Bistability

in active circuits:
Application

of a novel
Fokker—Planck
approach

The problem of metastability in electronic
circuits with negative differential resistance,
originally pioneered by Landauer in 1962, is
reconsidered from the viewpoint of a
Fokker-Planck modeling for nonlinear shot noise
(master equation). A novel Fokker-Planck
approximation scheme is presented that
describes correctly the deterministic flow and
the long-time dynamics of the master equation.
It is demonstrated that the conventional scheme
of a truncated Kramers—-Moyal expansion at the
second order overestimates the transition rates
in leading exponential order. In order to obtain
the correct relative stability, the novel scheme
uses a diffusion coefficient which incorporates
information about global nonlinear fluctuations
characterized by the whole set of all higher-
order Kramers-Moyal transport coefficients.

1. Introduction
The study of dissipative elements which are able to hold
information, or, more generally, the role of relative stability
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. in systems which continuously dissipate energy, was

pioneered and influenced by Rolf Landauer. The school
around Stratonovich [1] (i.e., Stratonovich and coworkers
such as V. I. Tikhonov and P. 1. Kuznetsov) and
independently Landauer [2] were the first to describe first- or
second-order-type transitions in driven nonequilibrium
systems. In his paper entitled “Fluctuations in Bistable
Tunnel Diode Circuits” [2], Landauer discusses distribution
functions and jump rates of metastable states far from
thermal equilibrium. The results of this paper clearly
demonstrate that questions about relative stability in driven
systems far from equilibrium cannot be answered by an
appeal to the deterministic flow or local stability criteria, The
random force in this bistable system which drives the system
away from locally stable states depends upon the state
variable itself; thus the noise variation along the whole
escape path matters in evaluating the relative stability of a
metastable state.

The problem of metastability in stationary
nonequilibrium systems determines the physical behavior in
a variety of systems including optical bistability [3], chemical
systems [4], and biology [5]. In this work we take a new look
at the dynamics of Landauer’s bistable tunnel diode model
(see also [6]). We focus on a Fokker-Planck approximation
to the exact master equation dynamics, a problem which has
been tackled previously. van Kampen [7] has introduced the
system size expansion, which results in a local description
around the deterministic law of the master equation
dynamics in terms of a “linear” Fokker-Planck equation [7]
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Static current—voltage characteristic (V) of a tunnel diode. For
driving currents /, (dashed line) between /, and /| there exist two
stable stationary states at V; and V;, and one unstable state at V;.

with a linear drift and a state-independent diffusion
coeflicient. Thus, this approximation cannot describe large
nonlinear fluctuations and global features such as the relative
stability between neighboring metastable states. A global
Fokker-Planck approximation can be obtained by truncating
the Kramers-Moyal expansion of the master equation after
the second term [2, 4]. This is, in fact, the most widely used
approximation scheme. However, as Landauer had already
noted in 1962 [2], the stationary dynamics of this
conventional approximation scheme does not reproduce the
correct state-continuous version of the exact master equation
solution. A novel Fokker-Planck approximation to a master
equation dynamics obeying detailed balance which
supersedes the conventional scheme has been put forward
recently [8-10]. This latter method is based on nonlinear
transport theory for master equations [8, 9]; in particular,
the Fokker-Planck coefficients become state-dependent
functions, and, more importantly, they encompass
information about all higher-order Kramers-Moyal
moments.

The paper is organized as follows. In Section 2 the
current-voltage characteristic of a tunnel diode is discussed,
using phenomenological laws for the elementary current
components. Taking into account the shot noise due to the
quantization of the charge, we arrive in Section 3 at a
birth-death master equation for the charge on the diode
capacitance. The exact stationary distribution and the
asymptotic form for large system sizes are also presented in
this section. Moreover, we introduce the Kramers-Moyal

expansion and cast the deterministic law into a generalized
Onsager form. In Section 4 we present the conventional
Fokker-Planck approximation scheme. We compare the
stationary probability obtained from the master equation
with that of the truncated Kramers-Moyal Fokker-Planck
equation, In Section 5 we apply the novel Fokker-Planck
approximation scheme and evaluate the transition rates. The
results of the different Fokker—Planck approximations are
compared with those of the master equation.

