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ABSTRACT
Many novel multimedia systems and applications use visual
sensor arrays. An important issue in designing sensor ar-
rays is the appropriate placement of the visual sensors such
that they achieve a predefined goal. In this paper we focus
on the placement with respect to maximizing coverage or
achieving coverage at a certain resolution. We identify and
consider four different problems: maximizing coverage sub-
ject to a given number of cameras (a) or a maximum total
price of the sensor array (b), optimizing camera poses given
fixed locations (c), and minimizing the cost of a sensor array
given a minimally required percentage of coverage (d). To
solve these problems, we propose different algorithms. Our
approaches can be subdivided into algorithms which give a
global optimum solution and heuristics which solve the prob-
lem within reaonable time and memory consumption at the
cost of not necessarily determining the global optimum. We
also present a user-interface to enter and edit the spaces un-
der analysis, the optimization problems as well as the other
setup parameters. The different algorithms are experimen-
tally evaluated and results are presented. The results show
that the algorithms work well and are suited for different
practical applications. For the final paper it is planned to
have the user interface running as a web service.

1. INTRODUCTION
Visual sensor arrays are used in many novel multimedia

applications such as video surveillance, sensing rooms, as-
sisted living or immersive conference rooms. Most of these
applications require the layout of video sensors to assure
a minimum level of image quality or image resolution. In
visual surveillance a predefined space needs to be covered
either partially (i.e. specific areas only) or completely by
the visual sensor array. Thus, an important issue in design-
ing visual sensor arrays is the appropriate placement of the
cameras such that they achieve one or mulitple predefined
goals.
Currently most designers of multi-camera systems place cam-

Figure 1: Placement of four cameras to maximize
coverage of the given space. Cameras are marked
as black points with a blue triangle indicating their
field-of-view

eras by hand because there exists only little theoretical re-
search on visual sensor placement. As video sensor arrays
are getting larger, efficient camera placement strategies need
to be developed.
Here we focus on the topic of maximizing or achieving cover-
age with respect to a predefined ’sampling rate’ guaranteeing
that an object in the space will be imaged at a minimum
resolution (see Section 2 for a precise definition). A typi-
cal scenario is shown in Figure 1. The space consists of all
white regions, black regions mark background and/or ob-
stacles. Camera positions are marked with black circles and
their fields-of-view with blue lines.
We consider the visual sensor placement problem in its var-
ious facets: Maximizing coverage subject to a given number
of cameras is one problem we aim to solve. Often several
different types of cameras are available. They differ in their
ranges of view, intrinsic parameters, image sensor resolu-
tions, optics, and costs. Therefore in this paper we also
consider minimizing the cost of a visual sensor array while
maintaining a minimally required percentage of coverage of
the given space as well as maximizing coverage given a max-
imum price for the camera array.
In some situations cameras have already been installed (e.g.
at an airport). Positions of the multiple cameras can be
determined automatically by camera calibration. Given the
fixed initial positions and camera types, we also address the
problem of determining the optimal poses with respect to
coverage while maintaining the required resolution.
Different algorithms are proposed to solve these problems.
They may be subdivided into algorithms which determine
the global optimum solution and heuristics which solve the
problem within reaonable time and memory consumption,
but do not necessarily determine the global optimum. A
careful evaluation and a comparative study of the different



approaches show their respective advantages.
A user interface is developed in order to comfortably enter
and edit the layout of spaces and setup parameters of the
respective optimization problem. It is planned to have this
running as a web service.

