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Abstract

Self-organizing systems are becoming increasingly complex in their organisational
structures, especially when unknown heterogeneous entities might arbitrarily en-
ter and leave the network at any time. Therefore, new ways have to be found to
develop and manage them. One way to overcome this issue is trust. Using ap-
propriate trust mechanisms, entities in the system can have an indication about
which entities to cooperate with. This is very important to improve the robustness
of self-organizing systems, which depends on a cooperation of autonomous enti-
ties. The contributions of this thesis are trustworthy concepts and generic self-*
properties that work in a distributed manner and with no central control to ensure
robustness. The self-* properties examined in this thesis are self-configuration, self-
optimization, and self-healing. We believe that these properties are fundamental
for the design of every autonomous, scalable and fault-tolerant self-* middleware.
The self-configuration is related to the ability to perform an initial distribution of
services on nodes taking the resource requirement and importance level of services
into account. The self-optimization focuses on optimizing the allocation of services
at runtime by monitoring the trust and resource consumption of nodes. And the
self-healing aspect is concerned with the ability to handle unexpected disturbances
in the system in order to guarantee that all services running on nodes stay available
even in case of crash, execution and reachability failures.

The resulting middleware is TEM, a trust-enabling middleware that can profit from
the advantage of trust and self-* properties at the same time. The TEM makes use
of different trust metrics, i.e., such as direct trust, reputation, and confidence to
monitor the behavior of nodes in the system. These techniques have been used to
improve the robustness of the self-* properties, both at design time and at runtime.
Moreover, we applied the TEM middleware to different application case studies
and clarified how uncertainty in open environments can be mastered by using the
approaches investigated in this thesis. Due to the fact that future application ser-
vices will become more autonomous, we expect to see more self-organizing sys-
tems based on our (or similar) approaches. The investigations conducted within
this thesis are a step in this direction.
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1
Introduction

1.1 Motivation

The growing complexity of today’s computing systems requires a large amount
of administration, which poses a challenging task for manual administration. Ini-
tiatives such as Autonomic Computing [JDM03] and Organic Computing [MS04]
aim to control these complexities by introducing so-called self-* properties like self-
configuration, self-optimization, self-healing and self-protection. These properties
can be achieved by constantly observing the system and initiating autonomous re-
configurations when necessary, as implemented by the MAPE cycle [HAM08] and
the Observer/Controller paradigm [UMJ+06]. An essential aspect that becomes
particularly prominent in this kind of systems is trust [RAS+16]. As part of this
work, a trustworthy design of self-* properties for Autonomic and Organic com-
puting systems is investigated. By utilizing trust as a constraint in such systems,
the self-* properties would be able to consider the behavior of participant nodes
and to maintain a more robust configuration in the face of unreliable components.
This enables building a reliable systems out of unreliable components.

1.2 Research Context and Origin

Trust is an important aspect in human societies. It enables cooperation and pro-
vides means to estimate potential cooperation partners. Several works were done
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1 Introduction

to transfer the concept of trust to computer systems. This dissertation is part of
the research unit OC-Trust 1 of the German Research Foundation (DFG). We intro-
duced our definition of trust in [SKL+10]. We see trust as a multifaceted multi-
contextual subject [KJMU13]. Therefore, prior to this dissertation, trust metrics
according to [SKL+10] have been developed by Rolf Kiefhaber in the course of his
Phd thesis [Kie14]. These metrics are integrated into the TEM [ASM+13], which
is a trust enabling middleware developed by the OC-Trust team. The TEM is pro-
grammed in Java and provides all tools and concepts to build the trust-enhanced
self-* properties. The main trust metrics considered in this work are direct trust and
reputation, which are presented as following.

• Direct Trust [KSS+10] is based on the own experiences a node has made di-
rectly with an interaction partner node. Typically, trust values are calculated
by taking the mean or weighted mean of past experiences.

• Reputation [KHS+11] is based on the trust values of others that had expe-
riences with the interaction partner. Reputation is typically collected if not
enough or outdated own experiences exist.

When all the aforementioned values are obtained, a total trust value based on direct
trust and reputation values can be calculated using confidence [KAS+12] to weight
both parts against each other [KJMU13]. Figure 1.1 depicts the relation of the dif-

Total Trust

Confidence

ReputationDirect Trust

Figure 1.1: Aggregating direct trust with confidence and
reputation to a total trust value

ferent trust aspects, i.e., direct trust, reputation, and confidence to get a total trust
value. This value is then used to enhance self-* properties with trust capabilities. In
my thesis, I primarily focus on developing trust-aware self-* properties that work
in a distributed manner and also ensure global optimality.

1OC-Trust: is an acronym of a research unit sponsored by the DFG that deals with the trustworthi-
ness of Organic Computing systems.
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1 Introduction

1.3 Application scenario and contributions

The self-organizing systems considered in this work are grid systems [FKT01] with
nodes representing client machines, which can interact with each other through a
set of messages. The system is distributed without a global control. The considered
applications are composed of services, which are distributed among the network.
Such a scenario would be suited for systems where clients run applications that
produce large amount of services and thus are in high demand of computing re-
sources, such as modern applications of Internet of Things [AIM10] or Industry
4.0 [LFK+14]. The services are categorized into important services and non impor-
tant services. Important services are those, which are necessary for the functionality
of the entire system. However, unimportant services are those which have only a
low negative effect on the entire system if they fail. The baseline self-* properties
introduced in [TKU06, SRK+11, SU08, ASTU06] are proven to be good solutions
to reduce the complexity of such systems but these are based on a benevolence
assumption that all parts of the system are trustworthy and interested to further
the system goal. In open and heterogeneous systems where arbitrary node partic-
ipants can join the systems, this benevolence assumption must be dropped, since
such a participant node may act maliciously and try to exploit the system. This
introduces a not yet considered uncertainty, which needs to be addressed using the
trust metrics presented in Section 1.2.

1.4 Research challenges

This thesis is concerned with the identification of research challenges related to
the construction of self-* properties capable of acting trustworthy in open and dis-
tributed environments, as well as to propose methods of resolution for them.

1.4.1 Trust-Aware Self-Configuration

Future computing systems are comprised of a large amount of devices —or nodes
for short— so that it would be impossible for a manual system administration to
configure them individually. The solution for this issue is to make such systems
self-configuring. This means the ability (1) to perform an initial distribution of
services on nodes and (2) to perform a reconfiguration of running services due to
self-optimization or self-healing demands, i.e., see below, the dependency of the
self-* properties.

There are many sophisticated approaches to deal with the initial distribution of
services on nodes, either to achieve good load balancing or to minimize energy con-

3



1 Introduction

Self-Configuration

Self-
Optimization

Self-Healing

Figure 1.2: Dependency of self-* properties

sumption. An approach that has become a standard by FIPA 2 is the Contract Net
Protocol [Smi80]. It consists of finding an agent that is the most suitable to provide a
service. This approach is often adapted and applied in many application domains,
for example, manufacturing systems [HC09], resource allocation in grids and sen-
sor web environments [KB09, GG08], as well as in hospitals [DGB03], electronic
marketplaces [DKRA00] or power distribution network restoration [KHS+09]. Our
approach of Chapter 4.3 is based on the Contract Net Protocol, extended by trust.
In this context, trust serves as a mean to give nodes an indication about with which
nodes to cooperate. Considering the trust constraint of nodes, our approach aims
on the one hand to equally distribute the load of services on nodes as in a typical
load balancing scenario and on the other hand to assign services with different im-
portance levels to nodes so that the more important services are assigned to more
trustworthy nodes. Evaluation results based on a TEM simulation showed that the
proposed approach is able to improve the availability of important services. How-
ever, self-configuration must take into account the termination time needed for as-
signing services not only by using one manager but also with multiple managers.
Therefore, we suggested in Chapter 4.5 a way to extend the self-configuration with
multiple managers to achieve a simultaneous behavior of assigning services on
nodes.

1.4.2 Trust-Aware Self-Optimization

Self-organizing systems should be able to dynamically adapt their behavior in re-
sponse to changes in their environment. At runtime, they should have the ability
to deal with situations not anticipated in design time, since not every situation
has to be considered when designing the system. After the initial service distri-

2FIPA: Interaction Protocol Specifications [Accessed: March 18, 2015] http://www.fipa.org/
specs/fipa00029/
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1 Introduction

bution that is given using the self-configuration process, nodes must be able to
constantly observe their current resource consumptions as well as the trustwor-
thiness of nodes they are cooperating with, identify unacceptable situations and
reconfigure themselves to regain an acceptable state. Therefore, in Chapter 5 a
self-optimization algorithm is presented to optimize during runtime the allocation
of services on nodes. The algorithm does not only consider pure load-balancing
but also takes into account trust to improve the assignment of important services
to trustworthy nodes. More precisely, it uses different optimization strategies to
determine whether a service should be transferred to another node or not. The
self-optimization process is investigated based on the TEM simulation. The eval-
uation results showed that the found optimization solutions regarding trust and
workload are best efforts, in the sense that they make a trade-off problem in which
it is impossible to make any trust distribution better without making at least the
load balancing distribution worse. Moreover, the evaluation results showed that
the proposed self-optimization works only well when nodes in the system have the
same trust value in a certain node, i.e., without conflicting trust values. However
in a real life situation, this assumption must be dropped, since nodes are free to
have the same trust opinion about other nodes or not. Therefore, in Chapter 6 a
conflict resolution mechanism is proposed as an extension to the self-optimization
process to operate with conflicting trust values at the same time. Moreover, other
investigations are done in Chapter 5.6 to accelerate the processing time of the self-
optimization within the TEM simulation.

