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We consider the decay of a metastable  state, coupled to a thermal  reservoir, by quan tum 
tunnelling. We calculate the leading exponential  term in the W.K.B. expansion of the decay rate 
through a variational approximation.  The approach is simple, quick and versatile, when compared  
with the alternative method  which involves the numerical  solution of non-linear,  non-local, 
integro-differential equations.  We have demonst ra ted  the versatility of the variational approach by 
applying it to a few types of potentials,  most  of  which have not  been previously studied. In the few 
cases where numerical  results are available, the variational approximation gives excellent agree- 
ment .  In the cases where no numerical  results are available for comparison,  the variational 
approximation reproduces trends that are either physically reasonable or that may be inferred by 
interpolation between exactly soluble limits. 

We also address the question: What  are the effects of  frequency dependent  friction, or a finite 
noise correlation t ime,  on the quan tum tunnell ing rate? This question is one that has been recently 
broached in the discussion of exper iments  on highly damped  r.f. SQUIDs  and Josephson junctions.  
We find that the effect of the memory  time is to reduce the lifetime of the metastable state, 
towards its undamped  value. Again,  we find that  the variational approximation reproduces the 
exact variation of the action to a surprisingly good degree of accuracy. 

1. Introduction 

The decay of a metastable state of a system in intimate contact with a 
thermal reservoir is a ubiquitous process in physics. At sufficiently high 
temperatures,  the decay is conventionally considered as being activated 
through the occurrence of spontaneous large amplitude fluctuations of the 
thermal reservoir1'2). This picture produces decay rates which are governed 
by an Arrhenius type law. At low temperatures,  the occur- 
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rence of large amplitude thermal fluctuations becomes so seldom that other 
processes may be of importance in the decay. One such process is the decay by 
quantum tunnelling, as has been considered by Langer3), Callan and Col- 
eman 4) and othersS). Caldeira and Leggett  6 extended these theories to include 
the influence of the coupling to the thermal reservoir, although they still 
considered only the T = 0 limit. This was later extended to finite temperatures 
by Grabert ,  Weiss and Hfinggi7). It has also been shown that as the tempera- 
ture is raised this finite temperature theory shows a continuous transition, at 
T 0, between a rate governed by quantum tunnelling to one governed by 
thermal activationSa'7'8'9). That  is one recovers the high temperature form of 
the Arrhenius law. 

In this paper, we consider the decay of a metastable state due to quantum 
tunneling. We show how one may calculate the dominant exponential depend- 
ence, of the tunneling rate, using a variational approach. In contrast to the 
standard methods of calculating the rate, which involves finding the solution of 
a non-linear, non-local integro-differential equation, the variational approach 
is quick and simple. What is extremely surprising is that a simple two 
parameter  variational ansatz produces very accurate results for the decay 
rate~°). We also consider the effects of a coupling to the heat bath which are 
not strictly ohmic but also incorporate frequency dependent  effects. These 
types of memory friction mechanisms have recently been proposed to be of 
great importance to the discussion of experiments on r.f. superconducting 
interference devices SQUIDs and Josephson junctions. There is experimental 
evidence that indicates that such effects may be present H ~4). This could have 
a great effect on the tunneling rate of highly damped systems. We have, 
therefore,  applied the variational approach to such frequency dependent  
damped systems, in order to ascertain the effects of a characteristic memory 
correlation time. We find that as the correlation time increases, the tunneling 
rate also increases towards the value expected for the undamped system. Since 
this situation has not been previously investigated, it is crucial to check the 
accuracy of the variational approximation. We have done so by comparing the 
results of the variational approximation with the asymptotic long memory-time 
limit which can be treated analytically. To our surprise, the variational 
approximation reproduces this limiting behavior exceedingly well. 

In section 2, we shall outline the general formalism that we utilize to 
describe the quantum decay process. We closely follow the formalism as 
applied by Feynmann and by Langer. In section 3 we present the variational 
approach for the calculation of the dominant exponential part of the decay 
rate. We illustrate the method by applying it to decay from several potentials, 
most of which have not been previously considered. In the one case where 
numerical results exist, we check the reliability of the method. In section 4, we 
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consider the effect of frequency dependent  friction or damping with a memory  
kernel. We also perform analytic calculations on the asymptotic long noise 
correlation-time limit to enable comparison with the results fo the variational 
approximation.  

2. General formalism 

We consider a quantum particle, which is constrained to move in a one- 
dimensional potential. The particle is also coupled to a thermodynamic  heat 
bath. The heat bath is described by a set of harmonic normal modes.  The 
coordinates of the normal modes are represented by the set qS,, N/> n >/1. The 
Lagrangian of the system is written as 

M (12 V(q) + (~ - w ~ ,  
- T ,, T n = l  

- -  n =  1 Anq~"q- n = 1 2m,, ¢D2n q-"  (2.1) 

In this, the first two terms represent  the motion of the particle of mass M in a 
potential  V(q). The third and fourth term represent the harmonic normal 
modes of the heat bath. The next term is a bilinear term which couples the 
particle to a heat bath. The last term is introduced in order that V(q) coincides 
with the effective potential experienced by the particle. 