1.1 Related Work
Although a significant amount of research exists in design-

ing and calibrating visual sensor arrays, automated visual
sensor placement and alignment in general has not been ad-
dressed frequently.
There exists some work in the area of (grid) coverage prob-
lems and sensor deployment with sensors sensing events that
occur within a distance r (the sensing range of the sen-
sor) [13], [2], [16], [14]. Our linear programming work is
partly based on the approach presented in [2], but differs in
the sensor and space model (e.g. cameras do not posses cir-
cular sensing ranges) as well as the cost function and some
constraints.
We have presented our visual sensor model in previous work
for the two-dimensional [7] and the three-dimensional case [8].
In those works we proposed an linear programming (LP) ap-
proach to determine the minimum cost of a sensor array that
covers a given space completely, and also an LP approach
that determines for fixed sensor arrays their optimal pan
and tilt with respect to coverage. In both approaches space
is presented as a regular grid.
In [4] a camera placement algorithm based on a binary op-
timization technique is proposed. Only polygonial spaces
are considered, which are presented as occupancy grids in
constrast to our approach where we allow spaces to have
arbitrary shape and the points representing space are dis-
tributed according to a user defined importance distribution.
Additionally, in [4] only one of the four problems considered
in this paper is covered and the authors do not comment on
handling large spaces.
In [3] camera placement for robust motion capture is con-
sidered. A quality metric is constructed taking in account
resolution and occlusion. This metric is combined with an
evolutionary-algorithm based optimizer and used to auto-
mate the camera placement process. Despite the fact that
the paper only reports two very simple placement results
for small problems, the outcome of the algorithm is not nec-
essarily the global optimum. In [11] the problem of finding
the optimal camera placement for accurate reconstruction is
approached using a multicellular genetic algorithm. Results
are only reported on very restricted experiments.
In [10] the authors present a method for sensor planning in
dynamic scenes. Therefore they analyze the visibility from
static sensors at sampled points statistically and solve the
problem by simulated annealing.
The sensor placement problem is also closely related to the
guard placement problem (AGP) – the problem of deter-
mining the minimum number of guards required to cover
the interior of an art gallery. It is addressed by the art
gallery theorem [12]. In AGP all guards are assumed to
have similar capabilities whereas we also consider cameras
with different fields-of-views at different levels of costs. Ad-
ditionally the field-of-view is restricted in our sensor model
due to resolution and sensor properties.

1.2 Contributions
The main contributions of this paper are:

• Space is sampled according to an underlying impor-
tance distribution instead of using a regular grid of
points.

• A linear programming model for each of our problems
is presented which gives a optimal solution to the re-
spective problem. We show how to reduce the number
of variables and constraints significantly, thus enabling
an optimal solution for larger problems.

• Several heuristics are proposed to approximate the op-
timal solution of the different camera placement prob-
lems.

• An interface that enables the user to comfortably enter
and edit the space, the optimization problems as well
as the other setup parameters is presented.

• An experimental and competative evaluation of the
different approaches is given showing the different al-
gorithms’ specific advantages.

1.3 Paper Organization
The paper is organized as follows. In Section 2, the prob-

lem is stated and basic definitions are given. Section 3
presents our different approaches to solve the problem. Our
visual user-interface is presented in Section 4. In Section 5
we evaluate our approaches experimentally. Possible exten-
sions are discussed in Section 6, and Section 7 summarizes
and concludes the paper.

2. PROBLEM FORMULATION

2.1 Definitions
In the following the term space denotes a physical two- or

three-dimensional room.
A point in that space is covered if that point is captured
with a required minimal resolution. The minimal resolu-
tion is satisfied if the point in space is imaged by at least
one pixel of a camera that does not aggregate more than x
cm2 of a surface parallel to the imaging plane through that
point. x is expressed in terms of the sampling frequency fs

and converted into the field-of-view of a camera.
The field − of − view of a camera is defined as the volume
in which a pixel aggregates no more than 1

f2
s

cm2 of a surface

parallel to the imaging plane. Thus an object that appears
in the camera’s field-of-view is imaged with at least this res-
olution assuming the object has a planar surface orthogonal
to the optical axis. Clearly the resolution is smaller if the
surface is not orthogonal. How to account for this case is
discussed in Section 6.
We also consider static occlusions. To simplify the deriva-
tion and evaluation only the 2D problem is discussed in this
paper; however, the presented approaches can be extended
easily to the third dimension (see Section 6).

2.2 Problem Statement
There are many problems that could be considered in the

placement of multiple visual sensors. Here we focus on four
problems. Variations can be tackled in a similar fashion.
Given a space to be covered and a sampling frequency fs,
we are interested in the following problems:



Figure 2: Deriving the model of a camera’s field-of-
view

• Problem 1: Given the number of cameras of one type
and their specific parameters, determine their posi-
tions and poses in space such that coverage is max-
imized.

• Problem 2: Given several types of cameras, their pa-
rameters and specific costs as well as the maximum
total price of the visual sensor array, determine the
camera types and positions/poses that maximize cov-
erage in the given space.