1.4.3 Trust-Aware Self-Healing

Self-healing can be defined as the property that enables a system to perceive ser-
vices that are not operating correctly and, without human intervention, make the
necessary adjustments to restore them using the aforementioned self-configuration
and self-optimization principles. Two ways of thinking have to be considered in
the self-healing process, which are (1) the proactive self-healing and (2) the reactive
self-healing.

• Regarding (1): Enables to detect node instability prior to fail. This is generally
recognized by observing the degradation of a node trust value. Then, the
system moves all running services by using self-optimization techniques to a
more reliable node. For this purpose, a number of strategies are proposed in
Chapter 5 to allow an autonomous organization of the proactive self-healing
and to avoid false proactive shifts during runtime.

• Regarding (2): Nodes save recovery information periodically during failure

5
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free execution. Upon failure, which has to be detected by using a failure de-
tector, a node uses the already saved information to restart from an intermedi-
ate state i.e., called Snapshot, thus reducing the amount of lost computation.
For this purpose, a generic failure detector approach base on trust is proposed
in Chapter 7. It aims to improve the failure detection delays by adapting to
the trust conditions of the network. Moreover, the proposed approach aims
to reduce the number of messages that arises from sending heartbeat mes-
sages. An evaluation is provided for the monitoring approach and the results
attest a very good detection quality in the network compared to other ap-
proaches. Another investigation that is mainly concerned with point (2) is
the management of replicas. Chapter 8 details the developed approach used
for this topic. It aims to calculate the minimum number of replicas needed for
a desired degree of availability taking into account the average availability of
nodes. Also here, an evaluation is provided with respect to TEM and the re-
sults show a better trust distribution for important replicas with a significant
reduction in overhead when compared to the baseline.

1.5 Outline

The concrete contributions of this thesis are trust practices that aim to improve
the robustness of self-organizing systems in open environments and a middle-
ware with self-* properties addressing the aforementioned challenges. The self-*
properties examined in this work are self-configuration, self-optimization, and self-
healing, because we believe that these properties are fundamental for the design
of every autonomous, scalable and fault-tolerant middleware. The main investiga-
tions on these concepts are given in chapters 2 to 8, and every chapter is arranged in
a way that is self-explanatory and separately readable. However, for better under-
standing the thesis, it is recommended to follow the reading sequence illustrated
in Figure 1.3. Chapter 2 deals with the necessary basic knowledge to understand
the research area of self-organizing systems, especially self-* systems belonging to
the category of Organic and Autonomic Computing Systems. Readers that feel al-
ready familiar with these systems, may skip chapter 2 or at least some parts of it.
Chapter 3 introduces the baseline system considered in this work. It discusses also
the architectural design of our TEM middleware that we have developed to host
the trustworthy self-* layer in order to make it more robust in face of untrustwor-
thy components. The trust-aware self-configuration is addressed in Chapter 4. It
is related to the ability to perform an initial distribution of services on nodes tak-
ing the resource requirement and importance level of services into account. Then,
Chapter 5 presents the trust-aware self-optimization, which focuses on optimizing
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Chapter 1
Introduction

Chapter 2
Basics and Beyond

Chapter 3
System View

Chapter 4
Trust-Aware Self-Configuration

Chapter 5
Trust-Aware Self-Optimization

Chapter 7
Self-Healing: Trust-Based Monitoring

Chapter 6
Conflicting Trust Values

Chapter 8
Self-Healing: Trust-Based Replication

Chapter 9
Conclusions and Future Work

Figure 1.3: Structure of the Thesis.

the allocation of services at runtime by monitoring the trust and resource consump-
tion of nodes. Chapter 6 provides a conflict resolution mechanism for the case that
conflicting trust values occur at runtime. The self-healing concepts are given later
in Chapters 7 and 8 to deal with the problem of failure monitoring and replication
management, respectively. Finally, Chapter 9 summarizes this thesis and gives an
outlook on future work.

1.6 Published Materials for the Purpose of this Thesis

Parts of the contents of this thesis have been published by the author in several
journals, conferences, workshops, and book chapters. The most important publica-
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Organizing Real-Time Systems (SORT16) in conjunction with ISORC 2016,
pages 177-178, York, England, IEEE Computer Society, 2016.
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Optimisation in Organic and Autonomic Computing Systems in conjunction
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2
Basics and Beyond

Abstract. This chapter provides the necessary background knowledge
related to the field of self-organizing systems in general and Autonomic
and Organic Computing Systems in particular. This is very important
to understand terms, definitions and approaches mentioned and inves-
tigated in this thesis. The chapter clarifies also the difference between
self-* properties such as self-configuration, self-optimization and self-
healing and discusses their limitation to cope with open environments.
Furthermore, it introduces the social concept of trust as a solution for
that limitation and explains how it can be used in such systems to
achieve more robustness. Finally, the chapter surveys other research
fields related to the thesis.

2.1 Introduction

The growing complexity of computer systems as well as the high need for self-
organization has led scientists to focus more on self-organizing systems. These sys-
tems address self-organization in various concerns including robustness, resilience,
stability, scalability, performance etc. While self-organizing systems are used in a
very large number of different areas, this chapter focuses only on their applica-
tion in open distributed environments, called open distributed self-organizing sys-
tems. It is within this context that several new research keys have emerged over the
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years, for instance self-* systems including both of Organic and Autonomic Com-
puting systems [MS04, Hor01], Trusted Computing Systems [Mül08], Self-aware
Computing Systems [LPR+16], and System of Systems [Jam08]. Even though every
research key has its own field, many of them are often combined with other fields
to provide more robust and efficient solution for managing complexity. This can
be inferred from the workshop and conference series that were held at the topic
of self-* system during the last 10 years: for example the International Conference
on Autonomic Computing (ICAC), the International Conference on Architecture
of Computing Systems (ARCS), the International Conference on Self-Organizing
and Self-Adaptive Systems (SASO), the International Conference on Autonomic
and Trusted Computing (ATC), the International Workshop on Self-optimization
in Autonomic and Organic Computing Systems (SAOS), or the International Work-
shop on Self-Improving System Integration (SISSY), to name a few.

In this chapter we give a survey of much that is known about self-* systems.
The first Section 2.2 introduces the necessary terms and definitions related to self-*
systems along with Autonomic and Organic Computing. Moreover, it focuses on
techniques known in the literature as basis to clarify the approaches mentioned and
developed in this thesis. In Section 2.4, we survey the role of trust in our work and
how it can be used for achieving more robustness and efficiency in open distributed
self-* systems.

2.2 Autonomous Self-* Systems

Understanding the different types of self-* systems depends strongly on the re-
search area in which they appear. In this section, we focus on the modern uses of
Autonomic and Organic Computing systems as examples to talk reasonably about
distributed self-* systems. Another related research areas are then introduced at
the end of this section.

2.2.1 Autonomic Computing

Autonomic Computing (AC) [Hor01] is an initiative proposed by IBM since 2001,
whose main inspiration comes from the human nervous autonomic system. In this
sense, an autonomic system would control the processing of computer applications
without intervention of the user as in the same manner that the autonomic nervous
system controls vital low level functions (e.g., respiration, heart rate, and blood
pressure) without conscious input from the individual. This is achieved by using
high level policies which are given either at design time or changed at runtime.
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The goal of AC is more focused on data centers in order to allow server systems
to be self-managing, i. e., self-configuring, self-optimizing, self-healing, and self-
protecting.

• Achieving a self-configuring goal such as installing software when it recog-
nizes that some prerequisite software is missing

• Achieving a self-optimizing goal such as regulating the current workload
when it observes an increase or decrease in capacity

• Achieving a self-healing goal such as correcting a configured path so installed
software can be correctly located

• Achieving a self-protecting goal such as taking resources offline if it detects
an intrusion attempt

These self-* properties 1 can also be orchestrated with each other allowing the
system to provide a high degree of autonomy while keeping the system complexity
invisible to the user. Although initially equipped only with these four self-* proper-
ties, additional properties were latter extended to AC such as self-awareness, self-
situation, self-monitoring, and self-adjustment [DSNH10]. To support the effective
development of AC systems, a number of design architectures have been proposed
over the years. Figure 2.1 depicts one of the most well-known reference architec-
ture proposed by IBM [IBM06]. This is composed of four building blocks which are
briefly in the following explained:

The lowest building block incorporates the different managed resources (e.g.,
servers, storage, applications, etc.) that make up the complete IT infrastructure of
a company or an organization. It does not matter if these managed resources have
already embedded self-managing properties or not. The next block contains consis-
tent, standard manageability interfaces for accessing and controlling the managed
resources. These interfaces are delivered by so-called touchpoints. Layers three
and four automate some portion of the IT process using an autonomic manager
that can implement a control loop to enable self-configuration, self-healing, self-
optimization, and self-protection. Finally, the top building block is responsible for
manual administration, typically represented by a human activity such as an ad-
ministrator to manage and collaborate the autonomic managers with each other if
it is needed.

In order to enable this, every autonomic manager has to implement an intelli-
gent control loop — known as the Monitor-Analyze-Plan-Execute control loop or

1Sometimes also referred to as self-* principles or self-x properties (self-configuring, self-healing,
self-optimizing, self-healing and self-protection)
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Figure 2.1: Autonomic Computing Reference Ar-
chitecture based on [IBM06].

