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Recent experiments have shown the potential of surface acoustic waves as a
mean for transporting charge and spin in quantum wells. In particular, they
have proven highly effective for the coherent transport of spin-polarized wave
packets, suggesting their potential in spintronics applications. Motivated by
these experimental observations, the spin and charge dynamics in a quantum
well under surface acoustic waves is theoretically studied. It is shown that
the dynamics acquires a simple and transparent form in a reference frame
co-moving with the surface acoustic wave. The results, e.g., the calculated
spin relaxation and precession lengths, are in excellent agreement with recent

experimental observations.

1. Introduction

Coherent spin transport across a device is a central goal of spin-
tronics."?! In this context the enhancement of the spin lifetime
is a critical issue, and recent experiments have demonstrated
the effectiveness of using Surface Acoustic Waves (SAWs) for
this purpose.> In such experiments the spin density in
semiconducting quantum wells is optically generated by laser
beams and transported by a SAW over distances of several tens
of micrometers. The current understanding!'! is that these
long distances are possible due to the suppression of both Bir-
Aronov-Pikus,”] and Dyakonov-Perel'® spin-relaxation mecha-
nisms: the piezoelectric SAW potential spatially separates
electrons and holes, thus inhibiting Bir-Aronov-Pikus relaxa-
tion, and at the same time confines them to narrow (moving)
wires/dots, which causes motional narrowing and thus a sup-
pression of Dyakonov-Perel relaxation. However, motional nar-
rowing in a 2-Dimensional Electron Gas (2DEG) ceases to be
relevant for strong static confinements, when spin-dependent
scattering at the boundaries takes over, as recently observed!
and theoretically explained.!'%] In this work we address the ques-
tion of dynamic confinement. In particular, we will investigate
how intrinsic (Dyakonov-Perel’) spin relaxation mechanisms
affect the spin dynamics of pockets of photoexcited electrons
driven by SAWs.
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We will also briefly comment on the
role of extrinsic (Elliot-Yafet) spin relaxa-
tion."!] Spin relaxation due to the hyper-
fine interaction between the carriers and
the background nuclei may be an impor-
tant issue in strongly confined, static
geometries,'213 but was recently shown!'4l
to be irrelevant for a pocket of mobile elec-
trons carried by a SAW, and hence will not
be considered here.

We will start in Section 2 and 3 by
defining the model and introducing the
diffusive limit, respectively. In Section 4
charge dynamics will be discussed, and
in Section 5 the central issue of spin
dynamics. For the sake of clarity, the latter will be studied by
specializing to a specific geometry, and by retaining only the
dominant spin-orbit interactions. In Section 6 we will comment
on different geometries and additional spin-orbit terms. A short
summary is given in Section 7.

2. The Model

We consider an electron gas in the x — y —plane described by the
Hamiltonian

2

H=L 1 H, +v). (1)
2m

Here m is the effective mass, H,, describes intrinsic spin-orbit
coupling, and V(r) is the random impurity potential. For the
latter, we assume the standard “white noise” disorder, i.e., we
assume that the average of the potential is zero, and its correla-
tions are given by

(V(r)V(r'))=(2xNyt)" §(r-1'), )

where N, =m/27 is the density of states at the Fermi energy
per spin, 7 is the elastic momentum scattering time, and we
have chosen 7=1.

For H,, we consider general linear-in-momentum couplings,
which arise in 2DEGs because of broken structural (Rashbal'))
or bulk (Dresselhaus!'®) inversion symmetry, or of strain;'’!
linear couplings are dominant with respect to cubic ones in a
wide range of parameters.'®!°! Linear-in-momentum couplings
can be written in terms of a non-Abelian vector potential .4 ,120-23]
which for spin 1/2 carriers becomes a SU(2) field with three
components in the Pauli matrices basis (a=x,y,2), and two
components in real space (i=x,y):
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H,, = p;A'c’/2m. (3)

Unless otherwise specified, upper (lower) indices will refer
to spin (real space) components throughout.

