the lower end seems 

acceptable, runtimes of over two seconds per node result in very long total runtimes for proving 

optimality given the large number of nodes to be explored when completely enumerating the 

search tree. 

Instance

MP-IP 

UB

Improv. 

UB

[mu] [mu] [mu] [%]

D1_LW 296 284 12 4.1

D1_LW_NO_PREC 305 269 36 11.8

D1_SW 251 242 9 3.6

D2_LW 332 308 24 7.2

TOTAL 1,184 1,103 81 6.8

Heuristics

Improvement



A branch-and-price approach for tactical shift and task scheduling 113 

 

Table 4.4: Results of the branch-and-price study 
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4.6 Conclusion 

In Chapter 4, we present a branch-and-price algorithm to solve the tactical integrated shift and 

task scheduling problem. We aim to find shift and task schedules for a given number of workers 

and a predefined set of tasks that have to be fulfilled. By scheduling shifts and tasks in an 

integrated manner, we exploit the flexibility in both areas. In shift scheduling, we consider two 

different worker categories – flexible and inflexible workers – that differ in their shift 

parameters and in their costs. An increased degree of shift flexibility comes at higher costs. We 

present a branch-and-price approach that relies on subvariable or constraint branching for 

driving solutions to integrality. To find upper bounds, we present two heuristics and one 

improvement heuristic. As part of our solution approach, we introduce a new NF formulation 

for the S-SP that is solved to optimality with a ShP-labeling algorithm. We demonstrate the 

superiority of the S-SP NF formulation in a computational study. Also, we compare runtimes of 

S-SP IP solved optimally versus S-SP IP solved feasibly. Interestingly, we find that runtime 

advantages of solving S-SP IP feasibly are overcompensated by an increased number of MP 

iterations that are necessary to prove MP-LP optimality. Based on 18 test instances building on 

real-world data, we show that the runtimes to solve the S-SP are reduced by 98% when using 

the NF formulation compared to solving the S-SP IP to optimality with standard solver CPLEX. 

Moreover, we demonstrate that the presented branch-and-price approach finds optimal solutions 

for small test instances. 

This chapter of the thesis offers several future research opportunities. The presented model 

relies on a rather large number of different SPs. There are two SP types for task and shift 

scheduling. Moreover, there is one S-SP for each worker. Coordinating, updating, and 

incorporating SP solutions consume a lot of effort in the solution procedure. Consequently, 

future research should focus on how to reduce the handling effort. One possibility is to 

incorporate task scheduling in the MP. Standing alone, the T-SP consumes a high share of the 

solution time. Consequently, speeding up the T-SP could significantly reduce the computation 

time of the entire algorithm. Potential levers include a different T-SP formulation. While we 

find acceptable solutions for small problem instances in early stages of the branch-and-price 

procedure, enumerating the entire search tree with the proposed branching scheme requires a 

large number of nodes to be checked. Consequently, investigating alternative branching 

schemes could also improve the solution procedure. 

In summary, we show that our newly introduced NF representation of the S-SP provides optimal 

solutions in a very short time. Moreover, we illustrate that the presented branch-and-price 

approach finds optimal solutions for small problem instances.  
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5 Conclusion 

The thesis at hand aims to answer four research questions in the context of healthcare operations 

management in hospitals. In Chapter 1, we raised the following research questions: 

(1) Which areas of hospital logistics management have been addressed by the previous 

literature and which areas are most promising for future cost optimization? 

(2) What is the optimal number of logistics assistants in hospitals when fully leveraging 

the flexibility incorporated in shift and task scheduling? 

(3) What is the impact of flexibility in shift and task scheduling on the optimal number of 

logistics assistants? 

(4) What are optimal shift and task schedules when workers are employed with different 

degrees of flexibility and at different costs? 

The presented research questions are addressed in the three major chapters of this work. 

Research question (1) is addressed in Chapter 2. We introduce hospital logistics management by 

providing a comprehensive literature review with a particular focus on publications that apply 

quantitative methods. We categorize publications along four major research streams, discuss the 

applied methodologies, and work out future research opportunities in each research stream. In 

addition, we present overarching research opportunities. The four identified research streams are 

(1) supply and procurement, (2) inventory management, (3) distribution and scheduling, and (4) 

holistic supply chain management. Research stream (2) has received the most attention in the 

past, considering the number of previous publications. In total, we present and assess 145 

publications. The significant increase in the number of publications in recent years indicates the 

growing importance of hospital logistics. For example, during the period 2012 to 2014, the 

number of publications nearly doubled compared to 2009 to 2011. We further identify a 

growing relevance of applying quantitative methods in hospital materials management. 