• Problem 3: Given the fixed positions and respective
types of a number of cameras determine their optimal
poses with respect to maximizing coverage.

• Problem 4: Given a minimally required percentage of
coverage determine the camera array with minimum
cost that satisfies this coverage constraint. In the case
that only one type of camera is available the minimum
number of cameras of that type that meets the cover-
age constraint is determined.

2.3 Modeling a Camera’s Field-Of-View
We use a simple model for our cameras: the field-of-view

of a camera is described by a triangle as shown in Fig. 2
(a). The parameters of this triangle are calculated given the
(intrinsic) camera parameters and the sampling frequency
fs using well known geometric relations.
Defining the field-of-view by a triangle enables us to describe
the area covered by a camera at position (cx, cy) and with
pose ϕ by three linear constraints. Therefore a camera’s
field-of-view is first translated to the origin of the coordinate
system (Fig. 2 (b)):

x′ = x − cx, y′ = y − cy (1)

Then we rotate the field-of-view such that its optical axis
becomes parallel to the x-axis (Fig. 2 (c)):

x′′ = cos(ϕ) · x′ + sin(ϕ) · y′ (2)

y′′ = − sin(ϕ) · x′ + cos(ϕ) · y′ (3)

The resulting area covered by the triangle (Fig. 2 (c)) can
now be described by three line equations l1, l2, l3:

l1 : x′′ ≤ d (4)

l2 : y′′ ≤
a

2d
· x′′ (5)

l3 : y′′ ≥ −
a

2d
· x′′ (6)

By substitution the following three linear constraints define
the area covered by the field-of-view of a camera:

cos(ϕ) · (x − cx) + sin(ϕ) · (y − cy) ≤ d (7)

Figure 3: Modeling space by sampling: (a) white
area defines space, black area defines walls; (b) sam-
pled space: red dots mark possible camera positions,
blue dots control points; (c) importance weighting
of space: darker gray regions are more important
than lighter regions; (d) allowed positions for cam-
era placement are marked in green

− sin(ϕ) · (x − cx) + cos(ϕ) · (y − cy) ≤
a

2d
· (cos(ϕ) · (x − cx) + sin(ϕ) · (y − cy)) (8)

− sin(ϕ) · (x − cx) + cos(ϕ) · (y − cy) ≥

−
a

2d
· (cos(ϕ) · (x − cx) + sin(ϕ) · (y − cy)) (9)

2.4 Modeling Space
In the ideal case camera positions and poses are continu-

ous in space, i.e. cx, cy and ϕ are continuous variables. As
we are not able to solve our problem for this ideal case, we
approximate the continuous case by sampling the positions
and poses. Cameras can only adopt discrete positions and
poses. A second aspect is that cameras usually cannot be
installed everywhere in a given space. Thus the user may
define regions where cameras could be set up (Figure 3(d))1.
Those regions are then sampled randomly to identify a num-
ber A of camera locations. Poses are also discretized and
cameras can only adopt a number of sϕ discrete poses.
In order to define coverage, control points are sampled from
the entire space with respect to their weighting. The user
can assign importance values to regions in space, which is
then sampled with a probability dependend on the impor-
tance of this region. If some parts of the room are known to
be more important, e.g. at doors, a higher weighting can be
given to those parts resulting in a higher density of samples,
whereas e.g. parts that are less interesting might be sampled
with a lower frequency. This approach is illustrated in Fig-
ure 3(c). Darker regions are more important than lighter
regions except black pixels, which mark the border of the
space or static obstacles constricting the field-of-view of the
cameras. Altogether a number of P control points is sam-
pled.
As the number of control points, camera positions and cam-
era poses increases, so does the accuracy of our approxima-
tion. For P → ∞, A → ∞ and sϕ → ∞ our approximated

1Section 4 gives detailed informations about our user-
interface.



solution converges to the continuous-case solution.
A resulting configuration is shown in Figure 3(b). Control
points are maked by blue dots, possibe camera positions by
red dots.
With that our problems turn into set coverage problems. A
control point is then assumed to be covered by a certain
camera if and only if Eq. 7 to 9 are satisfied and no ob-
stacles constrict the field-of-view of the visual sensor in the
direction of the control point.