Our treatment is based on the general approach described
in Reference 23 and 24. However, for definiteness we will start
by considering quantum wells grown in the z|[[001] direction.
With the in-plane base vectors x||[100] and y||[010] the linear
Rashba and Dresselhaus spin-orbit Hamiltonians read

HY =a(p,0* - p.o?), (4)

HY =ﬂ(pyay—px6"), ()

with o, the respective coupling constants. These spin-orbit
terms can be rewritten according to (3) with the following
SU(2) potentials:

(A); == (A), =2mar, (6)

(), ==(Ap), =2mp, (7)

all other components being zero.

The spin-orbit interaction depends on the electron direction
of motion; thus, in order to examine the effect of a SAW, we
will consider the latter to be propagating either in the [110] or
in the [110] direction. In both cases the driving field can be
written as

E(r)=E kcos(kr—ot), (8)

where w=v|k|; v is the sound velocity in the medium, and
k is the unit vector pointing in the SAW propagation direction.

The SAW is generated in a piezoelectric material by applying
a time-modulated voltage to interdigital transducers in contact
with it, and the in-plane field (8) is accompanied by a compo-
nent in the z direction and by strain.l?>2% The latter are both
sources of additional non-homogeneous and time dependent
spin-orbit terms in the Hamiltonian.l We will at first neglect
these complications, and start by taking into account only the
driving SAW field (8).

3. Diffusive Limit

Within the SU(2) “color” approach?>?4l the charge and spin
dynamics can be described by the SU(2)-covariant continuity
equation

I <

—+V-j=0, 9
~ j ©)
with the density and current given by
p:p0+sacu’ i:i0+iao-u- (10)

Here p° and s" are, respectively, the charge and spin (a-th
component) density. The covariant derivative
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V=V+i[A,..], (11)
where
A=(A*c" + A0’ + A07) /2, (12)

defined according to Reference 23, consists of two terms, the
spatial derivative V and the commutator with the vector poten-
tial describing spin precession around the spin-orbit field. In
this work, we consider the diffusive regime, i.e., we assume
that the mean free path, I =v;7, is much smaller than the wave-
length of the SAW, 27 /k. In this limit, the electric field E of
the SAW enters the charge-spin current as follows:’]

j=-DVp+uEp, (13)

where D is the diffusion constant, and p the mobility. This
simple structure is due to the fact that we are dealing with lin-
ear-in-momentum spin-orbit interactions. Substituting (13) into
the continuity Equation (9) leads to a drift-diffusion equation
for the charge density p’, and to Bloch-type equations for the
spin densities s”.

4. Charge Dynamics

As discussed above, the drift-diffusion equation for the charge
carriers in the diffusive limit has the well-known form:

apo . 0\ _ 2.0 _
TERLAd (Ep°)-DV?p° =0. (14)

In the following we assume the x axis to be parallel to the SAW
propagation direction. Since there is no drift of the carriers in
the direction perpendicular to the SAW (y axis), the solution of
the drift-diffusion equation factorizes, p°(r,t)=aoX(x,t)Y(y,t).
Here a, is a constant fixed by the initial conditions, irrelevant
for the dynamics and thus neglected in the following unless
otherwise specified. The motion in the y direction is governed
by the solution of the diffusion equation,

\/erﬁ I:dy'exp[—%]Y(y',O). (15)

Y(y.t)=

For the dynamics in x direction one has to discriminate
between two cases, depending on the SAW velocity v being
larger or smaller than the carrier velocity uE. In the first case,
v> UE, the carriers are too slow to follow the SAW, but move
from one minimum to the next. Considering in addition not
too small E such that Dk < uE, cf. Equation (14), diffusion
can be neglected and the dynamics is governed by the drift.
In typical non-degenerate semiconductors the Einstein rela-
tion D= pkzT/e can be employed to estimate the diffusion
constant,?’~?% implying that the condition Dk <« yE becomes
independent of the mobility, namely reduces to kT -k <« eE,
or kT < eE/k. This requirement is easily met at low tempera-
tures, T ~20 K or lower.?”l Though diffusion acquires impor-
tance with increasing temperature, the experimental data of



Reference 5 (see Figure 4(b) therein), where k ~1.12x10* cm™
and eE ~3.4x10° eV/cm, show that drift can be dominant even
at room temperature. In this case the differential Equation (14)
simplifies, and X(x,t) is found to be given by

_v- UEcos (k& (x,1))

X(x,t X ,1),0), 16
() v — ptEcos (kx — mt) (£Ge).0) (16)
with
E(x.t)
v—uUE [ ( v+ UE (kx—a)t))
= —arctan tan| arctan tan
v+ UE v—UE 2
2 _ EZ
LW -(E) (17)

Note that &(x,t=0)=x.