MAPE-loop for short — consisting of the following four steps.

• Monitor module: gathers information from the underlying system and pos-
sibly the system’s environment in order to correlate and model complex sit-
uations, providing the subsequent computations of the control loop with the
necessary data.

• Analyze module: examines the information previously gathered by the mon-
itor module, and based on the identified symptoms draws plans on which
further actions should be undertaken by the plan module.

• Plan module: constructs the sequence of actions that is needed to achieve
goals and objectives

• Execute module: performs and controls the execution of such actions.
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Figure 2.2: Functional representation of the MAPE-loop, based on [IBM06].
This is the most prominent way of forming feedback control
loop in AC systems. It is composed of a monitoring module to
collect data from underlying resources, an analysis module to
detect and correlate complex situations, a reasoning module to
plan the sequence of actions needed to achieve goals, and an
execution module to control the execution of plans using a set
of effectors. It is to note that knowledge stored of an autonomic
manager can be also shared with other autonomic managers.
This is important to support the collaborative decision making
of managers in case to achieve a common goal.
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2.2.2 Organic Computing

Closely related to the objectives of AC is the Organic Computing (OC) [ACE+03,
Sch05] initiative — an academic-driven research funded by the DFG 2 — which
mainly focuses on building interconnected distributed self-* system. In this sense
an OC system is also characterized by self-* properties such as self-configuration,
self-optimization, self-healing, self-protection, self-explaining, and context aware-
ness. However, in contrast to the IBM’initiative which focuses basically on the
self-management of data centers, an OC system has its focus on the development
of generic and emergent properties for more smaller and more heterogeneous en-
tities [JMC+06]. This means that an OC system is more confronted with unfore-
seeable situations in which the behavior of nodes can change quickly at runtime.
To this end, a generic Observer/Controller architecture has been proposed for OC
in [UMJ+06]. Its functioning is similar the MAPE-loop of AC with the sole ex-
ception of two major points: (1) It puts an additional flexibility with respect to
where the control loop is placed in the system, either centralized, distributed or
in multi-level structures. (2) It encapsulates many of the modules of MAPE but
does not prescribe the stages of the control loop. Figure 2.3 gives an overview of
the most important components of this architecture. The observer module mon-

Figure 2.3: The Observer/Controller pattern in its
basic form based on [UMJ+06].

itors the system and thus has the ability to detect unwanted behaviors. In such
cases, the controller is used to specify corrective actions. The productive system
that is managed by such an Observer/Controller pattern is called the system un-

2DFG stands for „die Deutsche Forschungsgemeinschaft“, which is a significant German research fund-
ing organization and the largest such organization in Germany.
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der observation and control, or SuOC for short. There are different variants of
Observer/Controller (O/C) pattern that can be customized depending on the ap-
plication scenario and the complexity of the system. These variants are visualized
in Figure 2.4 and realized on the following ways:
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(a) Centralized O/C pattern (b) Decentralized O/C pattern (c) Multi-level O/C pattern

Figure 2.4: Variants of the generic O/C design
pattern based on [CHMS08].

• Centralized O/C pattern: The centralized O/C pattern has only one control
loop for the entire SuOC. The SuOC is regarded as a kind of black box where
there is no need to distinguish between good and bad behaviors of the sin-
gle system elements. In such cases, the observer monitors the data of the
system as a whole and the controller takes corrective actions with respect to
the entire SuOC. The type of this pattern is most often applied within weak
self-organizing systems [SMSÇ+11], i.e., where the self-organization process
is managed by a centralized point of planning and control.

• Decentralized O/C pattern: The distributed O/C pattern has an individual
control loop for each system element. These elements are observed and con-
trolled separately to enable the system to autonomously adapt their behavior
to a given individual specification. Such a pattern would be appropriate for
strong self-organizing systems, where there is no global or central knowledge
for controlling the system [DMSGK05].

• Multi-level O/C pattern: In contrast to the decentralized approach, the multi-
level O/C pattern proposes one control loop for each individual system ele-
ment as well as one loop for the entire system. In this way holarchies 3 and
system of systems can be built to provide system elements that are wholes
and parts at the same time. Examples of systems using this pattern can be
found in [FDMD15, MMV03].

3A holarchy is a system connection between holons, where a holon is both a part and a whole. For
more details on this topic, please refer to [GB04]

17



2 Basics and Beyond

2.2.3 Main Characteristics of Self-* Systems

Although the initiatives of AC and OC constitute different research areas, they con-
verge in some similar characteristics as well. In the following, we summarize and
clarify the main characteristics of distributed self-* systems:

1. Homogeneity and heterogeneity: System elements may have different be-
haviors with respect to their reliability, availability, functionality, and resource
capability.

2. Openness and scalability: The number of system elements is not limited in
the network and every one can join and leave the network at any time. Cur-
rently, there is an assumption of the benevolent behavior of system elements.

3. Decentralization: Self-* systems have often a decentralized structure in both
senses of locality and control. The system elements are distributed among
the network and are able to communicate with each other by using message
passing.

4. Adaptivity: Self-* systems are inherently adaptive and capable of doing the
adaptation necessary without manual guidance.

5. Self-management: The system itself decides how to manage objectives using
a multitude of distributed self-* properties such as:

• Self-configuration: Automatic configuration of system elements

• Self-optimization: Automatic monitoring and control of resources in or-
der to provide an optimal functioning regarding the defined require-
ments.

• Self-healing: Automatic recognition and correction of failures

• Self-protection: Automatic protection from arbitrary threats.

6. Heterogeneous goals: Every system element can have its own goal, which is
part of the overall system goal.

7. Flexibility: The goals and objectives are not hard-coded and thus have the
ability to be changed at runtime.

8. Robustness: Self-* system are designed to provide robustness against unex-
pected disturbances, especially those that have not been recognized at run-
time due to emergent phenomena.
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9. Fault-Tolerance: Self-* system should continue performing services after the
occurrence of failures. The types of failures considered in this work are crash
failure, execution failure and reachability failure.

2.3 Related Systems

The self-* system regarded in this work is an OC system having the same charac-
teristics as those introduced in 2.2.3. Thus, our developed approaches can also be
applied to any kind of AC systems, but for the purposes of this thesis it is worth-
while to mention other related systems from the literature.

2.3.1 Control System Theory

An interesting area that deals with rating and regulating of the output of dynamic
systems is the Control System Theory (CST) [Oga10, Bur01], originally comes from
the interdisciplinary field of mathematics and engineering. The focus of the latter
is set on studying the behavior of dynamical systems with inputs, and how their
behavior is modified by control loops. In this sense, a dynamic system DS produces
some kind of output O from a given input I. This output O is continuously rated
and regulated to a predefined reference value R. If there is no difference between
the reference value and the resulted output, then no measured error is produced
and thus the process can terminate. Otherwise, the control loop is used to bring the
current output closer to the reference value in the next iteration. Figure 2.5 gives
an overview of this main concept. In the literature, there exist several categories

-
Controller Dynamic System (DS)

Sensor

System Output (O)

Measured Error 

+

Measured Output

Reference (R)
System Input (I)

Figure 2.5: A simplified representation of a control loop il-
lustrating that the measured error is received
by a controller, which then either attenuates or
amplifies the input signal to the dynamic sys-
tem DS. Diagram is based on [ADH+08].

of control models for CST systems, such as adaptive control, proportional-integral-
derivative and model-predictive control [JAR09], but as it goes beyond the scope of
this work they are not further discussed here. Apart from the mentioned differ-
ences, CST systems also differ from the above introduced self-* systems in four
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important points. First, the system behavior of CST systems is well-known, easy to
understand and deterministic. This means the output can never be unforeseeable
or unknown as soon as the input is known a priori. Second, the overall system
configuration of CST systems is completely done at design time. Third, there is
no network-communication between system elements in which every one can be
responsible for its own single control loop. Finally, the reference value of CST sys-
tems has always to be known a priori, making the use of such systems unpractical
for high complex environments.

2.3.2 Multi-Agent-Systems

The study of Multi-Agent Systems (MAS) [SLB09] focuses on technical systems in
which several entities can interact with each other intelligently. These entities are
called agents. They refer in most applications to autonomous constitutions such as
humans, robots, embedded systems or even a mixture of different types of them.
In general, these agents are used to model and solve problems in which the interac-
tion between them can either be selfish or cooperative. In case of selfish behavior,
the agents would pursue their own interests as in the free market economy exam-
ple [KHS98]. In case of cooperative behavior, however, every agent would share
a common goal — satisfying the overall system requirement — as in the example
of ant colony [Par97]. The specific behavior of these agents depends on the system
environment that is regarded. According to the roadmap given by [JSW98], a MAS
system has the following characteristics:

• Autonomy: Each agent is autonomous or at least semi-autonomous that is
able to perform asynchronous computations without the direct interventions
of humans or others.

• Local view: Due to the system’s complexity, none of agents have a global
view of the entire system. They have to make decisions based on incomplete
information of the environment where they are located.

• Decentralized control: None of agents have a global control over the entire
system.

• Decentralized data: There is no central instance for storing data.

Due to these characteristics, MAS systems have attracted a profound admiration
of researchers, which put forth novel techniques around the globe for investigat-
ing and implementing the deductive reasoning behavior of agents [BIP88, RK86].
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Nonetheless, their popularity has quickly decreased with the years due to the con-
troversial meaning of agents [FG97] as well as other multiple limitations and re-
strictions of the concept [Art94].