2. Current-voltage characteristic of a tunnel
diode

Usually electrical circuits have a current-voltage
characteristic with positive slope, corresponding to a positive
differential resistance. Some highly doped semiconductor
devices, however, have regions in the characteristic with a
negative differential resistance. One of these semiconductor
devices is the well-known tunnel diode. The negative
differential resistance of the tunnel diode device is due to a
tunneling current from the valence band of the n-doped
region to the conducting band of the p-doped region. Figure
1 shows a typical current—voltage characteristic for a tunnel
diode, driven by a current source /.. For I, > I > I, there are
two stable voltages V', and V. The voltage V; is unstable.
For I — I _and I — I, the stable states V| and V,
respectively, lose their stability, and switching occurs to the
other stable state. The tunnel diode is a driven system which
exhibits a discontinuous nonequilibrium phase transition
between a low-voltage state V, and a high-voltage state V.
The current through the tunnel diode is broken up into two
terms

I=1,+1I, (1

with the “Zener” current I, being due to valence electrons
tunneling into the conduction band. The “Esaki” current /¢
is due to conduction electrons tunneling into the valence
band plus the thermal diffusion current of electrons. A
particular model for these currents is [11]

L(V) = —Iexp(-TV),
1(V) = Lexp[-RV(V = D] + Sjlexp(TV) — 1], @

where the parameters I, J, K, T, S,, and ¥, are parameters
to fit the measured current-voltage characteristic. The Zener
current is charging the diode capacitance and therefore has
the opposite sign from the discharging Esaki current. To end
up with a description which does not depend on the system
size Q (= area of the diode p-n interface), we introduce the
intensive quantities

C
n—VeQ
and
I
= = 3
i=g 3)



Here n is the electron excess density per unit charge € and j
is the current density. The current-voltage characteristic
now reads

Jj(n) = —jpexp(—Jn) + joexp[—Kn(n — ny)]
+ splexp(Tn) — 1], 4)

with new parameters ji, J, K, s,, T, and n,,

3. Tunnel diode with noise: Master equation
We take the discrete nature of the charge into account and
describe the state of the tunnel diode system driven by a
constant current source /,, by the number N of excess unit
charges on the diode capacitance C. The voltage across the
diode is then given by V' = eN/C. The capacitance is charged
by the sum of the driving current /, and the Zener current
I,, and discharged by the Esaki current /.. We assume that
all contributions consist of uncorrelated transfers of single
electrons. Then we obtain a birth-and-death process
described by the master equation [2],

BN, ty= W (N - 1)PIN — 1,1
+ W N+ DP(N+ 1,0
= [W(N) + W(N)IP(N, 1)
N=0, %1, %2, ..., (5)

where W*(N) is the transition rate from the state N to
N + 1, and W™ (N) is the transition rate from state N to
N-1,1ie,

W) = 5 UV = LOVL

W (N)= le I(V). (6)

Because the master equation represents a one-dimensional
stochastic process with natural boundaries, detailed balance
is valid, i.e.,

W(N + DPg(N + 1) = W (N)Py(N) M

The stationary distribution Py is thus given by

Py(N) = 2 expl—g(N)] (8)

(where Z denotes the normalization), with the potential

N-1 +
W (K)

N)= - In——"—. 9
$(N) KENOW(KH) ©)
Next we want to derive a continuous description of the

above discrete process. With the scaling relation
W(N) = Qv*(n), (10

the intensive density n [Equation (3)] and its probability
pn) are given by

N
Q b
The Kramers—Moyal expansion of the master equation (5)
thus reads

n= p{n) = QP(N). (11)

pm =3+ ‘,( ") Ampn). (12)

ooy V1T an
The Kramers-Moyal moments A (») are simply given by
Am) =) + (=1)y (), (13)

and the transition rates v (n) and v (r) are connected to the
current densities

'Y+(n) = jdr + joexP(_Jn)s
v (n) = joexp[—Kn(n ~ ny)] + sflexp(Tn) — 1]. (14)

To evaluate the stationary distribution function for the
density n, we insert Equations (10) and (11) into the exact
stationary distribution [Equations (8) and (9)] and replace
the summation over the discrete variable N with an
integration over the density n. Including the “start” and
“end” points of the summation N, and N — | symmetrically,

ie, Ny— N, — 23 N— 1 — N — !, one obtains the result
| 1 _
ps(n) = exp{ [dbo(n) +9 ¢,(n)}} +0@™). (15)
The leading-order potential ¢(n) reads
4uln) = —f Ty, (16)
y)
and the first-order correction ¢,(n) is
Y (no)'Y (no):|
o(n) =~z ['— (17)
2 ¥ (" (n)

