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Bistability and Colored Noise in Nonequilibrium Systems: Theory versus Precise Numerics
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We present novel calculations for the archetypal bistability dynamics driven by a correlated Gaussian
random force (colored noise). Our focus is on the behavior at weak noise, which is difficult to solve
theoretically as well as numerically. Precise numerical results for the smallest eigenvalue A,(z) [or rate
of escape I'(r) = § 4;(7)] at small to moderate to large noise correlation times t are compared and inter-
preted versus a whole set of recent but conflicting theoretical predictions.
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The study of dynamical systems perturbed by noise is
of wide-ranging significance to the detailed understand-
ing of onset and characterization of nonlinear phenome-
na. In recent years, there emerged the need for more
realistic modelings of physical systems. In this context,
the incorporation of a finite noise correlation time t, or
finite bandwidth (i.e., colored noise), that describes the
separation of time scale(s) between the system dynamics
and environmental and/or external perturbances is
currently in the limelight from both the experimental
and theoretical viewpoints.! In particular, for the large
class of thermal equilibrium systems it has been demon-
strated that memory friction, or—via the fluctuation-
dissipation theorem— colored thermal noise, can modify
substantially the classical, diffusive barrier transmis-
sion.?

The situation is even more difficult in stationary none-
quilibrium systems which, generally, do not obey the
condition of detailed balance. The archetypal situation
is a Ginzburg-Landau-type bistable dynamics, being
driven by exponentially correlated Gaussian noise, i.e.,
witha >0, b > 0, we set

x=ax—bx3+&@), 1)
with (6(1)&E(s)) =(D/)exp(— |t —s|/7).

Here, t is the correlation time and D denotes the noise
intensity. In order to deal with dimensionless quantities
we introduce instead of x, & and ¢ the dimensionless
variables x— (b/a)x, &— (b/a®)'2¢, and 1— at,
obeying the dynamics (1) where a =b=1 with a dimen-
sionless noise intensity D— Db/a? and a dimensionless
noise correlation time z— az. In the following we shall
stick to these dimensionless variables.

For 7=0, everything is well known, i.e., (1) reduces to
the (Smoluchowski) equilibrium dynamics. Finite noise
correlation times (at weak noise), however, play a ubi-
quitous role in the statistical description of dye lasers,
the ring-laser gyroscope,® or magnetic resonance.?
Often, the physics is controlled by noise color 7 of
moderate to large strength,®™ i.e., realistic noise color
means more than just a small correction to the white-

noise limit (z=0). With t> 0, the dynamics in (1) con-
stitutes a non-Markovian process, which makes things
much harder. Of course, we also could embed the dy-
namics in (1) into a two-dimensional Markovian dynam-
ics.® This result, however, does not make our task any
simpler: The enlarged dynamics contains even more in-
formation which is not controlled experimentally, such
as an infinite number of different initial preparation
schemes between “system,” x, and “rest,” £&. The dy-
namics in (1) corresponds to one specific preparation
where £(0) is stationary and independent of x(0).
Moreover, our interest lies in the system dynamics x(¢)
alone. The investigation of the nonlinear, noisy dynamics
in (1) is difficult because of an entanglement of compli-
cations. In particular, (i) the exact stationary probabili-
ty, p(x), for x(¢) is not known; (ii) the generator of the
underlying Markov process is not a symmetric operator,
i.e., complex eigenvalues are possible.

Over the last years we have witnessed a flood of pa-
pers, all attempting to describe the influence of such
realistic noise color. The recent theoretical develop-
ments, ™' of which we cite only a representative sample,
can be grouped into two parts: (1) construction of
theories for small noise color 7, i.e., theories that provide
small corrections to the white-noise limit”8; (2) develop-
ment of approximations covering noise color of small to
moderate to large strength.*1°

In this work, our focus will be on the weak-noise be-
havior, since it is typical for realistic applications.>* At
weak noise, an interesting quantity is presented by the
rate of escape, I', from the two metastable states x;;,
=+ 1. The rate ' probes the colored-noise behavior
within exponential sensitivity, i.e., it crucially depends on
the precise form of p(x), and involves knowledge from
regions with exponentially small probability around
x=0.