2.3.3 Cyber-Physical-Systems

There exists different definitions in the literature regarding Cyber-Physical-Systems
(CPS) [SKB13, GB12, RLSS10]. In [GB12], we see a common definition that a CPS
system consists of multiple entities that interact with each other to control different
aspects of the physical system. In a CPS system, every entity has its own sensors,
computation components, and actuators as well. Sensors are responsible to monitor
the behavior of the external environment. They play a major role in providing input
data for the computation components. The computation components perform then
operations and generate output data, that is given to the actuators. The actuators
make use of this data as basis to control some specific tasks in environment. The
research field of CPS systems connect two different research areas, the research area
of embedded real-time systems with the research area of digital networks [Lee08].
This is a nice property, that we can learn from, to make future self-* system real-
time capable. However, one of the main disadvantages is its limitation to handle
flexible goals as is known in self-* systems.

2.4 Role of Trust in this Thesis

Current self-* systems are based on the benevolence assumption that all entities
in the system are trustworthy and interested to further the system goal. In open
and heterogeneous systems, this benevolence assumption is unrealistic, since un-
certainties about the entities’ behavior have to be regarded. One solution to over-
come this issue is trust [MD05, Mar94b]. Using appropriate trust techniques, enti-
ties in the system can have an information about which entities to cooperate with.
This is fundamental to enhance the robustness of open distributed self-* systems
which depend on a cooperation of autonomous entities [RAS+16]. A look at the
literature reveals different ways to model trust in computer science, using either
centralized or decentralized trust metrics. An example for a prominent centralized
metric include the eBay Reputation Metric [RZSL06, GBS08], where all system enti-
ties store their experiences in a centralized repository and also request trust values
from that repository. However, a decentralized trust approach stores and calcu-
lates the trust values strictly locally with no global control. The focus of attention
in this thesis lies on decentralized approaches, since they are more suitable to be
applied in distributed environments. Existing models based on such full decen-

21



2 Basics and Beyond

tralized approaches can be found in [BFIK99, Jøs96, ARH97, Mar94a, MS12, TB06].
Even though there is some discrepancies between their construction, most of the
approaches share one common model for building trust [MP09]. This is composed
of five consecutive stage, as shown in Figure 2.6. In the first stage, the interactions

Stage 1

Collect Information

Stage 2

Aggregate Information

Stage 3

Select Trustworthy Entitiy 

& Interact

Stage 4

Update of Trust

Figure 2.6: The generalized stages of building
trust. Diagram is based on [MP09].

between system entities are observed, collected and stored in form of experiences.
In the second stage, experiences are filtered and aggregated — depending on the
specific context and the facet regarded in the system — to form a score that is given
for every entity in the network. Then, the trustworthy entities are selected to get
more responsibility for performing important tasks in the system than the untrust-
worthy ones. And finally according to the satisfaction obtained in the last step, a
punishing or rewarding is carried out, adapting consequently the trust value de-
posited in the selected entity.

Research Position: This thesis is concerned with the use of trust to improve the
robustness of distributed self-* systems. It is part of the research unit OC-Trust 4.
One of the key research questions that we have recognized within the scope of
this project and of course within the community as well, is how to incorporate
trust best possible in distributed self-* systems, both at design time and at runtime.
This question was not easy to answer due to the fact that in such environments
the structure of the system can highly be complex and volatile. Analyzing and
studying different models of trust in [SKL+10] enable us to realize that there are
some properties that must be taken into consideration when we speak about trust,
because they correspond to the realities of many open distributed self-* systems. In
the following we give an overview of these different properties:

• Trust is a subjective property: There is a consensus that trust is a highly
subjective property. Every entity can have its own experiences with different
entities in the system and make a personal trust value based on these unique

4OC-Trust: is an acronym of a research unit sponsored by the DFG that deals with the trustworthi-
ness of Organic Computing systems.
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experiences. Thus, the experience of two entities with a third same entity can
vary enormously.

• Trust is a multi-faceted property: We see that there are several facets of
trust that all contribute to the prediction of the entities’behavior. According
to [SKL+10], these facets can be formulated as follows:

– Functional correctness: The quality of a system to adhere to its func-
tional specification under the condition that no unexpected disturbances
occur in the system’s environment.

– Safety: The quality of a system to be free of the possibility to enter a state
or to create an output that may impose harm to its users, the system itself
or parts of it, or to its environment.

– Security: The absence of possibilities to defect the system in ways that
disclose private information, change or delete data without authoriza-
tion, or to unlawfully assume the authority to act on behalf of others in
the system.

– Reliability/Availability: The quality of a system to remain available and
reliable even under disturbances or partial failure for a specified period
of time as measured quantitatively by means of guaranteed availabil-
ity, mean-time between failures, or stochastically defined performance
guarantees.

– Credibility: The belief in the ability and willingness of a cooperation
partner to participate in an interaction in a desirable manner. Also, the
ability of a system to communicate with a user consistently and trans-
parently.

– Usability: The quality of a system to provide an interface to the user that
can be used efficiently, effectively and satisfactorily that in particular in-
corporates consideration of user control, transparency and privacy.

• Trust is a dynamic property: We also see that trust can change over time
especially within dynamic environments. Therefore, we distinguish between
initial trust and interaction-based trust. The Initial trust is the trust value an
entity gets for the first time when it interacts with another entity. This value
can also be determined offline and will gradually be replaced by interaction-
based trust if more interactions take place between the entities.

• Trust is a context-sensitive property: Entities have to adapt their trust in
different contextual situations. For example, an entity e1 may trust another

23



2 Basics and Beyond

entity e2 about the latter’s behavior to solve a Problem p1. However, this
does not mean if e1 wants to solve another Problem p2 , it will trust e2 to do
it. This depends strongly on the context of the situation.

Due to the careful choice of the aforementioned properties and the system’s com-
plexity regarded in this thesis, we have chosen to model trust by means of different
aspects, such as direct trust, reputation, confidence, and aggregation [KJMU13]. We
refer the reader to [Kie14] for understanding the origin of these aspects, but techni-
cal details of them can also be found in Chapter 3. The direct trust serves as basis
to assess the direct behavior of entities in order to provide consistent information
when assigning or relocating services in changing environments. The reputation,
confidence and aggregation aspects are designed to manage and query trust infor-
mation between individual entities in the system.

2.5 Conclusions and Future Work

In this chapter, a background knowledge is provided that helps to better under-
stand the main parts of this thesis. We introduced in Section 2.2 the current ar-
chitectures of autonomous systems along with Organic and Autonomic Comput-
ing. Then, we pointed out their conceptual challenges, similarities, and differences
more precisely. Based on that information, a set of characteristics is identified in
Section 2.2.3 to generalize their most important properties. In Section 2.3, a general
survey is given on other existing research areas related to self-* systems. The main
focus thereby is set on Control System Theory, Multi-Agent-Systems, and Cyber-
Physical-Systems, since they use very similar techniques to adapt to their environ-
ments as well. After analyzing them more in details, it becomes evident that none
of the related approaches can substitute entirely the class of self-* systems. For in-
stance, controllers in CST systems are not able to communicate in parallel way over
MPI as it is possible in OC/AC and thus their application is limited only to some
domains. Finally, we introduced in Section 2.4 our research position and explained
how an ideal robust system could be achieved in open environments by combining
both worlds of self-* system and trust.
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An Overview of Trust Practices and Self-* Algorithms

Abstract. Open self-* systems of a very large scale – interconnecting
several thousand of autonomous and heterogeneous entities – become
increasingly complex in their organisational structures. This is due to
the fact that such systems are typically restricted to a local view in the
sense that they have no global instance, which can be responsible for
controlling or managing the whole system. Therefore, new ways have
to be found to develop and manage them. An essential aspect that has
recently gained much attention in this kind of systems is the social con-
cept of trust. Using appropriate trust mechanisms, entities in the system
can have a clue about which entities to cooperate with. This is indis-
pensable to improve the robustness of self-* systems, which depends on
a cooperation of autonomous entities. The contributions of this chapter
are trustworthy concepts and generic self-* algorithms with the ability
to self-configure, self-optimize, and self-heal that work in a distributed
manner and with no central control to ensure robustness. Some experi-
mental results of our algorithms are reported to show the improvement
that can be obtained compared with the baseline measurements.

3.1 Introduction

The proliferation of self-* systems capable of acting autonomously to achieve the
overall system goal is already happening. Examples of such systems are Auto-
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nomic and Organic Computing systems [Sch05, Hor01]. These are typically based
on decentralized autonomous cooperation of system’s entities and make use of
a number of desirable self-* properties, such as the ability to self-configure, self-
optimize, self-heal and self-protect in order to be manageable. The quality of their
autonomy mostly depends on their ability to adapt their behavior in response to
changes in their environment. At runtime, they should be able to trustworthy deal
with situations not anticipated at design-time. One way to tackle trustworthiness
issues is to enable humans to supervise the system and perform all trustworthy
operations. However, this solution solves the problem only partially because the
transfer of control to humans would also drastically decrease the system’s auton-
omy, especially in the context of reactive environments. Therefore, new ways have
to be found to ensure the trustworthiness of modern self-* systems by regarding
different facets of trustworthiness. Such facets may concern, for example, relia-
bility, credibility, availability, functional correctness and safety [SKL+10]. In this
chapter, we describe our efforts to develop a generic architecture that supports the
trustworthy design of modern self-* systems. The baseline self-* system examined
in this work is OCµ [RSK+11], an Organic Computing middleware implemented
in Java and based on a peer-to-peer network. All of its self-* properties were de-
veloped without trust involvement. We propose to incorporate a trustworthy self-*
layer into the middleware to allow network entities to decide how far to cooperate
with other entities. This information is used to maintain a trustworthy and robust
configuration of the self-* properties in the face of untrustworthy entities. In gen-
eral, this chapter offers as contribution the following aspects:

(i) some related works to relevant self-* middlewares originated from the field
of Organic and Autonomic Computing systems (see Section 3.2),

(ii) a presentation of the OCµ middleware used in this thesis as baseline for our
main results, as well as a description of the benevolence limitation that hin-
ders the baseline system to perform well in hostile environments (see Sec-
tion 3.3),

(iii) the novel architectural design of the OCµ middleware — transformed to TEM
— to incorporate the trust-aware self-* properties (see Section3.4), and

(iv) a set of application case studies implemented based on TEM (see Section 3.5).

