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Abstract. - The adiabatic criterion for a tunnelling particle interacting with an ax. field is
formulated. The adiabaticity condition is shown to involve two complex-valued time parameters,
one of which is the quantum traversal time discussed recently. The two time parameters have
analogues in the theory of classical Brownian motion, which guides the physical interpretation in
the quantum case. Semi-classically, both parameters reduce to the conventional expression
J-mp-' (x) dz, representing the time of motion along the stationary classical path.

Understanding of time parameters describing the motion of a quantum particle is of great
interest in such fields as potential scattering, reaction theory and quantum tunnelling. Over
the years, a considerable amount of work has been invested in the problem [l-151. However,
the results of [l-151 failed to provide a unified approach to the definition of time scales for
scattering problems as well as to explain the nature of different times that appear. Thus,
most of the authors state the existence of various contradictory results and the problem of
their classification remains open.

The purpose of this paper is, firstly, to show that the motion of a classical Brownian
particle is described by a number of time parameters obtained by averaging different
functionals over all the paths the particle may take. Secondly, to show that the rotation to
imaginary time which allows one to obtain the Schrodinger equation from the diffusion
equation leads with necessity to the existence of a corresponding number of complex time
parameters in the quantum case. We illustrate this conception by formulating the
adiabaticity condition for one-dimensional tunnelling also studied in [8,10,111. If the motion
of a particle is fast compared to the variation of an ax. field, one can simply substitute the
slow time dependence of the potential V ( x ,  t)  into the static scattering amplitude.
Therefore, we will specify the condition under which this substitution is justified. In the
semi-classical limit, for the motion in the classically allowed region one must require that the
error in the classical action be small as compared to h. Thus, the adiabatic criterion reads:
y = A-' 6 V t ~ ~ , b ,  << 1, where tla,bl = t b  - tu denotes the time the classical path 5 (t) spends in
the interaction region ta,b and 6V is the mean value of <<perturbation. experienced by the
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particle
tb

6v = ( t b  - &)- ' I [v (z (t) ,  t )  - v (z (t) ,  tb] dt .
ta

For the case of semi-classical tunnelling, the classical path becomes complex [16]. We will
show that in this case the above criterion has the same form with complex quantities t ra ,b l
and 6V evaluated along this complex path. Finally, we will generalize to the full quantum
case when all possible paths contribute [17]. To do so, we first investigate the classical
Brownian motion.

a)  Brownian motion with negative sources.

presence of absorption 1181:
Consider a diffusion equation describing concentration of Brownian particles in the

The function V ( x ,  t )  is the probability of absorption per unit time. The sinks are localized
within interval [a, b]. The function Or,bI(x)  equals unity in the interval and is zero outside.

In accordance with (l), the probability density p(xz, tllxl, tl) that the particle having
started its motion from x1 at tl will reach xz at & can be found by summing probabilities over
all paths connecting xl, tl and xz, tz. In particular, [HI,

2 2 8  tz
p (x2, tzlxl, 4) = I Dx (t)  exp [S Ex (t)l1 , (2a)

211 t l

tz
S [x (t)] = - I [ $ + v (x, t )  81, b] (x)]dt.

t l

Associated with the path integral (2) is the averaging procedure

which gives the mean value ( F )  of the functional F[x(t)]  over all the paths.
Another averaging procedure connected with path integral (1) can be obtained by

defining a distribution function in the part of (x, t)-plane {F a < x < b, tl < t < b} shown in
fig. 1:

(4)dP =P(xz, tzlx, t )p (x ,  tlX1, t1)dxdt.

The corresponding mean value of arbitrary f(x, t )  is

The value f(x, t )  enters into the numerator of (5) with a weight equal to the probability
density that the particle travelling between xl, tl and xz, tz visits x at  t.
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Fig. 1. - Various paths and the region r

With the help of relationship 8 [ , , b ]  (2) = 1 8 0  - x) dA it is readily shown that
a

Now we can discuss the adiabatic limit of (l), i .e.  the conditions under which one can
substitute the time-dependent function V(z,  t )  in (1) by time-independent V(x, to) drozen. at
some to and fmd the accurate result for the probability density p(x2,  tz I x1, tl). The necessary
condition is obtained by treating the difference V ( x ,  t )  - V(x ,  to) as a perturbation. Thus, up
to the linear terms

h-(/ [V(x(t),t)-V(x(t),to)1dt
tl

In virtue of (61, the relevant small parameter y is seen to be

The second term in the right-hand side of (8) is immediately recognized as the mean time
t ~ ~ , b ] ( x ~ ,  blxl, tl) the particle spends in the region where the sinks are localized [18,19]. The
first term contains the information about the variation of V ( x ,  t )  in time. In (8) and in the
following all quantities without index V ( x ,  t )  correspond to the motion in the drozen, static
V ( x ,  to).