We shall consider the decay of the particle from a metastable minimum of 
V(q). For low temperatures ,  T <  T 0, the decay rate is given by the 
expression 2,7, l 5 ) 

2 
F =  ~ Im F ,  (2.2) 

in which F is given by the path integral 

e( F/k.r)= f Dq(r)exp [ S[q(r)] ' (2.3) 

which is to be evaluated over  all closed paths that start in the metastable 
potential  well. Fur thermore ,  in (2.3) the closed paths must be periodic in r, 
with period h/(kBT ). The effective action in eq. (2.3) S[q(r)] is given by 2'7'8'9) 
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S[q(-r)] = 

h /2kBT 

- h / 2 k B T  

h /2kBT e l f  + ~ d , '  K(~-  - r ' ) [ q ( ~ - )  - q ( r ' ) ]  2 . 

- h / 2 k B T  - ~  

(2.4) 

This effective action was obtained by integrating over the normal modes of the 
heat bath. The Lagrangian has been further simplified by analytically continu- 
ing to imaginary times, and periodically continuing the paths. The last term in 
(2.4) is non-local in time and represents the dynamics of the coupling to the 
heat bath. All the properties of the coupling between the particle and the heat 
bath are contained in 6) 

fdCO K(~-) = ~ J(CO) exp(-CO['rl), 
0 

(2.5) 

where the spectral density J(CO) is given in terms of the microscopic parameters 
as  

N 2 'w 
J((..o) = ~- E an ¢~(O) -- COn). 

n= l  mnCO n 

For the path integral in eq. (2.3) we use the method developed by Langer 3) 
and extended by Callan and Coleman4). The method relies on the semiclassical 
approximation, where h is assumed to be the smallest scale. The path integral 
is dominated by the trajectories for which the action S[q(~-)] is stationary. 
These extremal trajectories are given by the solutions of 

~S[q] = o ,  (2.6)  
~q 

which can be re-expressed as the Euler-Lagrange equation 

dV 0 = - M q ( r )  + ~ (q(z)) + 2 dr '  K('r - "r')(q(r) - q(T')). (2.7) 

The extremal trajectories q(~-) are found by solving eq. (2.7). In the semiclassi- 
cal limit, one only needs to consider the effects of paths in the immediate 
vicinity of the extremal trajectories. 

An arbitrary periodic path q(r) is expanded about an extremal trajectory 
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qO'), in terms of a complete set of orthonormal functions q,,O-), 

q('r) (l(-r) + ~ C,q,,(O . 
#t 

(2.8) 

The set of functions {q,0")} are chosen such that the second variational 
derivative of the action is diagonal, to second order in the coefficients, C,,. This 
corresponds to requiring that { q,, } satisfies the Hermitian eigenvalue equation 

~2S 
~q2 q=o'q, = A,,q,, (2.9) 

together with periodic boundary conditions 

In the usual, semi-classical approximation only the terms in the action which 
are quadratic in the C~ are retained. 

An S[q(r)l= S[q(r)l + ~,, ~- C, 2, + ' " .  (2.10) 

The contributions of the small fluctuations about the extremal trajectories can 
be represented by integrations over the coefficients C,. The neighborhood of 
each extremal trajectory contributes a term 

exp[ S[6I(O] ] ,I~; f dC.  exp[ A,,C~] 
h (2~.h)l .'2 2h 

[ ,2 
= exp h 

to the path integral (2.3). 
For a potential with a metastable state, the Euler-Lagrange equation (2.7) 

has at least two trivial solutions, q0-) = const. One trivial solution corresponds 
to the trajectory which remains at the local metastable minimum. The other 
trivial solution corresponds to the trajectory which remains at the maximum of 
the potential barrier. 

The Euler-Lagrange equation has a non-trivial solution, the so called 
bounce trajectory qB0-). This trajectory comprises a periodic path which makes 
an excursion from the metastable well to points on the opposite side of the 
potential barrier and subsequently returns to the metastable well. 