3.2 Related Work

This section presents relevant service-oriented self-* middlewares originated from
the field of Organic and Autonomic Computing.
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Lund et al. [LBB15] introduce an organic middleware called Artificial Hormone
System (AHS) – providing self-* properties – to autonomously assign tasks to het-
erogeneous processing elements. The middleware makes use of different artificial
hormones to find the best suitable processing element (PE) taking into account con-
straints such as the current PE workload and the task relationships. The following
type of hormones exist: eager value, suppressor and accelerators. The eager hormone
aims to determine the suitability of a PE to execute a specific task. The other hor-
mones are responsible for reducing or increasing the eager value and thus by ap-
plying suppressor and accelerator respectively. Through the use of hormones, the
AHS middleware implements the self-* properties: self-configuration in terms of
finding an initial allocation of tasks by exchanging hormones, self-optimization by
task migration when hormone levels change, and self-healing by autonomous task
reassignment due to task or resource failure. Compared to our middleware, the
AHS assumes the trustworthiness of PEs to perform well, i.e., all PEs are consid-
ered to be trustworthy to further the system goal.

CARISMA [NB09a] is a service-oriented middleware for hard real-time environ-
ments. It realizes self-configuration and self-optimization with the focus on real-
time system capabilities. The services have real-time constraints, meaning that
their correctness does not only depend on their computational results, but also
on the time at which the results are delivered. For allocating services, CARISMA
makes use of an auction mechanism based on the Contract Net Protocol [Smi80]
to decide whether a service can be contracted and which quality can be achieved.
Afterwards, the whole system is optimized by re-contracting the services to other
nodes with better resource availability. In contrast to CARISMA, our middleware
focuses on the general applicability of system’s service that are not restricted by
real-time constraints. Additionally, CARISMA does not provide a differentiation
between the importance levels of services. This differentiation is necessary to al-
locate the most important services only on trustworthy nodes and thus to increase
the robustness of the system.

FraSCAti [SMR+12] is a service-oriented middleware supporting the Autonomic
Computing principles. It exhibits self-* properties to add new services at runtime or
to remove existing ones. The self-* properties are obtained by applying the MAPE
(monitoring, analysis, planning, and execution) control loop of Autonomic Com-
puting. The monitoring phase is responsible for collecting, aggregating and fil-
tering the information collected from the services and the middleware itself. The
gathered information is examined in the analysis phase. If the examination reveals
a need to adapt the placement of services, a new plan is created which is then re-
alized in the execution phase. In contrast to our middleware which supports trust
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in the development of the self-* properties, FraSCAti expects the benevolence of
device nodes limiting its usefulness in open environments.

An organic middleware for building self-organizing smart camera systems is pre-
sented in [HWHMS08, JSS+13] and has been extended in [TJHH13] to provide sup-
port for cloud services. The middleware consists of a number of cameras which
are able to collaborate together to detect intruders in non-public areas. At runtime,
each camera can adapt its position view while keeping other cameras’positions.
The self-healing property is used to maintain the whole tracking system stable even
under failure of a single camera or a loss of connectivity. The overall result after-
wards is achieved by merging the sub-results of each camera. The general assump-
tion here is that cameras always voluntarily cooperate to realize the common goal.
This assumption hinders the middleware to be used in hostile environments, in
contrast to our work. Parts of the content of this chapter have been published by
the author in the following book chapter and technical report:

• [MU16a]: Nizar Msadek and Theo Ungerer. Trust as Important Factor for Build-
ing Robust Self-x Systems. Book chapter in Trustworthy Open Self-Organising
Systems, Autonomic Systems series, Vol. 7, 2016, Springer International Pub-
lishing, pp 153-183, http://www.springer.com/de/book/9783319291994
ISBN: 978-3-319-29199-4

• [ASM+13]: Gerrit Anders, Florian Siefert, Nizar Msadek, Rolf Kiefhaber,
Oliver Kosak, Wolfgang Reif, and Theo Ungerer. TEMAS — A Trust-Enabling
Multi-Agent System for Open Environments enabling multi-agent system for
open environments. Technical report, University Augsburg, 2013.

3.3 The Baseline OCµ Architecture

The baseline self-* system considered in this work is OCµ [RSK+11], a middle-
ware for Organic Computing systems. The OCµ middleware was developed in
the German Research Foundation (DFG) priority program ”Organic Computing” at
the University of Augsburg and is comparable to other state of the art distributed,
service-oriented middleware architectures. But it has the advantage that it imple-
ments several self-* properties and thus has the ability to be slightly extended to
provide the desired trustworthy self-* layer. The OCµ middleware consists of a
collection of heterogeneous devices – called nodes for short – with diverse capabil-
ities of computing power, memory space and energy supply. These devices interact
with each other using message passing. An overview of a single OCµ node is illus-
trated in Figure 3.1. It is composed of five main parts: the transport connector, the
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message dispatcher, the service proxy, the service interface, and the services which
are explained in the following.

Figure 3.1: Structure of the baseline OCµ node depicting
its most relevant parts: the transport connector,
the message dispatcher, the service proxy, the
service interface and the services.

• Transport Connector: The communication system used in the middleware
is modeled similar to [DL88]. Each OCµ node p has a buffered transport
connector enabling it to connect fast and reliably with other OCµ nodes. In
the baseline implementation, the two following communication primitives
are used:

– Receive: removes existing messages from p’s buffer and delivers the
messages to the message dispatcher of p.

– Send(m, q): Sends a message m over p’s transport connector and places
it in the buffer of q.

The protocol used for the current implementation of the transport connector
is JXTA1. This can be replaced or extended with any other communication

1JXTA: Open source peer-to-peer protocol specification begun by Sun Microsystems in 2001 – [Ac-
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protocol, since it is transparent to the rest of the middleware.

• Message Dispatcher: The message dispatcher handles the message delivery
between the services in the middleware. It offers the services the function-
ality to send messages and register themselves as listener for specified types
of messages. With this functionality it is also possible for a service to regis-
ter itself for different types of messages. In such a case, the service will be
informed whenever a message with one of the registered types is received.

• Service Proxy: A service proxy is used to forward messages for a service that
was recently moved to another node. During the service transfer, the service
proxy stores the incoming messages, it then forwards them as soon as the
service becomes available at the new position node. The life span of a service
proxy is predefined at runtime by its corresponding service, such that it dies
after that time.

• Service Interface: The service interface is the connector between the middle-
ware and a service. Each service has to implement this logical interface to
bind itself to the middleware. The interface provides all required methods to
send and receive messages via the message dispatcher to the services.

• Services: The considered middleware is based on the assumption that appli-
cations are composed of services, which are distributed to the nodes of the
network. These services are implemented without priority consideration in
OCµ. Later in TEM, an extension has been provided for categorizing services.
We distinguish between two kinds of services, namely important services and
unimportant services. Important services are those which are necessary for
the functionality of the entire system. However, unimportant services are
those which only have a low negative effect on the entire system if they fail.

A crucial part of the OCµ middleware is to investigate decentralized solutions to
self-configuration, self-optimization and self-healing [SRK+11]. These self-* prop-
erties were developed independently without trust guidance. In the following, a
general description of their functional parts is given:

• Self-configuration [TKU06]: The regarded applications produce a set of ser-
vices that are independent of each other. These services are initially dis-
tributed to available nodes in the network through the self-configuration pro-
cess. If, for example, a new node joins the system, it will configure itself au-

cessed: December 16, 2015] – http://jxta.kenai.com.
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tonomously in the middleware such that the overall resource utilization is as
good as possible.

• Self-optimization [TPSU07]: The self-optimization process enables the sys-
tem to autonomously reach an optimized state. This optimization might con-
cern the runtime allocation of services on nodes to ensure a uniform distribu-
tion of load.

• Self-healing [Sat08]: The self-healing aims to ensure a valid state of the sys-
tem even in the presence of failure. If, for instance, a node fails, the system
must be able to detect its failure using the runtime monitoring approach pre-
sented in [SPTU08] and then to restart all of its services on other available
nodes.

The baseline middleware introduced so far does not consider the trust behavior of
the system during runtime. It is based on the benevolence assumption that all par-
ticipating nodes want to help each other whenever possible to further the system
goal. Because of this assumption, nodes were considered to be always trustwor-
thy and the self-* properties were developed without regarding the node’s trust-
worthiness. However, in open and heterogeneous systems where nodes can enter
and leave the system at any point in time, this benevolence assumption has to be
dropped, since nodes might behave untrustworthy and try to exploit the system.
This introduces a level of uncertainty in the middleware that has been largely ne-
glected so far.