Care is needed because of the periodicity of tan[(kx - wt) /2],
since for an arbitrary initial condition one has to choose the right
branch in order to obtain the solution with the correct initial
distribution. One can circumvent this difficulty by choosing an
initial condition with all carriers within one period. In Figure 1
we therefore assumed a Gaussian initial distribution with a
standard deviation much smaller than the SAW wavelength.
Although the carriers are not fast enough to follow the SAW,
they flow from one minimum to the next, with the average
velocity

v =v—\v? —(UE), UE <v. (18)

The situation is quite different for pE <v, when the charge
carriers are fast enough to follow the SAW, ie., they are
“surfing”. This means that they are subjected to a stationary
potential in a reference frame moving with the SAW, and at
the point x, =arccos(v/uE)/k in this frame they move with
its velocity.’% Since the potential is periodic, there is such a
point in every period. Independent of the initial distribution
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Figure 1. Motion of the charge carriers in x direction, i.e., contour plot
of X(x,t), with uEfv =0.5.

X(x,0), the carriers flow towards the point x, corresponding
to their period, until they reach a stationary distribution.
This implies that, for pE>v the solution (16) converges to
X(x,t) ~ 6(k(x —x,) — wt), and the carrier density X(x,t) is con-
centrated in an infinitely small wire parallel to the wave front.
Thus the diffusion term cannot be neglected anymore. Since
the charge density distribution becomes stationary, the charge
current vanishes in the moving frame, leading to

X(x,8) = exp UEsin (kx — ot)—v (kx — wt) , (19)
Dk
which is sharply peaked at kx—wt=kx,. Hence for

|kx — ot —kx, |<1, X(x,t) can be approximated by a Gaussian
distribution,

(kx— ot —kx, )’ J

exp(— 20’
X (%,t)= Tiro , (20)

with standard deviation o =Dk/\/(UE)’ —v* . Note that
the exact solution (19) of the continuity Equation (14) does
not depend on the sign of u. In other words, this solution
describes the dynamics of electrons as well as that of holes, pro-
vided both are in the surfing regime, i.e., u.E, t,E>v. In this
case the spatial separation of the two pockets of carriers is

Ay = arccos(v//JhE);arCCOS(V/#eE)_ (21)

5. Spin Dynamics

In this section, we examine the influence of a SAW on the spin
density. The spin-orbit Hamiltonians can be written as

—_ x Y
HE+HD =—(o+ p) P2 19
RN R
p.tp, 0" -0’ (22)
o (e :
S
=ao.p.0" +o_p,c* (23)

where the primed coordinates correspond to the two directions,
[110] and [110]. In the following, we will perform all our calcu-
lations in this rotated reference frame (both real space and spin
components rotated by 7/4 around the z axis) with x|[110]
and ¥1/[110] but drop the prime (except for the closing of Sec-
tion 6 where we will revert back to non-rotated coordinates). For
the vector potential A one finds

(A) ==2m(a + B)=2ma,, (24)
(A); =2m(a—-p)=2ma., (25)
(A), =(A); =0. (26)
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The Bloch equations describing the dynamics of the spin
density read

0,5° + UV -Es* = DV%s* = =2Dg AY - Vs =T%sb + &, LE- As*.
(27)

These set of equations are obtained by taking the spin
a-component of the continuity Equation (9), after expressing
the current in the diffusive regime according to Equation (13).
Without a SAW and for a homogeneous spin distribution, one
can immediately determine the spin lifetimes from the eigen-
values of the inverse spin relaxation matrix ', In fact " in
(27) is diagonal, and its eigenvalues are

T, =4Dm’a’, (28)
I, =4Dm’a?, (29)
I, =4Dm’ (o} +02). (30)

From (29) one sees that for y-polarized spins there is no
relaxation if o = 8. Although this limit can be realized in exper-
iments, 3% we here consider the more general case « # f3.