The time translational invariance of the system implies that not only qB(0 is 
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an extremum of the action, but so is qB(r + %). Therefore,  the fluctuations 
about the bounce trajectory must contain O % / O r  as a solution, with zero 
eigenvalue. This Goldstone-like mode restores the time translational in- 
variance. Since the bounce trajectory is also time reversal invariant, we 
immediately find that , 9 % ~ a t  contains an odd number of nodes. As has been 
pointed out, this implies that there exists an odd number of negative eigen- 
values. Thus, the bounce will contribute an imaginary part to the path integral. 
On exponentiating the resulting series, one finds, with the aid of (2.2), that y is 
of tlhe form 

F =  A exp [ (S [0 ] -  S [ q B ( r ) ] ) / h  ] , (2.12) 

where the prefactor A is expressed in terms of the modulus of a ratio of 
determinants. One crucial conclusion of this discussion is that the bounce 
action S [ % ( r ) ]  is a saddlepoint in function space, in that there exists an odd 
number of functions that represent directions along which the action decreases. 
The action increases for small excursions along the other,  infinite set of 
directions q,,(r). We shall make use of this property in the variational method. 
Another  conclusion concerns the prefactor of the rate. 

The prefactor A is obtained only after the series for the action, (2.10), has 
been terminated by neglecting terms of higher order than C~. This corresponds 
to neglecting terms of the action of higher order than h. This truncation of the 
series is only justified if it is rapidly convergent. Under  such circumstances, the 
rate is dominated by the exponential term. Therefore,  we shall calculate the 
rate in the form 

In F = - (S  u - S o ) / h ,  (2.13) 

where S B is the action calculated for the bounce trajectory and S O is the trivial 
trajectory corresponding to the minimum of the metastable potential. 

Only in a few special cases, it has been possible to find exact analytic 
solutions for qB(r), and to find the action9'16). Likewise, numerical 
solutions 17'18) have only been obtained in the case of a cubic potential and 
ohmic dissipation 

J ( w )  = M r l w .  (2.14) 

Therefore,  in the next section, we shall present a method which enables the 
approximate calculation of S B for many different types of potentials and 
dissipative mechanisms. The method is expected to be useful since it is both 
extremely simple, and gives surprisingly accurate results. 
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3. The variational approximation 

In this section we shall describe the variational approximation and apply it to 
the problem of decay from a metastable potential, in the presence of ohmic 
dissipation. We shall consider potentials V(q) of the form 

Moo q2(1 q V( q) = - - ~  (3.1) 

in which n is an odd integer. In this section, we shall restrict our attention to 
the case of ohmic dissipation (eq. (2.14)). The accuracy of our approximation 
will be assessed by comparison with numerical results, which only exist for the 
cubic potential, where n = 1. We compare our results both with the T =  0 
values of Chang and Chakravarty 17) as well as the finite temperature values 
computed by Grabert ,  Olschowski and WeisslS). 

The action, evaluated along the bounce trajectory, is a saddle-point in the 
space defined by the set C,. We propose to evaluate this saddle-point action, 
approximately, by a direct variational method. 

We shall introduce a family of trial trajectories, which hopefully are close to 
the exact solution. The trial trajectories only depends on a small set of 
parameters {ai} .  The values of the parameters are chosen such that the 
corresponding action is extremalized, and is also a saddle-point. The resulting 
action is our variational approximation to S B. Thus, we merely have restricted 
the variational principle for S B onto a subset of the full functional space. As the 
family of trial functions is appropriately enlarged, one would expect that the 
variational approximation should approach S B more closely. 

Caldeira and Leggett have introduced a second functional6), defined for a 
specific class of bounce trajectories and potentials in order to show that the 
bounce action is a monotonically increasing function of the strength of the 
dissipation. We prove this directly in appendix A. The second functional 
defined by Caldeira and Leggett, produces an upper bound to the bounce 
action. When the family of trial functions that we consider lies within the class 
considered by Caldeira and Leggett, our variational approximation to the 
bounce action coincides with the value of their second functional and provides 
an upper bound to the bounce action. 

We shall introduce the family of trial trajectories 

a 

q(7) = 1 - b cos(2rrkBT~' /h  ) ' (3.2) 

which depends on the two parameters a and b. These trajectories start at the 
point q = a/(1  + b) inside the metastable well, and at ~-= 0 reach the point 
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q = a/(1 - b) outside the potential barrier and then subsequently return to the 
starting point. The choice of the finite temperature  variational ansatz (3.2) is 
motivated by the following considerations: 

i) q(7) has period h/kBT; 
ii) q0") reduces to the exact extremal trajectory for temperatures in the 

vicinity of the cross-over to thermal activation, T ~< To; 
iii) q(r)  reduces to the asymptotically exact bounce trajectory in the limit 

a = (r/ /2w0)-+ % for the cubic potential. 
We then evaluate the action along the trial trajectory (3.2). We find that the 

action is given by the expression 

Sn(a, b) _ hWo [ 2//27rkB ~ x 
y 2 ( x  - 1) M~o0(Aq) 2 2k B T [ 

(2~rkBT~ _ n+2p ] , + \ ~ - - m o / O l y 2 ( x 2  -- 1) + y2x y .+~(x) (3.3) 

where y = a/Aq%/1 - b 2, x = 1/%/] - -  b 2 and the Pn(x) are Legendre polyno- 
mials. The first term in the square brackets represents the kinetic energy, the 
third and forth terms represent the non-linear potential, while the second term 
represents the effect of the dissipation: a = r//(2w0). 