Detailed balance in Equation (7) now implies the following
relationship between the drift and higher-order moments [8]:

1 a1 f ay
A@n) = - 3 P ()™ El T <-a—n) A, (n)ps(n). (18)
Inserting Equation (15) into (18), one finds in the limit
@ — o for the deterministic flow the Onsager form, i.e.,
h= A,(n) = —L(n)xy(n), (19)

with the generalized thermodynamic force

d¢(n)
on

Xol) = = Iny"(n) — Iny"(n). 20)

The positive transport coefficient L(n) is given by
1 i v
Ln) = 7 2 e 1), A, (m)x(m]

Y-y

Iy (n) — lny (7 @1)

To guarantee the stability of the deterministic flow
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The current density—electron excess density characteristic of a tunnel
diode (4). The parameter values used are j, = 1, K = 0.005,/ = 1,

5 = 0.01, ny = 10, and T = 0.07. The two driving currents used
! in the explicit calculations are indicated by arrows at j,, = 0.15,
Jgo = 0.5.

[Equation (19)] we note that ¢y(r) is a Liapunov function,
i.e., with Equation (19)

4 g0 = 3 & = —xmLinyxem) < 0. 22)

The function ¢4(n) is bounded from below because the
distribution function pg(n) [Equatiorz (15)] is normalized. In
higher-dimensional systems the existence of such a Liapunov
function can also be shown [8]; however, the corresponding
derivation for the semipositive transport matrix L(#) is
nontrivial [8]. The transport equation (19) is the starting
point for a novel Fokker-Planck approximation originally
put forward in References [9, 10]. First, however, let us
consider the conventional Fokker-Planck modeling. Clearly,
such a Fokker-Planck modeling (or approximation) is
preferred because it is analytically more tractable than the
master equation (infinite-order partial differential equation).

4. Conventional Fokker-Planck model

. For large system size © the discreteness of the one-step

process is of minor importance, and we might approximate
the discrete process by a state-continuous process. The
conventional scheme to approximate the discrete process by
a Fokker-Planck equation is to truncate the Kramers—-Moyal
expansion [Equation (12)] after the second term, i.e.,

2

B(1) = =3 AP0 + 55~ A0, 23)

where

A =Y =y (), A =7"(n)+ v (n) (24)

The stationary probability is readily found by quadratures

—— exp[-QY(n)], (25)

1
psn) = Z 0

with the Fokker-Planck potential

- YO -Y
¥oln) = zf T+ v Y 25)

Here one notices that the Fokker-Planck potential y(n)
[Equation (26)] does not agree with the asymptotic potential
#,(n) [Equation (16)] even in the leading order. However, the
positions of the extrema, as well as the curvature at the
extrema, coincide in both potentials. The difference in the
generalized thermodynamic force is given by

0¢o(n)  8¢4(n)
an an

= -In :’;E" v () = v () @7

)
n o A+ v ()

o Comparison of the potentials

In Figure 2 the characteristic of the tunnel diode [Equation
(4)] is depicted for the parameter values j, = 1, K = 0.005,
J=1,5,=0.01, n,= 10, and T = 0.07. This current-voltage
shape agrees with experimental measured tunnel-diode
characteristics [11]. In Figures 3(a) and 3(b) the
corresponding asymptotic potential ¢,(n) [Equation (16)] of
the master equation is compared to the potential y(n)
[Equation (26)] of the Kramers-Moyal Fokker-Planck
equation for the driving current j, = 0.15 (a), and for

Jar = 0.5 (b). The potentials both have minima at the

operating point (i.e., the intersection of the current-voltage
characteristic and the driving current j,, = const.) of the
diode that corresponds to a positive differential resistance.
The relative maximum of the potential corresponds to the
unstable state at V' = V;. A simple shift of the whole
potential is not relevant, as it can always be compensated in
terms of a renormalization for the probability. Differences in
shape, however, impact the barrier heights. For example, the
barrier height for forward transitions of the Fokker-Planck
modeling differs by =17% for j, = 0.15, and differs by =2%
for j, = 0.5, respectively, relative to the master equation
value. In Figure 3(c) we compare the thermodynamic force
of the master equation process with the force due to the
canventional Fokker-Planck approximation at the driving
current density j, = 0.5.