3.4 The Trust-Enabling Middleware TEM

The integration of trust to deal with uncertainty gives OCµ the ability to better
adapt to changes in the environment. The approaches and techniques proposed in
this section are technological and based on the notion of trust to enable the creation
of more robust self-* properties.

3.4.1 General Overview

The extension of the OCµ proposed in this section aims to incorporate trust into
the basic self-* properties. For this, the distributed Observer/Controller architec-
ture suggested by Richter et al. in [RMB+06] is used and refined by providing trust
guidance. Figure 3.2 gives an overview of the proposed TEM concept. The baseline
OCµ node is enhanced by a trustworthy self-* layer providing a feedback control
loop to observe and control the behavior of OCµ. It includes an observer compo-
nent, the functional element responsible for monitoring the trust behavior of the
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Figure 3.2: The generic Observer/Controller architecture used for the es-
tablishment of the trustworthy self-* layer. The observer incor-
porates trust models and the controller is composed of trust-
aware self-* properties. Communication between observer and
controller is based on the feedback control loop that OCµ nodes
provide.

baseline system. This is performed by using trust metrics enabling the generation
of data about the trustworthiness of the system’s entities. The collected data is used
by the controller as indicator to make decisions that will influence the future course
of the self-* properties. The following section describes the functional parts of the
observer and controller components.

3.4.2 The Trust Observer

The main objective of the observer is to monitor the current behavior of nodes in
the system and to calculate trust data from this information. This trust data is used
by the controller to guide the overall system goal in a trustworthy way by apply-
ing the self-* properties. The observation process mainly consists of the following
three steps: monitoring, transformation, and trust interpretation, as shown in Fig-
ure 3.3. In the monitoring step, a distributed strategy is needed to allow nodes to
autonomously determine who is monitoring whom. In order to do this and to be
at least scalable, we make use in this part of work of our former developed self-
monitoring approach [SU08] as basis for enhancing nodes with the ability to collect
raw data in the system. These raw data represent experiences that nodes have
made with their interaction partners in a specific context and per trust facet. They
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Figure 3.3: Illustration showing the different levels of abstraction of the ob-
servation process starting from monitoring, to transformation,
to the final interpretation of the trust data. Please note that only
the most interesting parts of the process are presented, due to
space limitations.
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contain all relevant information about the interaction partner such as message de-
lays and loss as well as its ability to perform services at the right time. The raw
data are stored in a distributed log file for every loop of observation. Then, they are
transformed into a valid format that makes them easily accessible to the interpreter.
Finally, the interpreter uses these transformed data to estimate the trustworthiness
of a node. The metrics used by the interpreter to calculate trust data are named trust
metrics [Kie14]. These metrics have been developed during the two first phases of
the OC-Trust project and integrated in TEM. The metrics consist of the following
presented aspects.

Direct Trust

The algorithm used by the observer to calculate the direct trust of a node is called
the Delayed-Ack [KSS+10]. The Delayed-Ack algorithm covers the reliability aspect
of trust as a facet and measures trust by observing the message flow between nodes.
More precisely, it requires that each sent message is being acknowledged. Thus the
lost of each message is determined, resulting in a negative experience (represented
by 0) for lost messages and a positive experience (represented by 1) for acknowl-
edged messages. All these experiences are stored for each participating node. The
output is a direct trust value tdt(ni, nj) within [0, 1] calculated by taking the mean
or weighted mean of past experiences. tdt(ni, nj) = 0 means ni does not directly
trust nj at all while a value of 1 stands for a whole trust.

Confidence

In addition, a metric is used to evaluate the confidence of the own direct trust value
of a node. This is called the confidence metric [KAS+12] and aims at describing how
reliable the direct trust value is. The higher the confidence is, the more certain one
can be that the trust value matches the actual behavior of an interaction partner.
The confidence value is split in three parts:

• Number Confidence: The more experiences exist, the higher is the confi-
dence, up to a threshold τn. Figure 3.4a shows details of this function. If the
number of experiences |X| is greater or equal to τn then the number confidence
cn(|X|) is 1.

• Age Confidence: Every experience x is rated regarding its actuality ax. The
resulting rating r(ax) describes how recent or outdated the experience is (see
Figure3.4b). The age confidence is higher if the experiences were made more
recently. Two thresholds, τo and τr, are defined for this rating function: An
experience older than τo counts as outdated and its age rating is set to 0. If an
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experience is newer than the threshold τr, then it counts as a recent experience
and its age rating is therefore set to 1. From τr to τo, the age rating is gradually
decreasing. The total age confidence ca(X) is the mean of all ratings (see
Equation 3.1).

ca(X) =
∑x∈X r(ax)

|X| (3.1)

• Variance Confidence: It evaluates the variance of the experience values vX.
The more the values fluctuate, the lower is the variance confidence cv(vX). If
the experiences have 0 variance, i.e., the experiences are rated exactly the
same, the variance confidence is 1. It decreases with increasing variance (see
Figure 3.4c).

Confidence Value: The total confidence c(X) is then calculated by a weighted mean
of the three parts, as seen in Equation 3.2. wn denotes the weight for the number
confidence, wa the weight for the age confidence and wv the weight for the variance
confidence. We assume wn, wa, wv ≥ 0 and wn + wa + wv > 0.

c(X) =
wn · cn(|X|) + wa · ca(X) + wv · cv(vX)

wn + wa + wv
(3.2)

Reputation

As reputation metric, the neighbor-trust metric introduced in [KHS+11] is used.
The metric is based upon a weighted mean value of the direct trust values of all
other nodes that had direct interactions with the node, the so-called neighbors. The
weights represent the truthfulness of neighbors regarding their reputation data. A
high weight indicates a neighbor whose reputation data correlates with direct ex-
periences of oneself, whereas a low weight stands for a neighbor whose reputation
data differs a lot from the own experiences. To achieve this, two thresholds are de-
fined for the reputation metric: τ defines the positive area, where reputation and
direct trust are similar enough to increase the weight, the larger τ∗(τ∗ ≥ τ) denotes
the negative area, where reputation and direct trust are too far apart which will re-
duce the weight. If the difference between reputation and direct weight is greater
than τ∗, then the weight is decreased by a maximum of θ. Similarly, the weight is
increased by a maximum of θ. Therefore, upcoming reputation information from
a neighbor will be rated up or down depending on the information the neighbor
gave so far. A node will then only listen to other neighbors whose experiences are
similar to its own. Since the weight gets adjusted per interaction, the reputation
has to start with an initial value, which is defined as rs. Figure 3.5 depicts the func-
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(a) Illustration of the number confidence
function cn(X) assuming that a cer-
tain number of experiences τn is suffi-
cient to derive an accurate trust value.
The more experiences with an inter-
action partner were made, the more
confidence in the trust value.
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(c) The variance function cv(vX) is used to indicate the
behavioral changes of a node. A confidence of 1 equals
0 variance. Vice versa, a confidence of 0 equals 1 vari-
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Figure 3.4: The three parts of the confidence value.










  

Figure 3.5: A graphic representation of the neighbor-trust metric.
tac denotes the direct trust a node a has about another
node c and tbc the reputation information of node b
about node c. In this example, the weight a has about b
would be reduced, because both values differ by more
than τ.
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tion to calculate the weight adjustment after each interaction. tac denotes the direct
trust a node a has about another node c and tbc the reputation information of node
b about node c. In the figure the weight a has about b would be reduced, because
both values differ by more than τ.

Aggregation

When all the aforementioned values are obtained, a total trust value ttotal based
on the direct trust tdt and reputation tr values can be calculated using confidence
wc(c(X)) to weigh the both parts against each other. This ttotal value is calculated
with Equation 3.3.

ttotal = wc(c(X)) · tdt + (1− wc(c(X))) · tr (3.3)

The higher the confidence, the higher is wc(c(X)) and therefore the weight of the
direct trust data in total. The formula to calculate wc(c(X)) is based on the func-
tion depicted in Figure 3.6. This function is enclosed in two thresholds τcl and τch.
Outside these thresholds, the function is constant with extreme values; in between
them monotonically increasing with near linear slope in the middle at τch−τcl

2 . Near
the thresholds the slope is low. This function is based on the consideration that a
small step over a threshold should only result in a small change in value. The do-
main is restricted to [0, 1], because valid confidence values must be in this interval.
The result of the function, i.e., the co-domain, is also [0, 1] representing the weight
wc(c(X)) for the aggregation function by means of Equation3.4.

c(X)

wc(c(X))

1

τcl τch 1

Figure 3.6: A graphic representation of the function
wc(c(X)). The higher the confidence, the
higher wc(c(X)) and therefore the higher the
influence direct trust has over reputation.
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wc(c(X)) =



0 if c(X) < τcl

4
(

c(X)−τcl
τch−τcl

)3
if τcl ≤ c(X) ≤ τcl +

1
2 (τch − τcl)

4
(

c(X)−τch
τch−τcl

)3
+ 1 if τcl +

1
2 (τch − τcl) < c(X) ≤ τch

1 if τch < c(X)

(3.4)

Figure 3.7 summarizes the main hypothesized trust metrics used for the calcula-
tion of total trust. Experiments in [KJMU13] attest that integrating such metrics into
our middleware results in a better estimation of the real hidden trust value of an
interaction node with increasing number of its interactions. For more information
about the implementation details, please refer to [ASM+13].

Total Trust

Direct Trust Reputation

Neighbour-TrustDelayed-Ack

Confidence

Figure 3.7: Illustration showing how direct trust, reputa-
tion and confidence are aggregated to form the
total trust.