5.1. Homogeneous Initial Conditions

The spin dynamics depends strongly on the initial condi-
tions. In this subsection we consider an experimental setup
where a short laser pulse homogeneously polarizes the com-
plete surface. In the surfing regime electrons and holes are
strongly localized and effectively spatially separated, see Equa-
tion (21), and are transported — along with their spins — across
the sample. The description of the spin dynamics is consider-
ably simplified by switching to a reference frame co-moving
with the SAW. A change to such a reference frame leads to an
additional term in the continuity equation which acts like an
internal magnetic field,
9, p+ Vj+i[vA, p]=0. (31)
where v=vk. A further simplification can be achieved by
applying the following SU(2) gauge transformation:
A->UTAU+iUTVU, U=exp(ix.A,). (32)
In this gauge, the covariant derivative d,—d, is diagonal
in spin space but leads to an x-dependent vector potential
A, (x). However, since the charge carriers are Gaussian-distrib-
uted at the origin in the co-moving system with o «<1/2ma.,
one can neglect the x-dependence of the vector potential, hence
A, (%)= A, (0).

The time-dependence of the spin density in the presence of
the SAW is governed by an effective relaxation matrix 7, whose
(complex) eigenvalues are given by

V.. =2Dm’a £ 2i\v’'m’al — D’'m‘at,

(33)
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v, =4Dm’a’. (34)

Since all carriers move with the same velocity v, the real part
of these eigenvalues is related to the spin decay length,

v

L= , (35)
Re(y)

whereas the imaginary part determines the spatial precession

length,

A=—r (36)

Im(y)’

For a SAW moving in the y direction we proceed in the
same way. The carriers are then concentrated in a small wire
parallel to the x axis. In this case one finds

Y, =4Dm’o® (37)

¥, =2Dma? + 2i\Jv*'m*a? — D*m* o’ (38)

which is obtained from Equation (33) and (34) by interchanging
x and y aswell as + and —.

Comparing the real parts with Equation (28) and (29), one
finds a maximal enhancement of the spin lifetime by a factor
of 2(a,/ar_)’ for the x direction, and 2(o_/a.)* for the y
direction (“motional narrowing”). Note that the real parts of
Y..and y,, are by a factor of two smaller than their perpendic-
ular counterparts, y, and y,, respectively. These perpendicular
counterparts, describing the relaxation of spins parallel to the
SAW wave front, are not affected by the SAW in the simple case
of a homogeneous spin density.

Specifically we numerically calculated the x-spin density for
a SAW traveling in the x direction and for different E values.
For simplicity, we set a, =o_, which in the surfing regime
implies a spin lifetime increase by a factor of two. Not being
interested in the spatial variation of the spin density, we con-
sider the spin polarization P, =|P,|, by integrating the spin
density over the whole surface. From the Bloch Equations (27)
one sees that, without a SAW, the spin polarization decays expo-
nentially with the spin scattering rate (28). Hence we define the
average spin lifetime by

Jths dt
(1) ="—. (39)
j

For the numerical analysis, we started at t=0 with a
Gaussian distribution in x direction, with a standard devia-
tion o> 1/2ma,, polarized in x direction. The spin lifetime
as a function of the ratio pE/v is shown in Figure 2, where
the expectation value (r) is normalized to the corresponding
spin lifetime 7, without SAW, cf. Equation (28). In the regime
UE v <1, when the carriers are not surfing, the spin lifetime
depends strongly on the form of the initial spin distribution; in
particular, for our choice its E-dependence is non-monotonic.
As one approaches the surfing regime UE > v, the spin lifetime
converges to the expected value 27,.
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Figure 2. Numerical results for the increase of the spin lifetime 7 due
to a SAW. For the calculation we assumed o, = a_. The spin lifetime is
normalized by 7, =T}', cf. Equation (28).

5.2. Inhomogeneous Initial Conditions

So far we have discussed the spin dynamics of an initially
homogeneous spin distribution, for which case there is no spin
current parallel to the SAW wave front. However this assump-
tion is not justified in experiments where the initial spin distri-
bution is created by, say, a focused laser beam. Again, without
loss of generality, we consider a SAW moving in x direction.