3. APPROACHES
We propose different approaches to solve the visual sen-

sor placement problems. The approaches can be subdivided
into algorithms which give a global optimal solution but are
complex and time/memory consuming, and heuristics which
solve the problem in reasonable time and with reasonable
complexity. Experimental results will evaluate the different
proposed heuristics by comparing those to the optimal so-
lution as a bottom line, for comparsion purposes random
placement is also described.

3.1 Exact Algorithms

3.1.1 Linear Programming
In this section we describe our linear programming ap-

proaches to solve optimally the problems listed in Section 2.
In the following we first derive an Binary Integer Program-
ming (BIP) model to solve Problem 4. Subsequently it is
shown how to modify this model in order to solve the other
problems.
We aim to solve the following optimization problem: Several
types of cameras with different sensor resolutions and optics
(i.e. focal lengths) are available. For each type of camera
k the field-of-view parameters dk and ak (see Fig. 2) and a
cost Kk are given. Our objective is to find the configura-
tion of cameras that minimizes the total cost of the visual
sensors by optimally assigning cameras to possible camera
placements and angles while ensuring coverage for at least
a minimum percentage p of control points.
We assume that our space consists of P control points. Vi-
sual sensors locations are restricted to A positions. Similar-
ily we discretize the angle ϕ defining a camera’s pose to sϕ

different poses.
If only one type of camera is available, our binary program-
ming model remains the same, but as the total price is min-
imized so is the total number of cameras in the array. To
obtain the minimal number of cameras that satisfy the con-
straints the objective value has to be divided by the price of
one camera.
Our approach was inspired by the algorithms presented in [2]
and [8]. First we define some binary variables. Let a binary
variable ci be defined by:

ci =

8

<

:

1 if control point i is covered
by a minimum of M cameras

0 otherwise
(10)

The total number nbCovered of covered sample points is
then given by

nbCovered =
X

i

ci (11)

Further we define the two binary variables xkjϕ and g(k, j, ϕ, i):

xkjϕ =

8

<

:

1 if camera of type k is placed at
position j with orientation ϕ

0 otherwise
(12)

g(k, j, ϕ, i) =

8

<

:

1 if a camera of type k at position j with
orientation ϕ covers control point i

0 otherwise

(13)
g(k, j, ϕ, i) can be calculated in advance for each camera and
stored in a table. The total cost of the sensor array is then
given by:

min
X

k

Kk

X

j

X

ϕ

xkjϕ (14)

Next we need to express the variables that define coverage
in terms of the other above defined variables. This is done
as shown below. Since ci = 1, if and only if at least M
cameras cover the control point i we introduce the following
two inequalities for each grid point:

ci · (
X

k,j,ϕ

xkjϕ · g(k, j, ϕ, i) − M) ≥ 0 (15)

(1 − ci) · (M −
X

k,j,ϕ

xkjϕ · g(k, j, ϕ, i)) ≥ 0 (16)

The constraints 15 and 16 involve products of binary vari-
ables, thus they are nonlinear. In order to linearize the
inequalities, we introduce a new binary variable for each
appearance of a nonlinear term, as well as two additional
constraints [15]. Therefore we replace each ci · xkjϕ term
by a binary variable vkjϕi and introduce the following con-
straints:

ci + xkjϕ ≥ 2 · vkjϕi (17)

ci + xkjϕ − 1 ≤ vkjϕi (18)

To ensure that only one camera is assigned to a specific
camera position sample, we need to add the constraint

X

k,ϕ

xkjϕ ≤ 1 (19)

for each possible camera position. To ensure, that the mini-
mal predefined percentage of points is covered, the following
constraint is needed, too:

X

i

ci ≥ p · P (20)

Our sensor deployment problem can now be formulated as
an BIP model. The resulting BIP model is shown in Fig-
ure 4. The variable T denotes here the number of available
camera types.