The extremal conditions can be rewritten as OS/Ox = OS/Oy = 0. These have 
two solutions, one is the trivial solution y = 0 which corresponds to the 
trajectory remaining at the metastable minimum, and the other solution can be 
written as 

1 1 n y - -  _ _  

n + 2 Pn+l(X) 

x{2o(2  B , 2 12  BT,2 2 2x/ ) ( x - 1 ) + ~ )  x ( x - 1 ) +  , 

where x is given by the root of the equation 

(3.4) 

1 d 
n + 2  dx 

[ / 2~ ' kBT\  2 
l n P n + l ( X ) [ 2 a ~ W o  )(x - l )  [2~kB T\2 2 + 2X 1 )x(x-1) 

[ ( 2 7 r k B T ]  z 1 ' "  {2~kBT'~ 1] 
= i_ \~ -~w0  / ~ (3x 2 - 1) ~- zc~k~--~-wo]X + . (3.5) 

This is equivalent to an algebraic equation of order n + 3. 
For the cubic potential this results in a quartic equation, at finite tempera- 
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tures. For T = 0, as we shall see later, everything simplifies and the corres- 
ponding equation is a quadratic equation. 

Eq. (3.5) can be shown to possess a root for 1 ~< x ~< w in the temperature 
range 0 ~< T ~< T~, where 

tiwo { ~ T 2 +  n - -  a} . (3.6) 
T 0 - 2~_kt 3 

That is, one finds a variational approximation for the action for all tempera- 
tures in the region where quantum tunnelling is the dominant decay mech- 
anism. 

At the temperature T = T 0, where the cross-over between thermal activation 
and quantum tunnelling occurs, we find that x = 1, and 

2 
y "  - . ( 3 . 7 )  

n + 2  

The trial trajectory becomes exact, and remains at the top of the potential 
barrier. The action is then given by hVm~,x/kBT where Vm~,× is the height of the 
potential barrier, which is given by 

M,o  ,, [ 2 1  
• - 2 (Aq)2 ~ [ ~ J  " (3.8) 

Thus the action matches smoothly onto the Arrhenius factorT), and is in 
agreement with the exact results of Grabert  and WeissS). 

At arbitrary temperatures, the polynomial equation (3.5) is solved numeri- 
cally. The results of this finite temperature variational approximation can be 
compared with the numerical values calculated by Grabert,  Olschowski and 
Weiss for the cubic potential (n = 1) l~). These are shown in table I. The action 
is expressed in units of Mw o Aq 2. The results are tabulated for various values of 
a and temperature ratio's T/T~. 

The agreement between the variational results and the numerical values is 
exceptionally good for large and intermediate values of the damping strength 
a. The largest discrepancy occurs for the undamped case (a = 0) at T/T~ = 0.4. 

We note that our approximate values of the action are greater than the 
numerical values. Since our variational ansatz (3.2) is of the class considered 
by Caldeira and Leggett, our results are in agreement with the minimum 
principle that they proposed. 

In the T = 0 limit, one must handle the limiting procedure with care, since 
both b--~ 1 and a--+ 0. It is convenient to introduce the parameterization 
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Table I 
The dimensionless action S/(Mo% Aq 2) for the potential n = 1. The action is given for various 
values of the dimensionless damping strengths o~ and reduced temperatures T / T  o. The results of 
the variational approximation (V.A.) are presented alongside the numerical results obtained by 

Grabert, Olschowski and Weiss (Ref. 18). 

0.1 0.4 0.6 0.8 

V.A. Ref. 18 V.A. Ref. 18 V.A. Ref. 18 V.A. Ref. 18 

0.00 0.567 0.533 0.583 0.533 0.577 0.533 0.540 0.521 
0.05 0.612 0.580 0.623 0.577 0.611 0.570 0.568 0.551 
0.10 0.659 0.629 0.664 0.621 0.647 0.610 0.599 0.583 
0.50 1.070 1.052 1.036 1.015 0.978 0.963 0.885 0.874 
1.00 1.656 1.644 1.581 1.570 1.477 1.467 1.324 1.319 
2.00 2.942 2.941 2.796 2.793 2.601 2.600 2.326 2.326 
4.00 5.65 5.65 5.37 5.37 4.99 4.99 4.46 4.46 

10.00 13.95 13.93 13.25 13.26 12.32 12.30 11.01 11.04 

/~ _ 2~rk  B T 1 

h ~/1  - b 2 

a n d  

a 
d -  

l - b "  

T h e  v a r i a t i o n a l  a n s a t z  c a n  b e  s e e n  to  r e d u c e  to  t h e  L o r e n t z i a n  

d q(~-) - 
1 + b2"r 2 

at  T = 0. W e  f ind  t h a t  

4 ,q(, L)  
d = ~ 2 0 0  , /i 2) 

~Oo ~=g 1+10~-1 , 

fo r  t h e  c a s e  n = 1. 
T h e  c o r r e s p o n d i n g  a p p r o x i m a t e  a c t i o n  is g i v e n  b y  

s(~,6)- ~ ~ + ~ -  1 - 4 ~  q +,7, r=o. 