While for the homogeneous case, the spins were precessing
only around the axis parallel to the SAW wave front, now there
will be diffusion along the wave front, and hence they will also
rotate around the SAW propagation direction. As a consequence
the spins along the narrow moving wire will not have the same
orientation. In order to deal with this additional precession we
employ the following ansatz for the spin density:

s“=p° (r.o.t)n" (9.t), (40)

where r=2m./a’x” +a’y* denotes the renormalized (dimen-
sionless) radius, and ¢ =arctan[a_y/(¢ct,x)]. The carrier density
in the surfing regime, p°(r,,t), was already determined in
Section 4, with X(x,t) given in (19); according to Equation (15)
the carrier density along the y axis for an initial Gaussian dis-
tribution with standard deviation y, reads

1 Y
Y (p.t)= - .
(r.t) \/zn(ZDH%)exP{ 2(2Dt+y§):| (41)

Instead of switching to the SAW co-moving reference frame
as in the homogeneous case, we stay in the laboratory frame
but perform again a gauge transformation,

A UTAU+IUVU, U=exp[i(x —x, —vt)A,], (42)

since as above all relevant spin dynamics takes place in a small
wire parallel to the SAW wave front. With the ansatz (40),
and by neglecting terms O(r™'), the continuity Equation (9)
reads

1%

9,n—i——[A.(@).n]+ D[ A.[A,.n]]=0, (43)

cos @

where .Ax(go):exp(—i%O'Z)A exp(i%O'Z) is the vector poten-
tial rotated around the z axis. The second term in Equation (43)
leads to spin precession around the ¢-dependent vector poten-
tial A, (@), whereas the third term is responsible for the relaxa-
tion of the spin components perpendicular to the x axis. The
Bloch equations now read

ab

90" ==y(e)" 1’, (44)

with the ¢-dependent effective relaxation matrix

0 0 2mva,
7(p)= 0 4Dm’c?  2mva.tang . (45)
—2mvae, —2mvotang  4Dm’a’

Assuming that the temporal resolution is not high enough
to measure the time dependence of the spin density directly
(see, e.g., Reference 6), we characterize the additional rotation
of the spins due to the diffusion parallel to the SAW wave front
by the time-integrated spin density: note that all spins are con-
fined within a narrow wire, and the spin density vanishes eve-
rywhere but for x — x, = vt. For the time-integrated spin density
we therefore obtain

0= J.:s“ dt=a,Y(y,(x—x0) /v)N° (r,0). (46)

The results presented in Figure 3 and 4 were obtained by cal-
culating numerically the time-dependence of the spin density

25 - : '
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Figure 3. Time-integrated spin density, 5%, for a SAW moving in [110]
direction.
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Figure 4. Time-integrated spin density, 52, for a SAW moving in [110]

s%, assuming at t=0 a Gaussian distribution with standard
deviation of 1 pm. Specifically, Figure 3 and 4 show the time-
integrated spin density for a SAW moving in x and y direc-
tion, respectively. We have chosen parameters comparable to
the experimental onesl® (we restore temporarily 7#), namely
2mafh* =0.02 um™, 2mB/H* =0.17 um™', D=30 cm’s, and
v=2.9x10° cm/s. The elliptical shape of the time-integrated
spin density, which is a consequence of the ¢-dependence of
A, (9), is clearly visible in both figures, in remarkable agree-
ment with the observed behaviour.[%l

The time-integrated s* takes a very simple form along certain
directions. For example, along the x direction for y=0 (recall
that our coordinate choice means %||[110], §|/[110]) we find

s —a, exp(—(x—xo)/Lsyllo)cos[Zn(x—xo)], (47)
\/y§+2D(x—x0)/V Mo

where

Lo =v/[2Dm?a?, Ayo=v[2\v’m*al —D*'m*al. (48)