The proposed model needs only a few modifications to solve
Problem 1 and 2. As the objective in Problem 1 and 2 is to
maximize coverage, we need to replace the objective func-
tion of the above BIP model to

max
X

i

ci (21)

As the maximization procedure favors the variable ci to be
1, constraint 16 can be dropped now, as it is soley used to



Figure 4: BIP model to solve Problem 4

P A sϕ max reduc. min reduc.
500 100 4 25.44% 22.44%
500 100 8 33.21% 23.97%
500 200 4 25.72% 20.60%

Table 1: Minimum and maximum reduction in the
number of variables achieved for different parameter
settings (assuming the BIP model for problem 1,2
and 4)

force ci to value 1 if the coverage constraints are satisfied.
To derive the BIP model for Problem 1 we need as well to
substitue contraint 20 by:

X

k,j,ϕ

xkjϕ = N (22)

where N denotes the number of cameras we are allowed to
place.
If we aim to solve Problem 2, we need to substitue con-
traint 20 by

X

k,j,ϕ

Kk · xkjϕ ≤ F (23)

where F denotes the maximally allowed total price of the
sensor array.

The BIP model that solves Problem 3 is shown in Figure 5.
We have proposed a similar model for solving this problem
in the 3D case using regular grid points in [8]. The binary
variable xnϕ is defined by:

xnϕ =

8

<

:

1 if camera n at position (cx, cy) with type k
has the orientation ϕ

0 otherwise

(24)
We assume in this problem that the positions and types of
all N cameras are given and fixed. The last constraint in

Figure 5: BIP model to solve Problem 3

Figure 6: Example space used for the variable re-
duction experiment (a) and sampled space (b), red
dots mark possible camera positions and blue dots
control points

the shown BIP model (Figure 5) ensures, that exactly one
pose is assigned to each camera.

The number of variables and constraints depends on the
number of control points and possible cameras’ positions
and poses. Thus, if we increase those to achieve a better ap-
proximation of the continuous case, the number of variables
and constraints in our BIP model increases accordingly. As
we are not able to solve the BIP problem in a reasonable
amount of time and memory with an arbitrarily large num-
ber of variables and constraints, it is essential to keep the
number of variables and constraints as small as possible.
Based on the observation, that possible camera positions are
often at obstacles or borders of the space (as it is easy to
mount cameras on walls etc.) and those walls/obstacles re-
strict the cameras view in some of the sampled orientations,
we propose to discard combinations of type, pose and posi-
tion that do not cover any control point. Thus the number of
variables xkjϕ or xnϕ respectively decreases and hence also
the number of variables vkjϕi or vnϕi as well as the number
of constraints. Of course, the factor of reduction depends
on the possible camera positions and orientations, the space
geometry such as the number of obstacles, and other param-
eters such as field-of-view parameters or the P/A ratio. The
proposed reduction does not change the optimality of the
result.
Table 1 shows the percentage of reduction achieved in the



number of variables (and thus also in the number of con-
straints) for different parameter settings and for the example
space shown in Figure 6. For each parameter setting, the
experiment has beed run five times, i.e the possible cam-
era positions and control points have been recomputed each
time. The number of camera types has been set to one. The
table shows the best and worst achieved reduction in the
number of variables. The reduction is at least around 20%.

3.2 Heuristics

3.2.1 Greedy Search
Our greedy search algorithm corresponds to the one pro-

posed in [5] but introduces different stop criterions and mod-
ifies the definition of ’rank’.
A greedy search algorithm is a constructive heuristic which
determines the best placement and orientation of one sen-
sor at a time, i.e. the iterative procedure places one camera
during each iteration. Therefore we first compute for each
discrete camera position, orientation and type a list of con-
trol points that are adequately covered by that camera. In
Problem 3, for each fixed position and type only the pose
is varied. A control point is adequately covered, if it lies in
the field-of-view of a camera and the view of the camera is
not occluded in the direction of that control point. By do-
ing a greedy selection, i.e. choosing at each step the camera
with the highest rank, we find a near optimal solution to
our problems.
The rank of a camera is defined for the case of Problem 1
and 3, as the number of adequately covered control points
that it adds to those already covered by previously placed
cameras. It is denoted as NbCovR. In Problem 2 and 4 the
rank of a camera is defined as the inverse of the ratio of r
where

r =
Kk

NbCovR

(25)