3.4.3 The Trust-Enhanced Self-* Controller

The aim of the controller is to guide and control the self-organization process be-
tween nodes. To make trustworthy control decisions, it uses the trust data received
from the observer and affects the global system by influencing the execution rules
of self-* properties. The current implementation suffers from the drawback that
the self-* properties are not designed to incorporate trust decisions in their actual
executions. They assume the benevolence assumption of nodes at all time and
thus cannot be applied for open systems. Details on this assumption were given
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in Section3.3. In this work, we abandon this benevolence assumption and instead
provide a new trustworthy design of the baseline self-* properties allowing them
to operate robustly even in open and hostile environments.

The Trust-Aware Self-Configuration

The capability of self-configuration in open distributed environments comprises
the abilities (1) to perform an initial and trust-based distribution of services on
nodes, (2) to cope with the problem of scalability, and (3) to allow a reconfiguration
of the system during runtime due to self-optimization or self-healing demands.

• Regarding (1): There are many sophisticated approaches to deal with the ini-
tial distribution of services on nodes, either to achieve good load balancing
or to minimize energy consumption. An approach that has become a stan-
dard by FIPA2 is the Contract Net Protocol [Smi80]. It consists of finding
an agent that is the most suitable to provide a service. This approach is of-
ten adapted and applied in many application domains, for example, manu-
facturing systems [HC09], resource allocation in grids and sensor web envi-
ronments [KB09, GG08], as well as in hospitals [DGB03], electronic market-
places [DKRA00] or power distribution network restoration [KHS+09]. It is
a generic protocol [Boz08] and thus provides an excellent basis for develop-
ing self-configuring systems. However, it is limited in some issues and has
some shortcomings if the setting for service assignment is more complicated.
For example trust limitation in the service assignment – some of nodes are
more trustworthy to do important services while others are less trustworthy
and should focus only on the processing of unimportant services. Helping to
develop these trust enhancements was the aim of our self-configuration re-
search. The outcome of this investigation is an approach presented in Chap-
ter 4.3 which is based on the Contract Net Protocol. Our approach aims on
the one hand to equally distribute the load of services on nodes as in a typ-
ical load balancing scenario and on the other hand to assign services with
different importance levels to nodes so that the more important services are
assigned to more trustworthy nodes. Similar to [Smi80], nodes in our sys-
tem can act as a manager or contractor. A manager is responsible for assign-
ing services. A contractor is responsible for the actual execution of the ser-
vice. Figure 3.8 depicts how managers and contractors can participate in the
distribution phase of the self-configuration approach. When the assignment

2FIPA: Foundation for Intelligent Physical Agents – [Accessed: October 29, 2015] – http://www.
fipa.org/specs/fipa00029/
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process starts, managers announce the list of services to the contractors. Con-
tractors evaluate these services and submit bids on those for which they are
suited. Then, the managers evaluate the bids. In the basic Contact Net Proto-
col, the parameter characterizing this evaluation is the workload. Generally,
the lower the workload of a node is, the more it is considered to be appro-
priate to receive the service. Our enhancement improves the awarding part
by including trust, to enable that more trustworthy contractors always have
a higher chance to receive services than less trustworthy contractors. Finally,
the result of the service assignment is communicated to the contractors that
submitted a bid. Evaluation results within our middleware (see Chapter 4.3)
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Figure 3.8: An overview of the self-configuration process showing the in-
teractions between the manager and its contractors. Please note
that each contractor in the network can be, at the same time and
for different services, a manager of other contractors.
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show that the proposed self-configuration algorithm indeed provides better
performance than the baseline Contract Net Protocol. The trust variation that
is used to improve the availability of important services performs much bet-
ter in all cases than the baseline algorithm, which underlines the effectiveness
of our approach.

• Regarding (2): In open environments, the issue of scalability is of particular
importance for any self-configuring system. The self-configuration presented
until now does not cover this issue. It was designed only for the sequential
assignment of services on nodes and thus provides solutions that are not re-
alistic to be applied in environments with many managers. To get a better
comprehension of that problem, please consider the following example: As-
suming two managers m1, m2 and one contractor c1. m1 is responsible for
assigning service s1 and m2 is responsible for assigning service s2. Then, con-
sider the following sequence of operations that are listed in Table 3.1.

Manager m1 Contractor c Manager m2

Sends an announcement to
c for a service s1

Sends an announcement to
c for a service s2

evaluates the given ser-
vices with respect to its
workload and sends a bid
to m1 and m2

Sends an award message
to c informing it to be the
most appropriate

Chooses c to award him the
contract for s2, while the
latter submitted bid has
recently become obsolete!

Table 3.1: Simplified example run of the self-configuration
process that can exhibit a race condition be-
tween managers m1 and m2.

Contractor c receives both services s1 and s2, as expected. However, if both
managers m1 and m2 perform their negotiations in parallel and without coor-
dination, the outcome of the assignment could be wrong. Despite not having
enough resources, contractor c uses the same bid value submitted as before
to receive the service s2. Because of this race condition, we need to incor-
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porate coordination strategies into our self-configuration algorithm in order
to further improve its scalability performance. Investigating and developing
such strategies was the aim of our work in Chapter 4.5 and the outcome of
this research is a simultaneous self-configuration algorithm which gives man-
agers in our system the possibility to perform several distribution phases at
the same time. To quantify our approach, evaluations have been conducted.
The evaluation results presented in Chapter4.5 show that the simultaneous
self-configuration attests an excellent time performance to assign services on
nodes than the sequential approach. At least 50% of the self-configuration
time improvement was achieved and thus only for the context of two man-
agers. However, the drawback of our approach is that it produces message
overhead to coordinate the managers. But, this overhead is not excessive, in
most cases lower than 1% compared to the sequential approach, and is thus
considered to be acceptable in use by our middleware.

• Regarding (3): Reconfiguration is a main characteristic of modern distributed
self-configuring systems. Managers have to assess at runtime whether con-
tractors are operating correctly or not. Fault-tolerant techniques applied to
our self-configuration algorithm are given in Chapter 4.4. If one of the con-
tractors failed, managers detect the failed node and trigger a reconfiguration
in the system to re-establish the balance between nodes again. The reconfigu-
ration is applied even well in situations in which nodes join the system. This
can occur at any time during the self-optimization process. Managers iden-
tify the entering of nodes and reconfigure themselves to regain an acceptable
assignment state in the system.

The Trust-Aware Self-Optimization

Self-* systems should be able to dynamically adapt their behavior in response to
changes in their environment. At runtime, they should have the ability to deal with
situations not anticipated at design time, since not every situation can be consid-
ered when designing the system. After the initial service distribution that is given
using the self-configuration process, nodes must be able to constantly observe their
current resource consumptions as well as the trustworthiness of nodes they are
cooperating with, identify unacceptable situations and reconfigure themselves to
regain an acceptable state. Therefore, in Chapter 5 a self-optimization algorithm
is presented to optimize the allocation of services on nodes during runtime. The
algorithm does not only consider pure load-balancing but also takes trust into ac-
count to improve the assignment of important services to trustworthy nodes. More
precisely, it uses different optimization strategies to determine whether a service
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should be transferred to another node or not. Figure 3.9 illustrates how the self-

m

nj ni

Figure 3.9: Cooperative self-optimization in the TEM middleware. The op-
timization process is initiated by an application message going
from node nj to another node ni. This message contains – as
piggy-back – all relevant information allowing both nodes nj

and ni to optimize their current states in the system at runtime.

optimization property works in our system, using a simple example of just two
nodes. Suppose that node nj sends an application message to another node ni at a
certain point during runtime. It appends onto the outgoing message (a) its recently
observed trust behavior of node ni, (b) its current workload and (c) some addi-
tional information (i.e., importance level and consumption) about services which
are running on it. Based on this information, node ni decides which of the follow-
ing optimization strategies should be performed (given in Table 3.2):

Workload Similar Trust Similar Optimization strategy

True False Trust Optimization

False True Load Optimization

False False Trust and Load

Optimization

True True No Optimization

Table 3.2: Type of strategies the nodes can use to optimize
their current states in the system.

• Trust Optimization: The trust optimization strategy is used in situations in
which the workload of both nodes is similar but their trust values differ, as
illustrated in Figure 3.10. Important services are relocated to the more trust-
worthy node and unimportant services to the less trustworthy node. The
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workload balance, however, should still be maintained.

Current workload of i Current workload of j≈ 

Important 
Services Important 

Services

Unimportant 
Services

Unimportant 
Services

 i is more trustworthy than j

Node ni Node nj

Figure 3.10: The trust strategy is depicted in a simplified form to
optimize the state of nodes by relocating the assign-
ment of their services at runtime. Please note that
important services are represented by the green stars,
whereas the unimportant services are depicted with
red starlets.

• Load Optimization: The second strategy is the load optimization strategy,
presented in Figure 3.11. This strategy aims at finding a pure load balancing
between nodes. Since ni and nj are equally trustworthy with respect to a cer-
tain threshold, there is no need to consider trust by the relocation of services.

• Trust and Load Optimization: The trust and load optimization strategy al-
lows for providing workload balancing with additional consideration of the
services’ priority to avoid hosting important services on untrustworthy nodes
(see Figure 3.12).

• No Optimization: Finally, the No Optimization strategy is used to ensure ter-
mination when no further optimization can take place, e.g., if both nodes
ni and nj are well optimized in terms of trust and workload, as shown in
Figure 3.13. However, this termination is determined only locally. A global
termination is reached if the system as a whole becomes optimized.