The subsequent Chapter 3 addresses research questions (2) and (3). We introduce the integrated 

shift and task scheduling problem and address the strategic workforce sizing question when 

introducing logistics assistants in hospitals. We present a column generation solution approach 

to define the minimum number of employees leveraging flexibility in shifts and tasks. In the 

course of introducing our solution approach, we present a lower bound for staff minimization 

problems with an unknown number of available workers. This approach allows us to terminate 

column generation early compared to the column generation standard stopping criterion. The 

algorithm and its performance are tested with 48 problem instances that are based on real data 

and compared to benchmarks. We show that the proposed algorithm clearly outperforms a 
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benchmark solved with standard solver CPLEX. Moreover, we compare two different 

decomposition approaches of the original problem. We show that fully leveraging flexibility in 

shift and task scheduling can lead to a decrease of 40 to 49% of the required workforce, 

compared to the non-flexible case. 

Research question (4) is finally addressed in Chapter 4, where we introduce a branch-and-price 

algorithm to solve the subsequent tactical shift and task scheduling problem. The goal is to 

define shift and task schedules for a predefined number of employees. We apply a subvariable 

or constraint branching scheme in order to drive solutions to integrality. Two heuristics and one 

improvement heuristic are used to generate good upper bounds. The model relies on two worker 

categories that differ in their degree of flexibility and in their costs. As part of the solution 

approach, we introduce a shortest path network flow formulation for the shift subproblem that is 

solved to optimality with a labeling algorithm. Based on a numerical study, we demonstrate the 

superiority of the new formulation compared to an integer program subproblem solved with 

standard solver CPLEX. We show that the runtime for solving the shift pricing problem can be 

reduced by up to 98%. Also, we show that the proposed algorithm is appropriate for efficiently 

solving small-sized test instances. 

Chapters 3 and 4 build on comparable assumptions for shift and task scheduling but address two 

different hierarchical planning levels. Chapter 3 addresses strategic workforce sizing, while 

Chapter 4 addresses the subsequent tactical shift and task scheduling problem for workers with 

different degrees of flexibility and different costs. In both chapters, we present optimal solution 

procedures that are based on column generation. Chapter 3 presents an approach where we use 

information from column generation and a sophisticated heuristic procedure to warm-start the 

initial mixed-integer program. In Chapter 4, we present a branch-and-price algorithm. 

Our integrated scheduling approach works particularly well when shift and task scheduling 

adhere to a high degree of flexibility (see Chapter 3). Flexibility in shift scheduling is 

incorporated by relying on an implicit shift formulation, i.e., there are no predefined, explicit 

shift types. Instead, shifts are modeled implicitly so that collaborative agreements, legislative 

requirements, and labor contracts are fulfilled. Task scheduling incorporates flexibility because 

task start times may be set very flexibly as long as precedence constraints and start time 

windows are adhered. In task scheduling, the high degree of flexibility seems reasonable for the 

logistics tasks in scope. The task occurrence can be predicted accurately and their length and 

resource demand is deterministic and known. In shift scheduling, however, one might argue that 

the assumed high degree of flexibility is overly optimistic due to the negative implications of 

flexible shifts on employees. Working in shifts that are implicitly scheduled may result in shift 

patterns that are characterized by a high variance. For example, days-on and days-off may 
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alternate week by week and shift start times and durations might be different every day. This 

might negatively impact job satisfaction. Moreover, implementing implicitly scheduled shifts 

may be subject to high organizational burdens. Under normal conditions, the optimal solution of 

our model should be close to a feasible solution in practice. However, we acknowledge that our 

solution provides a lower bound rather than a solution with large buffers. Due to operational 

constraints, it might consequently become necessary to employ more workers than suggested by 

our model. 