( 3 . 9 a )  

( 3 . 9 b )  

( 3 . 1 0 )  

( 3 . 1 1 a )  

( 3 . 1 1 b )  

( 3 . 1 2 )  
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The  results are shown in table II. They  can be directly compared  with the 
numer ica l  results of Chang  and  ChakravartyJ7) .  We see that  the worst  dis- 
c repancy occurs for a = 0. This case is exactly soluble,  and  we find that  our  
app rox ima t ion  gives a value which is 5 .9% larger than  the exact analyt ic  value.  
The  er ror  decreases as a increases.  For  a = 1.1746 our  approx imat ion  gives a 
result  0 .95% above the exact analyt ical  result  of R iseborough ,  Hfinggi and 
F r e i d k i n ' ) .  By contrast ,  the value ob ta ined  by in te rpo la t ing  be tween  the 
n u m b e r s  given by Chang  and  Chakravar ty  differs by 0.67% from the exact 
value.  For  even  larger values of a ,  the discrepancies  are negligible.  

There  have been  no numer ica l  studies of potent ia ls  o ther  than n = 1. 
There fore ,  we are unab le  to extensively assess the accuracy of our  approxima-  
t ion.  The  results for the act ion are t abu la ted  in table III  for the n = 3 case and 
in table IV for the n = 5 case. The  act ion is given in units  of Mo~oAq 2. 

In  order  to compare  our  results with exact values,  we have found  the a = 0 
and  T = 0 bounce  t ra jectory 

q(r)=~qsech- k T ) '  (3.13) 

and  its cor responding  act ion 

Table II 
The dimensionless action S/(Mw o Aq 2) for the 
potential n = 1 at zero temperature for various 
damping strengths a. The results of the varia- 
tional approximation (see 3.12) are given in the 
column denoted by V.A., alongside the numeri- 
cal results by Chang and Chakravarty (Ref. 

17). 

a V.A. Ref. 17 

0.00 0.565 0.533 
0.01 0.574 0.543 
0.05 0.611 0.581 
0.10 0.657 0.629 
0.50 1.072 1.055 
1.00 1.661 1.651 
1.50 2.295 2.288 
2.00 2.951 2.947 
2.50 3.622 3.617 
3:00 4.300 4.296 
3.50 4.983 4.979 
4.00 5.670 5.665 

10 13.997 13.986 
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Table III 
The action S 3 in units of (Mw 0 Aq 2) for various 
damping strengths a and temperatures T I T  o. The 
action is calculated variationally with the potential 

(3.1) with n = 3. 

a ~ l  T° 0.1 0.4 0.6 0.8 

0.00 0.750 0.758 0.739 0.686 
0.05 0.791 0.791 0.766 0.708 
0.10 0.831 0.825 0.794 0.730 
0.50 1.177 1.118 1.038 0.927 
1.00 1.648 1.532 1.392 1.219 
2.00 2.673 2.466 2.206 1.901 
4.00 4.876 4.509 4.015 3.433 

10.00 11.779 10.926 9.718 8.286 

Table IV 
The variational approximation for the effective 
action S 5 for the potential in (3.1) where n = 5. 
The action is given in units of (Mw 0 Aq 2) for a set 
of dimensionless damping strengths a and reduced 

temperatures T / T  o . 

a•T 0 0.1 0.4 0.6 0.8 

0.00 0.824 0.823 0.788 0.715 
0.05 0.863 0.853 0.811 0.732 
0.10 0.902 0.883 0.834 0.750 
0.50 1.226 1.143 1.038 0.906 
1.00 1.659 1.503 1.324 1.129 
2.00 2.588 2.310 1.978 1.650 
4.00 4.580 4.102 3.546 2.845 

10.00 10.876 9.811 8.211 6.725 

2 4 I n  F2(2/n) 
S. = Mco0(Aq) 2 (3.14) 

n + 4  F(4 /n )  ' 

where F ( z )  is the gamma function. 
On comparing our approximate results with the exact a = 0 and T =  0 

values, we find that for n = 3 the variational approximation yields a value 
which is 1.3% too large. This discrepancy is decreased for n = 5, where we find 
that our value is only 0.6% too large. 