This is plotted in Figure 5, upper panel (solid black line).
The constant a, is fixed by fitting the numerical data, as dis-
cussed below. For a SAW propagating in y direction (for
x=0), one finds a similar expression, with the substitutions
%, Lo 110, Ao =¥, Ly 1105 Ano
Lo =v[2Dm*al, Aqyy =v [ 24v'mPe’ — D’mtat ; (49)
compare Figure 5, lower panel (solid black line). In both propa-
gation directions the numerical and analytical data are in good
agreement for x,y >3 pum. The reason for the deviation near
the origin is that for the chosen parameters, the standard devia-
tion 1um of the initial Gaussian is only marginally smaller
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Figure 5. Time-integrated spin density, 5%, along the [110]and [110] direc-
tions. The red circles represent the numerical solution of Equation (9).
The black solid line shows the analytical expression (47).

than the SAW wavelength 27 /k=2.55um, leading to two
small wires instead of one. This causes the peak for x, y close
to this value. The spin dynamics is, however, in both wires the
same. We emphasize that the dependence of the spin preces-
sion length on the direction of motion of the SAW is in very
good agreement with the experimental observations.[®!

6. Miscellaneous

6.1. Other Growth Directions

Our treatment is based on the general SU(2)-covariant Equa-
tions (9) and (13). The latter require as only input the specific
form of the spin-orbit interaction, i.e., of the non-Abelian vector
potential A, and yield at once the spin diffusion (Bloch) Equa-
tions (27). Therefore any linear-in-momentum spin-orbit term
can be handled straightforwardly. Let us consider, as another
example, the [110]-grown GaAs quantum well experimen-
tally studied in Reference 4 and 5. The Rashba interaction is
unchanged, compare Equation (4) and (6), whereas the Dres-
selhaus term points out-of-plane,3]
HZ =Bp,0°, (50)
i.e., the only non-zero component of the vector potential Ay is
(AD)j =2mp. If only the [110] Dresselhaus term were present,
s* would be a conserved quantity,''** and confinement along
the x direction would be inconsequential. This changes when
the Rashba interaction is also taken into account. The eigen-
values of the T matrix becomelll]



[, =4Dm’o?, (51)
I, =4Dm* (o’ + B°), (52)
Ty =4Dm’ (20 + B°), (53)

with two eigenmode directions depending on the relative
strength of the Rashba and Dresselhaus interactions:

& 11(~e.0,B), (54)
62”(0:1’0)’ (55)
&11(B.0,a). (56)

The influence of a SAW on the spin lifetimes now crucially
depends on the propagation direction. For an x-propagating
SAW, in the co-moving frame and after gauging away (A)! as
before, we find the eigenvalues of the y matrix to be given by

715 =2Dm? (302 + B*) £ 2i\[v’m’a’ ~ D’'m" (o> + ) (57)
7, =4Dm’ (o’ + %), (58)

with the eigenmode directions

& 11(-8Dm’a’ +7,,0,2maw + 4Dm’ o), (59)
& 11(0,1,0), (60)
& 11(-8Dm*a’ —y,,0,2mav + 4Dm’af). (61)

The y-polarized spin eigenmode keeps its direction, ¢, =¢,,and
its lifetime, y, =T, as in the case of a [001]-grown quantum
well (see Equation (29) and (34). On the other hand, the I';- and
I';-modes are mixed by the SAW-induced dynamics. By com-
paring I';; with the real part of y,,, one sees that Re(y,)>T7,
i.e., the new y, eigenmode has actually a shorter lifetime com-
pared to the old one. On the other hand, Re(y;)<T;, with the
eigenmode lifetime increasing by a factor of two for strong
Dresselhaus interaction, > a.

Even more interestingly, for a y-propagating SAW the relaxa-
tion is independent of B. The eigenvalues of the y matrix, in
the moving frame and after the usual gauge transformation,
read

71 =4Dm’a’, (62)

V23 =2Dm’’ £2i\[v'm’ (o’ + B*) - D'm*a’, (63)

whereas the eigenmode directions are

é (-e,0.B), (64)
& |1(2mwB,y,,2mvaxr), (65)
& |1 (2mvB,—y5,2mvar). (66)

Now the I';-mode keeps both its lifetime, y, =T, and its direc-
tion, &, =¢;, while the other two modes are strongly influenced
by the presence of the SAW. In particular, compared to the

eigenmodes T, 3, the new eigenmodes ¥, have a spin lifetime
enhanced by a factor of 2f%/a* if the Dresselhaus interaction
dominates.