5. Novel Fokker-Planck approximation

The conventional Fokker-Planck approximation does not
coincide with the continuum limit of Equations (8) and (9)
of the stationary probability of the master equation, and this
difference does not vanish in the limit Q — . The correct
stationary probability is also influenced by the higher-order
Kramers-Moyal moments [Equation (13)] which thus must
be accounted for. We observe that for any Fokker-Planck



modeling having the correct asymptotic stationary
probability [Equation (15)], the drift and diffusion
coefficients must be related by

An) = =3 A(mxn) + 0@ (28)

Since the deterministic law is recovered only if we use
[see Equation (19)]

A\(n) = —Lin)xy(n) + 0(07"), (29)
it follows that
Ayn) = 2L(n) + OQ"'Y. (30)

Hence, apart from terms of higher order in @', the diffusion
coefficient

Ay(n) = 2L(n) (31)

is fixed by the stationary probability [Equation (15)] and the
Onsager transport law [Equation (19)]. On the basis of the
thermodynamic potential for the stationary probability in
Equation (16), we obtain, in terms of the first two leading
contributions ¢4(n) and ¢,(n) in Equations (15) and (31), the
novel Fokker-Planck approximation [9, 10]

) d 1 19
pn) = an L(n)[xo(n) +9 x,(n) + 9 5;1] p{m (32a)
with
) a
Xo(n) = ?’gn)’ x,(n) = %. (32b)

If we compare Equations (32) with the conventional
Fokker-Planck approximation in Equations (23) and (24),
we note that the new Fokker-Planck coefficients are related
to the conventional coefficients by

A = A4 + 3 [%”—’ - Lo (33
and

- o 1 .

Az(n) = Az(n) + r§| m Ay+2(n)[XO(n)] . (34)

In particular, the state-dependent diffusion in Equation (34)
explicitly involves the higher-order Kramers-Moyal
transport coefficients 4,(n), n > 2. The difference

/]z(n) — A,(n), being proportional to powers of the
thermodynamic force x,, is plotted in Figure 4. Interestingly
enough, for any birth-and-death process this difference of
state-dependent diffusion coefficients is a/ways negative
semidefinite. The difference equals zero precisely at the
deterministic steady states only. Thus the conventional
Fokker-Planck approximation everywhere overestimates the
actual physical noise strength D(n); i.e., (§(n, )E(n, 5)) =
D(n)é(t ~ s). Using Equations (34) and (13), this result
follows due to the inequality

¢0’ ‘\(’0
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(a) Comparison between the two thermodynamic potentials for a
driving current density j,. = 0.15. Solid line: master equation result
(16); broken line: Kramers—Moyal Fokker—Planck approximation
(26). (b) Comparison between the two thermodynamic potentials for
a driving current density j, = 0.5, lying approximately halfway
between j, and j,. Solid line: master equation result (16); broken line:
conventional Fokker—Planck approximation (26). (c) The
thermodynamic force x,(n) = ddy/dn, (20), for the master equation
dynamics (solid line) compared with the thermodynamic force
ady/an, (27), of the corresponding Kramers—Moyal Fokker—Planck
approximation (broken line). The driving current density is j;, = 0.5.
Note that at the steady states the two forces agree in value fi.e.,
Xo(n,) = Xony) = Xo(n;) = 0] and slope; thus the curvatures of the
two potentials agree at the extrema points.
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The difference between the state-dependent diffusion coefficients
A,(n)—Ay(n), (34), of the two Fokker—Planck approximations. The
driving current density is j,. = 0.5; this implies for the diffusion

% coefficient at the unstable state n = n, = 18.1 an absolute value of
An) = Ay(n) = 1.

22 losit x>0 (35)
Inx
with x = y"(n)/y"(n) > 0.