For this escape rate, there exists a series of conflicting
predictions among different theories.®"!* This state of
affairs has ignited a passionate debate involving the mer-
its of various approximation schemes. The conventional
small-z theories’ have been critiqued in Ref. 6, particu-
larly, for their inconsistent omission of non-Fokker-
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Planck contributions and the failure to predict a
colored-noise correction for the exponential leading part
of the rate. In contrast, the theory in Ref. 9 predicts for
moderate 7 a dependence in the form I'(z)/T'(z=0)
<exp(—at/D).

Recent digital® and analog simulations® have also add-
ed to the confusion: The digital simulations (error
2 10%!) and the analog simulations are not very accu-
rate, and more importantly, they do not involve the
weak-noise regime, 1/4D>1. While analog simulations
are quite powerful to predict the main features of sta-
tionary probabilities,!> these encounter difficulties in
simulating small noise intensities, and cannot resolve the
asymptotic regime of small noise correlation times close
to the white-noise limit—though for a different problem
(periodic potential), there is one recent illuminating
study for weak noise.'® This study supports the findings
of Ref. 9; however, the quantitative agreement found
with theory®!3® is not quite decisive: The result in Ref.
16 involves a time scaling, r— 7/4, which lacks rigorous
justification. In addition, the parameters values for the
potential form have not been varied in order to check the
agreement between decoupling theory® and numerics
over a wider range of potential forms. Moreover, the
small-z asymptotics has not been addressed.

There is an urgent need for a detailed numerical
weak-noise study of the problem in (1).!* In order to
clarify and resolve the various conflicting predictions,
and to test the numerous theories®~'# we present here for
the first time precise numerical results for the following:
(a) The smallest nonvanishing eigenvalue A;(z) of the
bistable Fokker-Planck dynamics, which we find to be
real for 1 <2. At weak noise, A;(7) is related to the es-
cape rate by I'(z) = $2;(z).!7 (b) The asymptotic be-
havior of A;(zr) for 7— 0. (c) The accuracy of a
steepest-descent approximation to I'(z) or A (7).

Following the matrix continued fraction method of
Jung and Risken'® (see also Risken!®) we have numeri-
cally evaluated the eigenvalue A,(z) (error<0.1%!) of
the enlarged two-dimensional Markovian dynamics, see
Fig. 1. In order to improve the rate of convergence we
have refined the procedure in Ref. 18 by introducing a
parametric form function po(x) =exp(—cx?). The con-
vergence of the matrix continued fraction is rather
different for different values of the parameter of the
form function. Comparing the digits of A;(z) for
different values of the parameter one readily tests the ac-
curacy of A;(7). This weak-noise numerics is nontrivial
and rather cumbersome: It should be noted that in ab-
sence of knowledge of the stationary probability, efficient
procedures such as the reactive flux method,?' commonly
used in equilibrium systems, cannot be invoked. A main
difficulty arises because the exponential weight, i.e., the
analog of the Boltzmann factor, is not known a priori for
our archetypal nonequilibrium case. The D values used
in Fig. 1 correspond to (white noise) Arrhenius factors of
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FIG. 1. First nonvanishing eigenvalue A,(z) of the non-

equilibrium bistable flow in (1) as a function of noise color 7.
For D <0.1 one finds the behavior in (2) with a=0.10 (see
inset of Fig. 2). The arrows indicate the result (3) of the
steepest-descent approximation at r=0. The bridging result
by Luciani and Verga (Ref. 20), i.e.,

M(r) =(2/7)(1+37) "1~
xexpl—(1/4D)(1+ & 7+ + /(1 + & 1)]

is depicted by the dashed curve.

p0=1/4D=2.5 for D=0.1, ¢po=5 for D=0.05, and
do=2% for D=0.03. We note from the numerics that
In(A;(z)) varies inversely proportional to the noise in-
tensity D, i.e.,

r(t)xexp(—at/D), 1.5>120.2 )

Thus, the Arrhenius factor becomes modified by the
noise color in a form that is in qualitative agreement
with the decoupling approximation of Ref. 9, i.e., the Ar-
rhenius factor exhibits a dependence proportional to
exp(—at/D). The factor a is plotted in the inset of Fig.
2. For weak noise, it approaches a value of a=0.10.
The prediction of the lowest-order decoupling theory®
exceeds this value by about a factor of 5. This difference
in a is the result of higher-order, non-Fokker-Planck
contributions which have been neglected in the lowest-
order decoupling scheme, but do affect the precise value
of the constant a in (2). a is not precisely independent
of the noise color 72 (e.g., note the slight upturn in Fig.
1 for D=0.1), but exhibits a weak dependence on r.
The study of A;(7r) as 7— oo reveals that a, at weak
noise, converges very slowly to a limiting value a =%
=~0.074.2022