and Kk denotes the price of the respective camera type con-
sidered. The ration r measures the price of adding one con-
trol point with this camera type at the current position and
with the current orientation. Thus the camera with the
cheapest price per added point is chosen. The control points
which are covered by the last placed camera are deleted from
the current pool of control points and the iterative procedure
is continued. If there are multiple highest ranking cameras,
we choose of those the camera with the highest rank with
respect to the original control point set. This is reasonable
because it causes some points to be covered multiple times
and hence those might be covered from more than one di-
rection (see also Section 6 for further explanations).
Cameras are added to the solution set until a stop criterion
is reached. In Problem 1 the stop criterion is the allowed
number of visual sensors in the solution set, in Problem 3
the criterion is reached if an orientation is assigned to all
cameras. In Problem 4 the criterion is a sufficient percent-
age of coverage of all control points and in Problem 2 the
upper limit of the total price of the array, i.e. that no cam-
era of any type can be added without exceeding the limit.
The pseudo code of our greedy search algorithm is shown in
Figure 7.

3.2.2 Dual Sampling
The dual sampling algorithm is an incremental planner,

i.e. also a constructive heuristic. The algorithm has been

Figure 7: Greedy search algorithm

Figure 8: Position sampling in version 2 of the dual
sampling algorithm

originally proposed in [6] for the acquisation of range-images
using a mobile robot. We modify this algorithm for our mul-
tiple visual sensor placement tasks and propose two different
algorithms. It should be noted, that both algorithms are not
suited to solve Problem 3.
The input to the algorithms is a set of previously computed
control points. In each iteration we select randomly one
point from the remaining set of uncovered points. We then
determine the camera’s type, position and pose that covers
the selected control point and has the highest rank. We de-
fine ’rank’ in the same way as in the previous section.
The first version of our dual sampling algorithm determines
the highest ranking cameras type, position and pose from a
given set of possible types, positions and orientations. This
set has been computed previously to calling the placement
algorithm, i.e. is an input argument. In our second algo-
rithm a set of possible camera types and orientations is also
input to the placement algorithms, but possible positions
are computed in every iteration following to the random se-
lection of one control point. Possible positions are obtained
by sampling only in a region around this control point (see
Figure 8), thus increasing the possibility that the control
point can be covered from this location. This procedure en-
ables us to sample possible positions with a locally higher
density.
The set of uncoverd control points is reduced in each itera-
tion. The algorithm stops if the stop criterion associated to
the current placement problem is reached. The stop criteri-
ons are defined as in Section 3.2.1. Figure 9 summarizes the
pseudo code of our dual sampling algorithms.



Figure 9: Version 1 and 2 of the dual sampling al-
gorithm

3.2.3 Others
Another method of handling large spaces is to use a divide

and conquer scheme to approximate the optimum LP solu-
tion as suggested in [2]. The authors propose to divide the
space, which in their case is a regular grid, into a number
of small sub-grids and combine the optimal solution to each
small grid to an approximated solution to the original grid.
While one can apply this scheme easily to rectangular grid
sensing fields, dividing the space properly to yield a good
approximation solution to the original set could be difficult
for non-regular control point sets and non-rectangular space
boundaries especially in the presence of static obstacles. For
the future one approach could be to include the division of
the space into the user-interface to enable the user to control
and supervise the proper division.

3.3 Random Placement
We have also implemented random camera placement. By

comparing the other algorithms with the result given from
random placement, we can evaluate in Section 5 to what
extend our placement algorithms improve the solution.
To solve one of the four problems, the random placement
algorithm selects randomly cameras from a set of possible
camera positions, poses and types until the appropriate stop
criterium, as defined in Section 3.2.1, is reached. Before se-
lection, position-pose-type combinations which do not cover
at least one control point are discarded from the set of pos-
sible combinations.

4. USER-INTERFACE
Figure 10 shows parts of our user interface. A Java appli-

cation has been designed and implemented to enter and edit
the spaces, the optimization problems as well as the other
setup parameters.
Basically the interface constists of five tabbed panes. The

Figure 10: User-interface: (a) entering possible
camera positions; (b) assigning importance weights
to space points

user enters and edits the spaces in the first tab pane. This is
done by using drawing function for rectangles, ellipses and
alike. The space is drawn in white color, black color marks
borders of the spaces, background and walls as well as other
obstacles. A curser can be used in order to edit the space
accurately. It must be noted that the units in which the
space is entered need to correspond to the units in which
the camera parameters are given.
In the second pane the previous space geometry is loaded
and the user marks the possible camera positions (as shown
in Figure 10(a) in green color).
Next the importance of each region in the space can be en-
tered in the third tab pane (see Figure 10(b)). Therefore
color values are assigned to regions corresponding to their
importance by again using drawing functions for rectangles
and alike. Darker color (except black regions) marks more
important regions which are given a higher weight. Borders
between regions of different weight may be smoothend by
applying a blur filter of adjustable kernel size. Thus each
pixel in the space is assigned a weight corresponding to its
gray value.
The type of optimization problem, its parameters and other
setup parameters are entered in a fourth tab pane. Finally,
the last pane enables the user to store and/or submit the



entered problem and space geometries to a web service.
For the final paper it is planned to have this user interface
running as a web service.