The probability distribution then results in a competition
between the coherent dynamics described by the drift
motion and the diffusive motion which permits the system
to leave states of local stability. In particular, a state that is
favored in the presence of state-independent noise can
become less favored in the presence of state-dependent noise
(e.g., the noise amplitude might become considerably
suppressed as a function of the state variable). Thus, correct
relative stability is strongly impacted by the detailed noise
variation along the escape route. We now evaluate the
transition rates between the low-voltage state V| (left
potential well in Figure 2) and the state of high voltage V,
(right potential well in Figure 2), or vice versa.

o Transition rates
For a discrete process with nearest-neighbor transitions only,
the mean first passage time 7{(n,, n,) to get from the stable
steady state n = n, to the unstable barrier top n = n, is
explicitly given by [10]
. " | ’
Tn,n)=T =9 d-———fdz 2. (36
v i) =T Y Y 0r») S P 5(2) )
Because pg(n) is strongly peaked, we obtain, with a steepest
descent approximation to Equation (36),

ny

1 1
T, = ¥ - .
=T ) Vagmlenol exp {Qloy(n;) — do(n)l} 37

Because a random walker can at n = n, either proceed into
the next well (i.e., n = n,) or fall back toward n = n,, the
forward transition rate r* equals

1 1 + ”, ”
7= 5 = 3 1) Vel et

‘ exP‘_Q[d)o(’%) - ¢o(n|)]}- (383)

Likewise, one finds for the high-voltage — low-voltage
backward transition

- 1 | AN ()|
r = i?_ = z 0% (nz) ‘/¢0(n2)|¢o(n3)|

-exp{—Qey(ny) — ¢o(n)l},  (38b)

yielding for the slowest relaxation time X, characteristic for
the long-time dynamics in a bistable system, the value

A==+ 1) (39)

In terms of the Fokker-Planck approximation in Section 4,
one finds from the corresponding mean first passage time
expression [10, 12]

o = 5 7' (0) VW]
¢ exD{_Qw’o(nQ - ‘Po(nl)]}, (40)

while the novel Fokker-Planck scheme in Section 5 yields

. LYy

NS o ¥y

Voyn) ¢5(ns)

‘ CXP{_Q[¢0(n3) - ¢o(n1)]l- (41)
Because y'(n) = v7(n,), i = 1, 2, 3, one finds
L) =3 Afn) = 5 An) = v (n) = v (n). (42)

Thus, the new Fokker—Planck scheme gives rates that
coincide precisely with Equations (38). Because the
curvatures of ¥, and ¢, do coincide, the prefactors of the two
Fokker-Planck schemes coincide; the exponential leading
parts, however, differ in leading order. The conventional
Fokker-Planck modeling exponentially overestimates the
transition rates; i.e.,

rkm _ Tim

r_* == exp(QA%), (43)
NFP

with

s [l w f(y)—v‘(y)] a4
R v b e LY

being strictly positive. This intensive quantity characterizing
the error in the transition-rate evaluation [see Equation (43))
is depicted in Figure 5.

6. Conclusions
In this paper we take a new look at the role of noise in
negative differential resistance circuits. Due to a certain



mathematical inconvenience of modeling the noise dynamics
with shot noise, i.e., with a master equation dynamics, one
usually attempts a description in terms of a Fokker-Planck
approximation. We have presented a novel Fokker-Planck
scheme which possesses advantageous features over the
conventional scheme of truncating the Kramers-Moyal
expansion at the second order. The new Fokker-Planck
modeling yields both the correct stationary probability and
the deterministic law, and also correctly produces the
transition rates, while with the conventional scheme one
would exponentially overestimate these rates in leading
order [see Equation (43) and Figure 5]. Physically this result
has its origin in the systematic overestimation of the
Kramers-Moyal diffusive noise strength, i.e, A,(n) > A(n);
see below Equation (34). Thus the escape times are
underestimated, yielding too-large escape rates. Moreover, it
has been demonstrated elsewhere [9] that for processes
possessing boundaries, the novel scheme preserves those
boundaries. For example, if the state variable is strictly
positive, the novel Fokker-Planck modeling yields a state-
dependent diffusion coefficient that vanishes at the origin,
and thus does not drive the system beyond its natural
boundary toward negative state variables. The novel scheme
has been constructed to accurately describe the long-time
dynamics of the process, i.e., quantities such as the
stationary probability and stationary correlations, etc.
Nevertheless, both Fokker-Planck schemes of Sections 4 and
5 are approximations to the same master equation in the
first place, and they certainly cannot reproduce ali of the
features of the master equation process. In particular,
characteristic features that are sensitive at the order 1/Q
clearly cannot be reproduced within a continuous state
approximation.

While Rolf Landauer wrote his prescient paper on
statistical densities and state-dependent noise in tunnel
diodes over 25 years ago, it is interesting to note that
research and development on small systems and on more
sophisticated electronic devices with negative differential
resistance continues to be an area of active and widespread
interest today [13].
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