The trends exhibited in tables III and IV can be summarized as follows: The 
effect of increasing n is to increase the undamped value of the action. This is 
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easily understood since increasing n merely corresponds to increasing the 
height of the potential  barrier. On the other hand, increasing n does result in a 
decrease of the action calculated with large a-values .  This decrease may also 
be inferred from comparison of the exact solution for large a with n = 1, and 
the n ~  ~ limit. For n ~ zc one finds 

S n 7"i" a lim ~ - T = 0 c~ >> 1 (3.15) 
, , ~  Mwo(Aq)- 2 In ol ' ' ' 

while for n = 1, 

S 1 4 
lira M6°°(Aq) : - ~ -  ~ a ,  T = 0 ,  a > > l .  (3.16) 

Thus one is led to expect that S n should decrease,  for large a,  as one increases 
n. Therefore ,  the variational approximation does lead to reasonable results. 

In the next section, we shall consider couplings to the heat bath which do not 
give rise to strictly ohmic dissipation described by (2.14). In particular, we shall 
assess the effect of introducing a characteristic relaxation time into the heat 
bath spectral density. 

4. Frequency dependent friction 

There  exists considerable experimental  evidence that Josephson junctions 
and r.f. superconducting quantum interference devices (S .Q.U. I .D.s )  cannot 
be completely described by the phenomenological  Resistively Shunted Junction 
(R.S.J . )  model.  These experiments  indicate that at sufficiently high frequencies 
the effective resistivity in the R.S.J. model  is frequency dependent .  The T 2 
dependence observed in the logarithm of the tunneling rate in these sys- 
tems 11"12) is, however,  characteristic of ohmic friction. Therefore ,  it may be 
reasonable to investigate models in which the spectral density J(w) is ohmic at 
low frequencies and deviates f rom the (MT/~o)-behavior at high frequencies. 
This leads to a f requency-dependent  friction or memory  damping2). In this 
section, we shall apply the variational approximation to such a case. This 
application serves a two-fold purpose.  First, it will show the types of effects 
that memory  damping has on quantum mechanical tunneling, a subject that has 
not been extensively studied. Secondly, the application will display the ver- 
satility and the accuracy of the variational approximation to novel situations. 

Let us consider the case of frequency dependent  ohmic damping, where the 
spectral density J(w) is given by 
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(.O 
J(w) = M~ z 2 (4.1) 

1+o)  To, 

in which ~'0 is a Drude cut-off. This type of damping corresponds to the 
damping that appears in the phenomenological classical equation 

i [ O - ~') ] dV[q(r)] M~(~-) + Mrl exp qO") d r '  + 
r o r o dq 

o 

- O .  (4.2) 

The Drude cut-off form of ohmic damping gives rise to a dissipative term in the 
action as in eq. (2.4), but where 

2 rr~_2 g , (4.3) 

in which g(x) is the auxiliary exponential integral functionlg),As r 0 tends to 
zero, this form of K0- ) reduces to the 1/~ -2 dependence found with purely 
ohmic damping. We note that increasing %, monotonically decreases the 
magnitude of K('r). 

We evaluate the action with the variational ansatz (3.2). The kinetic and 
potential parts of the action are of the same form as previously evaluated in eq. 
(3.3). Only the form of the dissipative part, proportional to a, will be changed. 
This latter term is replaced by 

Mw°(Aq)247ray2 =1 1 + m(2rrkBT%/ti ) ( ~ - ~ J  3' (4.4) 

which can be written as a hypergeometric function. 
The total action is extremalized by 

OS OS 
- - - = 0 ,  - - = 0 .  (4.5) Ox Oy 

These equations can, as before, he reduced to one equation. The resulting 
equation is solved numerically. 

The cross-over temperature T0, below which the decay is dominated by 
quantum tunneling, is given by the root of the cubic equation 

(2rrkeTo 3 (21rkBTo ] 1 n 2 2~kBT°)( 24 n ) - - - 0  
\ -U~% ) +\ ~ / O~oro + ( ~ ,,~or~ O~o'¢ ' 

(4.6) 
which has just one positive root. 



192 E .  F R E I D K I N  et al. 

At the cross-over temperature, one recovers the exact bounce trajectory. 
The resulting action gives rise to the expected exponential Arrhenius form of 
the decay rate. 

In fig. 1, we plot the action for the cubic potential as a function of o~ 0T. The 
three curves represent the three a values of 10, 4 and 1. The temperature ratio 
T / T  o is fixed at 0.1. We see that as w0T 0 is increased, the action is reduced 
towards its undamped value. We shall examine this approach to the undamped 
case in greater detail, since it provides a further quantitative test of the 
variational approximation. 