Some comments are in order for the noise intensity
D =0.1. This D value corresponds to an Arrhenius fac-
tor of ¢o=2.5, i.e., it is not truly in the weak-noise re-
gime. This noise intensity, however, has been used previ-
ously®!"!12 in comparisons of theories with digital® and
analog simulations.’ In this case, the numerical result of
A1(r) =1;(0)exp(—1.277), 7=<1, closely corresponds,
by change, to the value obtained via an ad hoc expo-
nentiation'? of the prefactor in Ref. 6; ie., A;(z)
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FIG. 2. The asymptotic behavior of A;(zr) for vanishing
noise color at D =0.05. Solid line, numerical result; dashed
line, AFFP(7) from Ref. 8; dotted line, AFFP(z) from Ref. 6;
dash-dotted line, steepest-descent prediction A,(r) =(~/2/x)(1
—1.50)exp(—1/4D).

=x,(0)exp(—1.517).
In Fig. 1 we also depict (arrows) the steepest-descent
approximation for the white-noise result, i.e.,

A (r=0) =(/2/n)exp(—1/4D). 3)

This steepest-descent approximation exceeds the numeri-
cal result: For D =0.05 (po=35) the difference amounts
to 9.4%, whereas for D=0.03 the error is reduced to
4.6%. The noise intensity D at which the error is below
1% has been evaluated to be D < 0.016 (i.e., po= 15).

Next we investigate the behavior for vanishing noise
color. In Fig. 2 we depict for D =0.05 the behavior of
A1(1) as r— 0, with /D being small. Note that the lim-
iting asymptotics of 7— 0, but with /D> 1, is clearly
beyond our numerical possibilities. For comparison, we
have also evaluated numerically the eigenvalue AFFP(z)
of the corresponding effective Fokker-Planck (EFP) ap-
proximation of the conventional small-z theory®’ (dotted
line), and for the small-r theory due to Fox® (dashed
line). Furthermore, we have calculated numerically the
integral expression for the corresponding mean first-
passage time (MFPT), TEFP(z), [see Eq. (4.2) in Ref.
6] and checked the relation AFFP(z)=1/TEFP(7), being
valid at weak noise.'” For D=0.05 we find that
TEP(r=0) exceeds A\FFP(r=0)]1"" by only 0.4% and
the agreement becomes even better with increasing noise
color 7. At D =0.03 the equality holds virtually without
error. As 7/D— 0, there exist in the literature several
predictions for the behavior of A;(z) or T(z), respective-
ly. Setting

L () =200 — 1) fort=— 0, /D1, 4)

we find from Fig. 2 an initial slope of f=1.33£0.01.
For D=0.03 we obtain similar results with g=1.44
+0.02. This B value can be compared with published
(and as yet unpublished) results valid for vanishing noise
color: All these small-7 theories®®!!1* yield in the limit

t— 0, /D<K the unique steepest-descent prediction
B=1.5.

The authors of Ref. 13d derive an expression for the
MFPT to reach the line (x =0, £ <0) starting at x =1.
Their MFPT exhibits a behavior f=1.1657 %3 +1.5 as
t— 0. This result, however, does not compare directly
with the eigenvalue A,(7) being related to the MFPT to
reach the separatrix.!’

In conclusion, we have presented a numerical study for
the generic colored-noise bistability in (1). Our em-
phasis has been both on the small-r and the moderate to
large-t behavior. Many of the various confusing theoret-
ical predictions have been tested against our precise
study at weak noise. In the limit of vanishing noise color
t— 0, 7/D <1, there now exists agreement among all
advocates of small-z theories.®®!'"14 With increasing
noise color, however, there occurs a crossover regime to a
behavior A (r)xexp(—at/D), with a=0.1. This be-
havior is followed by yet another very slow crossover at
very large 7 to a limiting law with a= % =0.074.
Clearly, it is difficult to derive an approximation for
moderate to large noise color which accurately repro-
duces the precise numerical results for the non-
Markovian dynamics in (1). In the latter regime, the
decoupling approximation in Ref. 9, the unified approxi-
mation in Ref. 10, and the large-z studies in Refs. 20
and 22 serve as useful guides to explore this difficult, but
physically most relevant, regime>™ of noise color of
moderate strength.
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