b) Quantum mechanics.
One-dimensional motion of a quantum particle in the potential V ( x ,  t )  is described by the
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Schrodinger equation closely related to the diffusion equation (1):

Therefore, to define the conditions under which a quantum particle .sees. the static
potential V ( x ,  to) we can formally repeat the arguments of the previous section by taking
into account several important distinctions:

i) Expression (2) with S substituted by

gives the complex probability amplitude g ( x 2 ,  $1, t2,  tl). Correspondingly, (3) defines a
.mean value>> which may be complex even for a real functional F 1171. The distribution
function (41, dp = g ( x 2 ,  x, t 2 ,  t )g(x ,  x1, t ,  tl)dxdt, is now also complex. Yet, it is natural to
refer to the corresponding integrals as mean values, and we retain in the quantum case the
above introduced notations ( F )  and f.

ii) To neglect the correction to the complex static amplitude in (7) we must require that

the absolute value [V(x (t), t )  - V ( x  (t) ,  to)] dt is small as compared to unity.I(/ )I
Thus, in the quantum case the adiabaticity criterion reads:

It requires that the mean variation of action along all paths caused by the perturbation be
negligibly small. The mean value of perturbation is multiplied by the (complex-valued)
quantum traversal time tra,b]  whose properties have been discussed in detail in [191. In the
special case V ( x ,  t )  = Vo coswt, discussed in ref. [%lo], we choose to equal to t2 and expand
V ( x ,  t )  - V ( x ,  t2) up to terms linear in t - t2 to obtain from (10)

The left-hand side contains absolute values of two time parameters of different nature: if,, b]
and the difference between the complex mean value t as defined by (5) and the time t 2  at
which we drozen the potential.

Of practical interest is the situation when the energy of the incident particle E is known.
To fix E in (10) we assume

In this limit

dp = g (XZ, x, t 2  - t )  Y"k(x) exp - i-t go(O,xl, - t l )  dxdt ,[ :I
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where Yk (x) is the stationary wave function describing incident flux of particles on the left
side of the potential (fig. 2), and go (x2, xl, & - t l )  is the free-particle propagator [17, 191.

Fig. 2. - The form of the (<frozen. potential V(z, b).

Consequently, both terms in (10) depend on E and (10) becomes the condition under which
the wave function of scattered particles at x2 ((follows. the variation of the potential for the
case that the energy of incident particles is E.  Oscillations of dp restrict the effective region
of integration in (5) to finite t’s such that the particle .forgets)> the form V ( x ,  t )  in the distant
past. For instance, for the free motion only the vicinity of the classical path (straight solid
line in fig. 1) contributes to the first term in (10). It is important, however, that in general
case a quantum particle can be considered fast compared to the oscillations of the potential if
the absolute values t2 - f(E) and t[a,bl (E)  in (11) are small enough. It is easy to see that both
t ( E )  and t ~ ~ , b ] ( E )  describe the response of the scattering amplitude to a small variation of
the potential in [a, bl and we shall refer to them as interaction times. Thus, for the
transmitted particles, x2 = b, we find (the limit is taken as discussed above):

where

Here B1,2(E) are the scattering amplitudes shown in fig. 2. Semi-classically, (124 and
(12b) reduce to the familiar expressions

( p = I (2m (E - V))’” I if E > V ,  il(2m (E - V))’” I otherwise), evaluated along the classical
path.

Finally, we discuss the result of [8,10], where a small perturbation Wcoswt has been
added to a rectangular barrier within the barrier region. The square of the tunnelling time,
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T ~ ,  has been defined as the ratio between the probability of absorbtion of a quantum hw as
U-+ 0 and the factor of (W/2h)21B212. In this case the wave function of transmitted particles
has the form

Y (x, t )  = B2 (E) exp [ - iEt + ik (x - b)] .

[ 1 + f [ c o s ~ t  - ~ ( t  - f(E))sinot + ... I t[a,bl (E)  + O W 2 )  . (13)

Thus, in the approach of [lo], z becomes equal to I. However, z is not the time which
compares to w in the low-frequency limit of (13). This limit is reached if w It - (E)I << 1. Note
that t - t (E) and tLa,b1 (E) are of the same order in the semi-classical limit ( i .e .  for opaque
rectangular barriers) but may strongly differ in the full quantum case.

In conclusion: it is shown that the condition for adiabatic interaction of a quantum particle
with an applied a.c. field involves two complex interaction times of different nature. Both of
them are most simply related to the time parameters describing the motion of a classical
Brownian particle. Both times are complex and from the way we obtained their expressions
it is clear that the complexity of time parameters is an inherent property of the quantal
motion. Thus, in general it is unlikely that any physical meaning can be ascribed to their real
and imaginary parts separately.
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