Using the variational approximation we find that the quantity 

[ s ( . ,  T) - s (0 .  T)] 
Of 

is a function of temperature alone, for large w0%. The value of this function at 
T = 0 is found to be 2.71 -+ 0.06, while direct analytical calculation yields this 
constant as 2.67. These calculations are presented in appendix B. Thus we see, 
the variational approximation not only reproduces the correct variation of the 
action with 6% %, for large ~o 0 %, but also does very well in the determination of 
the constant of proportionality. 

In figs. 2 and 3 we plot the action as a function of 6%% for the potentials with 

S (M ~o{L 

I0 

)2) 

. . . . .  ( ~ - - I 0  

. - - - ( 2 =  4 
• . m ( 2  ~ I 

XX 
N .. x "... 

\ \  " " . . . . .  

w o T o 

Fig .  1. The effective action S, for the non-ohmic dissipation ( 4 . 1 )  in  units of (Mo%Aq2), is 
depicted for the cubic potential ( n  = 1) ,  versus the dimensionless correlation time %~0 of the 
memory-damping, at fixed reduced temperature T / T  o = 0 . 1 .  The different curves correspond to 
different values of the dimensionless zero-frequency damping a = 7 / /2oJ  0 shown in the figure. 
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- - -  0t = 4 .. 
l. - - C / =  I 

5 " 

% T  

Fig. 2. Non-ohmic  effective action S versus  dimensionless  memory-cor re la t ion  t ime ¢o0~" for the 
potential  in (3.1) with n = 3. The  reduced t empera tu re  is kept  fixed at T I T  o = 0 . 1 .  The three  
curves cor respond  to different zero-f requency damping  s t rengths  ~ shown  in the figure. 

n = 2 and 5, respectively.  The  curves represent  three values of  a = 10, 4 and 1 ; 
the reduced  t empera tu re  T / T  o = 0.1 is mainta ined constant .  Again  we note  
that  as oJ0% is increased,  the act ion reduces  towards  the u n d a m p e d  value. The  
approach  to this value is again domina ted  by the variat ion 

s ( M° ,(Aq) z) 

io- 

i . . . . .  ~ - -  I0 
. . . .  0 ~ - -  4 

: - - 0 . =  I 

; ,b ,; io ~5 ~o'o 

Fig. 3. The  same as in fig. 2 for the potential  (3.1) with n = 5. 
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for large ~o~%. In this expression, f is a universal function of T~ T o. This is in 
agreement with the variation derived in appendix B. 

To summarise, we see that the effect of introducing a characteristic time 
scale into the spectral density of the thermal reservoir has the effect of 
reducing the action, and therefore increasing the decay rate. We see that the 
variational approximation reproduces the exact asymptotic large (¢ooT~)-varia- 
tion of the action to a surprisingly high degree of accuracy. 

5. Conclusions 

We have utilized a variational approach to calculate the rate of decay from a 
metastable state, due to quantum tunnelling. The variational approach calcu- 
lates the leading term in the W.K.B. expansion of the tunnelling rate. 

The main advantage of the variational approach is that for systems which are 
coupled to a heat bath: The standard path integral (W.K.B.) approach would 
require one to solve a non-linear, non-local in time, integro-differential 
equation. This can only be performed numerically, in all but a few special 
cases. The resulting numerical data has then to be integrated to produce the 
leading dependence of the decay rate. The variational approach is particularly 
simple and quick. This is best illustrated by comparing the numerical procedure 
used by Chang and Chakravarty to be T = 0, n = 1 decay problem with the 
variational results contained in eqs. (3.11) and (3.12), obtained by solving a 
quadratic equation. What is most surprising is the accuracy of the results 
obtained by the variational method. For values of ~ > 1, we see that the 
accuracy we obtain is comparable to those obtained numerically by Chang and 
ChakravartyW). At finite temperatures,  the variational approach also closely 
follows the numerical results for the n = 1 case obtained by Grabert ,  Olschow- 
ski and Weiss~S). 

The variational method may be extremely useful in providing quick and 
simple calculations of the decay rate for novel physical situations. To demon- 
strate this we have addressed potentials, n = 3 and n = 5, for which numerical 
results are not available. The variational approximation has closely reproduced 
the known exactly soluble limits, again with surprisingly good accuracy. It has 
also been able to give the trends which can be inferred from physical 
considerations. 

Finally, we have also addressed a question of some physical importance. 
Namely, what effect does a frequency dependent  friction have on the rate of 
decay by quantum tunnelling? This question has been raised since the ex- 
perimental measurements on r.f. SQUIDs and Josephson junctions seem to 
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indicate that the effective resistivity in the R.S.J. model should be frequency 
dependent. Furthermore, this frequency dependence has been invoked to 
provide a mechanism which might explain a possible discrepancy between 
theory and experiment on highly damped SQUIDs ,2). The variational method 
has shown that the influence of a characteristic time in the friction can produce 
a significant increase in the tunnelling rate. The tunnelling rate approaches the 
undamped tunnelling rate, as the characteristic memory correlation-time in- 
creases. This asymptotic approach to the undamped tunnelling rate is accurate- 
ly reproduced by the variational approximation. Furthermore, as the tempera- 
ture approaches the cross-over between quantum tunnelling and thermal 
activation, the variational approach becomes exact. At the cross-over tempera- 
ture one recovers the results obtained by Hfinggi et a l l  °) on the effect of the 
characteristic time-scale on the cross-over temperature. 