6.2. Additional Spin-Orbit Interactions

Additional sources of Rashba or Dresselhaus-like spin-orbit
terms are the out-of-plane (i.e., parallel to the quantum well
growth direction) SAW field and strain. Experimental observa-
tions suggest these dynamical contributions to be sub-leading
compared to the static ones, though not completely negligible,
especially for very strong SAW power.® For this discussion we
consider the non-rotated coordinates, cf. Section 2.

In the laboratory reference frame the additional spin-orbit
interactions appear as time- and space-dependent Rashba or
Dresselhaus terms. For example, considering a SAW propa-
gating along the ¥ direction, Equation (4) is modified to

HE =[ a0+ Oieso (%,8) + Olgan (,£) | (p,0° = po0?), (67)

and similarly for the Dresselhaus terms. In the color lan-
guage this means that we deal with a space- and time-
dependent vector potential 4 (x,t). Nevertheless, as long as the
spatial variations of the spin-orbit fields are slow on the scale
of the Fermi wavelength, the SU(2) approach can be employed
directly, as it treats homogeneous/static spin-orbit terms on the
same footing as inhomogeneous/time-dependent ones.>3! The
dynamical nature of these additional spin-orbit interactions
substantially complicates the problem, but once more a change
to the SAW co-moving reference frame offers a great simplifica-
tion: when all disturbances, i.e., in- or out-of-plane fields, either
piezoelectric or due to strain, propagate approximately with the
same sound velocity v, all their contributions become static in
the SAW co-moving frame, A(x,t)— A(x). Moreover, in the
surfing regime when the carriers are confined, the vector poten-
tial can be approximated by its value at x, = arccos(v/UE)/k (see
Section 4), A(x)= A(x,). Hence we are back to the situation
discussed in Section 5, with the following modifications:

-AR H-AR +A£iezo(x0)+./4;train(x0) (68)
Ap = Ap + A3 (o). (69)

This corroborates and fully justifies the intuition behind the
estimations of Oy, Cgran, aNd Ppiere described in Reference 6.

Finally, we briefly discuss extrinsic spin relaxation, i.e.,
due to spin-orbit interaction with the disorder potential V(r).
Extrinsic mechanisms can be included in the color approach,?
and in the present case they lead to an additional (diagonal)
term T, in the relaxation matrix I of Equation (27),

- 1

I'ewe =—diag(1,1,0).
g, oo (70
The Elliot-Yafet spin-flip rate 1/t typically is negli-

gible compared to the Dyakonov-Perel rate (see Reference 11

for details), and independent of the presence of SAWs or of
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confinement. Nevertheless, a discussion focused on its role in a
moving quantum dot in the presence of a Zeeman field is given
in Reference 35. Note that in case the impurity potential V(r)
fluctuates also out-of-plane,3® an Elliot-Yafet relaxation rate for
the z spin component will appear.

7. Conclusion

By utilizing the microscopic model of a disordered two dimen-
sional electron gas, we have studied the effects of surface
acoustic waves on the charge and spin dynamics of photo-
excited carriers, focusing on intrinsic spin-orbit mechanisms
(Dyakonov-Perel’ relaxation). A SAW has to be strong enough
(ME >v) in order to transport the carriers at the speed of sound
v across the sample. In this surfing regime, the spin lifetime
is considerably increased due to motional narrowing, up to a
factor of two in (001) quantum wells. The dynamics can be most
conveniently described in a reference frame co-moving with the
SAW. In particular, we determined the SAW-induced modifica-
tions of the spin relaxation and precession lengths. Considering
also diffusion along the SAW wave front, we obtained very good
agreement with recent experimental observations.[®! Additional
dynamical sources of spin-orbit relaxation (out-of-plane SAW
field, strain) were also shown to be most conveniently handled
in the SAW co-moving frame. These effects are expected to be
relevant for the “moving quantum dots” produced by the inter-
ference of two orthogonal SAW beams.[1¢]
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