5. EXPERIMENTAL EVALUATION
All presented approaches to solve the different placement

problems have been implemented in C++. BIP models are
solved using the LINGO package (64 bit version) [1]. We
chose a professional optimization software over the freely
available lpsolve package [9], since lpsolve has problems
solving BIP’s that exceed a certain size in terms of variables
and constraints.

5.1 Comparision of the Different Approaches
The BIP approach, which determines the global optimum,

is not applicable to large spaces, as there exists an upper
limit on the number of variables due to memory and com-
putational constraints. In our first set of experiments we
aim to determine the ’quality’ of the presented heuristics,
i.e. we address the question of how well their solutions ap-
proximate the global optimum BIP solution.
We used four different small rooms (see Figure 11) in our
experiments. These rooms are sampled to obtain sets of
discrete space points and camera positions as well as dis-
crete poses. We sampled 50 possible camera positions and
between 100 and 150 control points. Cameras could adopt
four to eight different discrete orientations and either one
or two types of cameras were available depending on the
problem. The cheaper camera type was assumed to have a
smaller field-of-view.
Those sets were input to our five different algorithms, the
BIP approach which determines the optimal solution, the
greedy approach, both versions of the dual sampling algo-
rithms and the algorithm of randomly choosing camera po-
sitions, poses and types. The performance of the algorithms
has been tested separately for all four problem instances,
except for the two different dual sampling approaches which
do not apply to problem 3. The results are illustrated in Fig-
ure 12 and 13 . Due to the stochastic aspect in the outcome
of the dual sampling algorithms and the random placement
algorithm we have plotted the average results for these al-
gorithms over ten runs.
The results show clearly the improvement for all different al-
gorithms over random placement of the sensors in all cases,
i.e. for all spaces and problem instances. All proposed
heuristics approximate the BIP solution well. On average,
the greedy algorithms is the best performing heuristic. In
most cases the difference between the result of the greedy al-
gorithm and the result of the BIP approach is very small or
even zero, i.e the algorithms determines the same or an iden-
tical performing camera configuration. Both dual sampling
algorithms perform almost equally well but sightly worse
than the greedy algorithm in most experiments.
It should be noted, that the BIP algorithm obtains only
the optimum solution based on the discrete input to the
problems, i.e. based on the given point sets. The average
performance of the second version of the dual sampling al-
gorithms is identical or worse than the BIP solution in all
our experiments. However in some rarely occuring cases,
the resulting configuration obtained by this version of the
dual sampling algorithm had a better performance than the
BIP solution. This can be explained as follows: This algo-
rithm takes as an input only the control points, it samples

Figure 11: Spaces used for the evaluation

the camera positions in each iteration depending on the po-
sition of the currently chosen control point (see Section 3.2.2
and Figure 8). If only a limited number of camera positions
can be chosen due to runtime and memory constraints this
approach has the advantage of being able to sample camera
positions with a locally higher density. In turn this implies
that if a better solution as the one obtained by solving the
BIP model may be found, that most probable the density
of discrete camera positions in the space is not sufficient to
approximate the continuous case. Thus, the second version
of the dual sampling approach is especially suited in situ-
ations where we have very large spaces and even the other
heuristics, i.e. the greedy approach, are not able to sample
with a sufficient density due to a lack of the needed compu-
tational resources and/or memory resources.
In summary, the results have shown, that the proposed heuris-
tics approximate the optimum solution well and are thus
suited in situations, where the BIP model cannot be solved
or only for an insufficient number of control points or camera
positions and poses, as these algorithms allow for a higher
number of samples. In cases of very large rooms the second
version of the dual sampling algorithm should be used.
The experiments have only been performed on small rooms
with relatively simple geometries, as we are not able to ob-
tain the BIP results on larger problems due to the lack of
computational and memory resources, hence we are not able
to compare the results with the optimum solution. The eval-
uation might be slightly different if the experiments are run
on larger or more complicated rooms.