In summary, the variational approach is simple, varsatile and produces 
surprisingly good results for the leading dependence of the decay rate. 
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Appendix A 

The bounce action is a monotonically increasing function of the dissipation 
strength a. This may be proved quite simply and directly. First, we shall 
consider the change in the bounce action, if a is changed to a + da.  Under 
such a change the bounce trajectory will alter by an amount 8q. To lowest 
order in 5a, we find that 

S( q + ~q, a + da)  - S( q, o O= ~q ~q("c) dr + - ~  da  . 

Since (~SI6q) = 0, this is equal to (OSlOa) d~. The only explicit a-dependence 
occurs through the dissipation term, which for ohmic dissipation is positive 
definite. Therefore, we find 
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which holds for any value of a. Thus the bounce action is a monotonically 
increasing function of a. 

Appendix B 

The asymptotic long memory time limit o~ 0 % ~> 1 

We shall consider the Euler -Lagrange  equation with memory damping, 

where the damping kernel is 

2~r(] g ' 

2 / d r '  K(T - r ' ) [ q ( r )  - q ( r ' ) l ,  

-~ (B.1) 

as defined in eq. (4.3). 
For  large o%% and c~/w0% ~ 1, we may linearize the solution 

q(r)  = q0(7) + ~ ( r ) ,  (B.2) 

in which q0(7) is the undamped bounce trajectory. The T = 0 form of q0(r) is 
given in eq. (3.13). 

The function qff~-) is assumed to be small compared with q0(r). In the linear 
approximation, ~(~-) is found from the equation 

d2~d,2 ~ + (~+ 1)(°+~ ~) soch~(~) ~ 

_ 2 o~ / y - y '  ( y )  (Y~oo) ] ; ~o,o)2 d,  ~(~-;V)Eqo q o  (B.3) 

where y = w0r. The function ~o(r) must be an even-function of r, and satisfy the 
boundary conditions 

lim ~o(r) = 0 .  (B.4)  

The inhomogeneous term in eq. (3) can be rewritten as 
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2o ( y )  
OOo% qo Woo (%7-o): 

.y 
to o 7- 0 

dp 1 + p ' (B.5) 

where 

C(p)  = ~ qo dy 

is that Fourier transform of the bounce. In the limit Wo% >> 1, the second term 
can be shown to be negligible in comparison to the first term. On using the 
general method for solving linear inhomogeneous differential equations one 
can find q~(7). The function ~(7-) is then proportional to a/o~0% for large ~007- o. 

The action for the T = 0 bounce is given by 

S . ( a ,  O) - n M w 2  ~ ] (q(7-) " ],+2 
( A q )  2 _ dr  (B.6) 

\ A q /  " 

On substitution of the form of q(7-) given by (B.2) we find that the leading 
correction to the undamped action is given by 

n(n + 2) 
Sn(oL, O) - Sn(O, O) = M w ~ ( A q )  2 

4 

[ n'°°7-] 2(n+')'" ~P(7-) ( B . 7 )  
× dT- sech 2 J Aq 

Thus, we find that 

s . ( . ,  o) - s . (o ,  o) 
M%(Aq)  2 WoT-o 

- -  < 1 ,  ( B . 8 )  

since ¢(z)  I A q  ~ alooo7- o . 
The constant of proportionality is found by direct calculation. 

For example, with n = 1, we find that 

~(~) 
Aq WoT- o 

O) 0 T 600 T ~ (9 0 T 
- -  1 - ~ - t a n h  2 ! sech2  2 (B.9) 

which results in the expression 
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S ( ~ ,  O) - S(O, O) = ~ M w , , ( A q )  

× ~ d ~ - s e c h  ~ ' ~ -  1 - ~ - t a n h  , 

w h i c h  is e v a l u a t e d  as 

s ( . , o ) - s ( o , o )  8 
M w o ( A q )  2 3 ~o(1"; o " 

T h i s  is to  b e  c o m p a r e d  w i t h  t h e  v a r i a t i o n  o f  

(2.71 _+ 0 .06 )  a 
090 T 0 

o b t a i n e d  b y  t h e  v a r i a t i o n a l  a p p r o x i m a t i o n ,  as d e s c r i b e d  in t h e  t ex t .  

( B . I O )  

( B . 1 1 )  
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