The thesis at hand offers several opportunities for future research. In order to overcome the 

acceptance and implementation issues outlined above, our model could be extended to 

incorporate employee preferences into shift scheduling. It would be worthwhile if workers could 

state their preferences regarding days-off, shift lengths, and shift start times. This could increase 

acceptance among workers and facilitate the implementation of the implicitly modeled shift 

schedules. In task scheduling, future research could incorporate stochasticity. In our model, we 

assume that tasks are well projectable and that their lengths and resource demands are 

deterministic. While the presented assumptions are valid for our use case, incorporating 

stochasticity could further extend the scope of application of our approach to settings 

characterized by stochastic task occurrences. In terms of the proposed methodology, future 

research should focus on ways to speed-up task scheduling. While we propose an efficient and 

well-performing methodology for shift scheduling, task scheduling relies on a rather slow IP 

formulation solved with a standard solver. Speeding-up task scheduling holds high potential to 

shorten the overall solution times. 

In summary, we believe that integrating shift and task scheduling can help to further optimize 

staff sizing and scheduling decision-making in hospitals. Consequently, it can help to reduce 

healthcare costs and tackle the challenges presented in the introduction. We demonstrate the 

applicability of our integrated approach in the healthcare industry but believe that integrating 

shift and task scheduling can also be applied in other industries beyond healthcare, for example 

manufacturing or service industries. 
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Appendix I: Linearization of constraints (3) 

According to Brunner & Edenharter (2011), constraints (3) can be replaced with the three linear 

constraints (3*), (3**), and (3***). 

   
                                  (3) 

 

Linearization 

        
                     (3*) 

           
                     (3**) 

               
                     (3***) 
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Appendix II: Algorithm details for strategic workforce sizing 

 

  

Algorithm

STEP 1: Find lower bound

1: initialize MP-LP, T-SP, S-SP

2: set it  = 0

3: while

4: solve MP-LP to obtain

5: it  = it  + 1

6: calculate

7: if

8: return

9: terminate while and go to STEP 2

10: else

11: if (it  even)

12: solve T-SP

13: else

14: solve S-SP

15: end if

16: if (new column prices out)

17: add column to MP

18: else if (S-SP infeasible AND T-SP infeasible)

19: return 

20: terminate while and go to STEP 2

21: end if

22: end if

23: end while

STEP 2:  Find start solution

24: for all generated task columns

25: calculate

26: end for

27: select 10% of plans (max. 15) with minimum 

28: for all selected task columns

29: select demand

30: while   

31: generate shift columns heuristically with updated S-SP

32:

33: end while

34: end for

35: solve MP-IP with selected task columns and all generated shift columns

STEP 3:  Improve start solution

36: use MIP in compact formulation (1) - (8)

37: add lower bound        from STEP 1  as hard constraint

38: use feasible solution from STEP 2  to warm start

39: terminate and report results

   
 𝐵 <     

   

  
 𝐵 

   
 𝐵      

  
 𝐵 

     

  
 𝐵  

  
𝑚  = max
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Appendix III: Abbreviations 

ADM    Automated Dispense Machine 

BCMA   Barcode Medication Administration System 

BNH    Buy-and-Hold 

BOOFLP   Bi-objective Obnoxious Facility Location Problem 

CMI    Co-managed Inventory 

CP    Central Pharmacy 

CSSD    Central Sterilization Service Department 

CU    Care Unit 

DTP    Direct-to-Pharmacy 

FFS    Fee-for-Service 

GPO    Group Purchasing Organization 

IP    Integer Program 

JIT    Just-In-Time 

LB    Lower Bound 

LP    Linear Program 

MASTA   Multi Attribute Spare Tree Analysis 

MIP    Mixed-Integer Program 

MP    Master Problem 

MP-IP   Master Problem – Integer Program 

MP-LP   Master Problem – Linear Program 

NF    Network Flow 

OECD   Organization for Economic Co-operation and Development 

OR    Operations Research 

PVRP    Periodic Vehicle Routing Problem 

RCPSP   Resource-Constrained Project Scheduling Problem 

RFID    Radio Frequency Identification 
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SA    Simulated Annealing 

SCM    Supply Chain Management 

ShP    Shortest Path 

SMDP   Semi Markov Decision Process 

SP    Subproblem 

S-SP    Shift-Subproblem 

T-SP    Task-Subproblem 

UB    Upper Bound 

VED    Vital, Essential, Desirable 

VMI    Vendor-managed Inventory 

VNS    Variable Neighborhood Search 

VRP    Vehicle Routing Problem 

5S    Sort, Set to order, Shine, Standardize, and Sustain 
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