5.2 Complex Space Examples
In this section we present some further results obtained

by our different approaches on large rooms. Figure 14 shows
two resulting configurations from the greedy approach. Fig-
ure 14 (a) illustrates the placement of six identical cameras
such that optimal coverage is achieved; the configuration in
Figure 14 (b) shows the result of maximizing coverage for an
array of two different camera types with a maximum total
cost of $700, where the camera type with the smaller field
of view costs $60 and the other $100.
Figure 15 shows results obtained using the two respective
versions of the dual sampling algorithm to solve problem 4,
i.e. a required minimum percentage of coverage is given and
the array with the minimum total price is determined that
satisfies this constraint. Either one or more types of cam-
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Figure 12: Results obtained for problem 1 and 2
using the different proposed algorithms

eras were available.
Given fixed positions and camera types for eight cameras in
the example space, Figure 16 shows the configuration that
maximizes the percentage of covered space obtained by the
BIP approach.
The resulting configurations differ if the underlying impor-
tance distributions change. This is shown in Figure 17, the
associated importance distribution is shown in the top im-
age, the resulting placement that maximizes coverage plac-
ing five cameras in the bottom images. It can be seen that
more important regions are covered first in the left config-
uration, whereas in the right placement, due to the equal
weighting of all regions, the camera configuration aims to
maximize the total area covered.

6. POSSIBLE EXTENSIONS
The problems and models considered in this paper can be

extended easily.
A more complex field-of-view model that e.g. includes the
focus, could be used. Another aspect is that right now we
define coverage of a point without accounting for the dif-
ferents direction a surface through that point could adopt
with respect to the covering camera. This could be done
by introducing for each control point a number of different
directions and checking for each of these directions if cover-
age is achieved. This requires a slightly different definition
of the field-of-view of a camera. The total coverage of the
space may then either be calculated summing up over all of
those directions and points, or by summing up the average
coverage over the directions per control point.
The extension of the BIP as well as the other algorithms
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Figure 13: Results obtained for problem 3 and 4
using the different proposed algorithms

to the third dimension is straightforward, but has been ex-
cluded in the discussion due to space limitations. We have
already proposed a 3D camera model in [8].
In our space definiton we only distinguish between space
and obstacles/background. There may occur practical situ-
ations, where regions do not have to be covered but they do
also not restric the field-of-view of the cameras, i.e. they are
no obstacles. An example for such a region is a table in office
evironments and a face recognition or person identification
application: tables are not restricting the field-of-view of
the cameras mounted on walls, but the regions they cover
are not interesting for the applicationa. The effect of those
regions may be easily modeled by setting the importance
weights to zero in these regions, thus no control points will
be computed at these locations.
For some applications it may also be desirable to cover re-
gions of the space at different resolution level [4]. Therefore
different sampling frequencies fs need to be defined by the
user and assigned to regions of the space. The camera model
and the algorithms need to be modified accordingly.

7. CONCLUSIONS
In this paper we addressed the issue of appropriate vi-

sual sensor placement with respect to coverage. We formu-
lated and considered four different problems. Different ap-
proaches to solve these problems have been presented: BIP
models that determine a global optimal solution and vari-
ous heuristics that approximate this optimum. Experimen-
tal evaluation showed the suitability of the algorithms and
practicallity of the approaches. A user interface has been
developed to support and ease entering and editing spaces,



(a) (b)

Figure 14: Configurations resulting from the greedy
approach for maximizing coverage for six identical
cameras (a) and maximizing coverage assuming two
different camera types and a maximum total cost of
the sensor array (b)

(a) (b)

Figure 15: Configurations resulting from the dual
sampling algorithm version 1 (a) and 2 (b): mini-
mizing the total cost of the visual sensor array while
covering 70% of the space assuming two different
types of cameras (a) or covering 50% of the space
assuming identical cameras (b)

the optimization problem, and the setup parameters. Fu-
ture work will be modifying and applying the approaches to
the 3D case and introducing more complex field-of-view and
coverage constraints.
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