Experiments have been conducted based on simulations in Chapter 5.7 to evaluate
the effectiveness of the introduced trust-aware self-optimization algorithm. The
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Figure 3.11: The illustration shows how pure load-balancing can
be achieved between nodes. Important services are
represented with green stars, whereas the unimpor-
tant services are depicted with red starlets.

Current workload of i Current workload of j> 

Important 
Services Important 

Services

Unimportant 
Services

Unimportant 
Services

 i is more trustworthy than j

Node ni Node nj

Figure 3.12: A simplified overview of the trust and load optimiza-
tion strategy. Please note that important services are
represented with the green stars, whereas the unim-
portant services are depicted with red starlets.
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Figure 3.13: Illustration of the non-optimisation strategy used to
determine the local termination of the algorithm.
Please note that important services are represented
with the green stars, whereas the unimportant ser-
vices are depicted with red starlets.

evaluation results showed that the proposed approach can improve the availabil-
ity of important services during runtime. However, it makes a small deterioration
(i.e., by about 7%) regarding load-balancing. This is due the fact that solutions of
this kind represent a trade-off problem in which it is impossible to make any trust
distribution better without making at least the load balancing distribution worse.
Moreover, the evaluation results showed that the trust-aware self-optimization ap-
proach is only for use in situations in which no conflicting trust values between
nodes occur. Such conflicts are caused, for example, by collecting trust values inde-
pendently from the neighbors of a node that can contradict each other. Figure 3.14
visualizes this problem in a short example of three nodes.

Let us consider a network with the three nodes n1, n2 and n3. Let us now suppose
that a shielding wall is set between the two nodes, i.e., n2 and n3, preventing com-
munication and thus producing poor trust values between them, while the third
node n1 is not affected. In this case, n2 considers node n3 as untrustworthy and
thus not being able to properly host services. Hence, it wants to relocate impor-
tant services running on n3 to another trustworthy node, while contractor n1 sees
no need for action. Such situations cause consistency conflicts during runtime be-
tween nodes and must be resolved. Therefore, in Chapter 6 a conflict resolution
mechanism is proposed as an extension to the self-optimization algorithm to deal
with the trust conflict issue. In the testbed, an average conflict reduction of 97.5%,
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Figure 3.14: The conflicting trust values problem
simplified within an example of just
three nodes.

53.42% and 6.47% were achieved by the best-case, average-case and worst-case sce-
narios of the conflict resolution algorithm, respectively.

The Trust-Aware Self-Healing

Self-healing can be defined as the property that enables a system to perceive ser-
vices that are not operating correctly and, without human intervention, make the
necessary adjustments to restore them by using the self-configuration and self-
optimization principles (see Chapters 4 and 5). Two ways of thinking have to be
considered in the self-healing process, namely proactive and reactive. The proac-
tive measure enables the system to detect node instability prior to failure which
is recognized through degradation of a node’s trust value, and then to transfer all
running services by using self-optimization techniques to more trustworthy nodes.
The strategies used for the service transfer are mainly the same as those described
in Section 3.4.3 and thus are not further discussed here. More interesting is the
reactive measure. This enables nodes to save recovery information periodically
during failure-free execution. Then upon failure, which has to be detected by us-
ing a failure detector, a node uses the already saved information to restart from an
intermediate state called snapshot, thus reducing the amount of lost computation.
In the following, the underlying algorithms of the reactive measure are explained.
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Failure detectors. Failure detectors play a crucial role in the development of ro-
bust and dependable self-* systems. Assuming that a contractor might crash, the
manager has to be able to detect a contractor’s failure and take appropriate recov-
ery actions, otherwise the services running on it might block the whole system.
Hence, it is important for the manager to regularly monitor its contractors, even if
it is a non-trivial task. The main reason for this is the diversity of failures. When a
contractor node in asynchronous and distributed environments is not working cor-
rectly, it is very difficult for the manager to know the specific cause with certainty:
it may be due to a crash failure, execution failure or reachability failure. While there
are slight discrepancies in the literature regarding their definitions, in the following
the failure models are defined:

1. Crash failure: Contractors are considered to execute their services correctly.
If a failure occurs at a certain time, the contractor stops permanently. This
models a crash of contractor that never recovers by itself. Furthermore, con-
tractors are not able to indicate their failures and stop to send any messages.

2. Reachability failure: The contractor is operating correctly but communica-
tion channels loose managers’ contracts. Consequently, network partitions
emerge in the system, which can lead to outdated or duplicated service re-
sults if the partitions are merged again into one network.

3. Execution failure: The contractor does not halt. It can send messages and
answer that it is alive when asked. However, the services which are running
on it report wrong results. Services can recover afterwards to the last stored
correct state.

• Regarding (1) and (2): A well-known technique to cope with crash failures
is the keep-alive approach [DHS07, PTT12], in the literature also known un-
der the name of the heartbeat approach [Sat08]. In this technique, contractors
periodically send an alive messages to managers responsible for their moni-
toring. If, for example, a manager m does not receive such a message from its
contractor c after an expiration of time ∆Timeout, it adds c to its list of suspected
contractors, as seen in Figure 3.15. If m later receives an alive message from
c, then m removes c from its list of suspected contractors. This technique is
defined by two parameters:

– The frequency period ∆c is the time frequency at which alive messages
are sent from c to m.
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Figure 3.15: The most common approach used in literature to mon-
itor the failure of contractors. This is based on the pull
model in which contractors regularly unicast a mes-
sage saying they are alive.

– The timeout delay ∆Timeout is the time between the last reception of an
alive message from c and the time where m starts suspecting c, until an
alive message from c is received.

Adjusting ∆c and ∆Timeout during runtime makes a trade-off in the system.
If these parameters are chosen too short, then failures are detected quickly
(i.e., short failure detection delays) but more alive messages are sent in the
network. A longer choice of these parameter values results in a larger failure
detection delay but less communication overhead. Because of this trade-off
problem, it is obvious that an optimal solution minimizing the two criteria
simultaneously could never be reached in practice. Our contribution are ro-
bust approaches presented in Chapter 7 that provide good but not necessar-
ily optimal solutions to this trade-off problem. They make use of trust con-
cepts to reduce the expected detection delay of failures and their subsequent
message cost by allowing more trustworthy contractors to be monitored less
frequently than the untrustworthy ones. However, the difference between
our approaches arises in the way to determine ∆c and ∆Timeout either discrete,
continuous or continuous-discrete. The facet of trust considered in this part
of the work concerns the availability aspect. For this reason the trust values
of contractors are determined based on their uptime in the last interaction
steps. Evaluation results showed that the continuous-discrete approach per-
forms best. It can adapt faster to changing trust conditions in the network
than the two other approaches and is therefore considered suitable for our
TEM middleware. After the occurrence of a failure detected, the next bar-
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rier is to determine its type. This can be either a crash failure or reachability
failure between the manager and the contractor. Chapter 4.4 introduces the
technique we use to differentiate between these two type of failures.

• Regarding (3): An important task for the manager is to check whether a con-
tractor is reporting wrong results or not. For masking such execution failures,
several approaches are known in literature. One approach which has received
much attention in the recent years is the redundant execution [AÖK10, EAT13,
AVFK02]. This approach enables to detect an execution failure by execut-
ing a service at least two times from different contractors and comparing the
results. If the results are similar, then the service is run without failure, oth-
erwise an execution failure has happened during the execution. One draw-
back, however, is that some services cannot be handled by redundant execu-
tion, e.g., I/O-based services that might not return the same result in different
runs. But as it goes beyond the scope of this work it is not further discussed
here.

Service recovery. As clarified in the introduced failure model, contractors in
our system are subject to crash failures. Keeping that fact in mind, a manager
has to store the stepwise results of its contractors in a trustworthy place in
order to get them back in case of failure. This has the benefit to later reduce
the recovery time by restarting the services not from the beginning but rather
from an intermediate state. To ensure this, a robust data storage is needed for
our system that must obey to the following identified research points:

– How to adjust the amount of replicas in the system during runtime in order to
guarantee a good availability of service data, characterized for example by five
nines availability ≈ 99.999% ?

The answer of this question results, as expected, in a trade-off problem
between performance overhead and availability. It is easy to see in Fig-
ure 3.16 that the use of a higher number of replicas generally increases
the availability of the stored data. However, this availability is only
improved until 3 replicas have been reached. A greater number than
3 does not improve the availability any more but makes performance
worse, since more replicas imply more resource consumption and higher
management cost. Therefore in Chapter 8, we provided a replication
approach that enables us to calculate the minimum number of replicas
needed for a desired degree of availability taking into account the av-
erage availability of nodes. The results of this approach attest a very
good reduction of performance overhead in the network. More results
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related to the runtime categorization of services based on other factors
like checkpoint size and service centrality are, however, left for future
work.
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Figure 3.16: Example showing the number of replica that
are required for an average nodes’ availability
of 95%.

– How to distribute the replicas in a way that the more important replicas are
always hosted only on most available nodes, while at the same time achieving
load balancing between nodes?

This issue can be reduced with minor variations to the same problem
that we have addressed in Section 3.4.3: Instead of using the reliabil-
ity facet, the system focuses on the availability facet by observing the
uptime of nodes. The self-configuration algorithm then uses these avail-
ability values to perform an initial distribution of replicas on nodes. At
runtime, we make use of self-optimization techniques to continuously
optimist their assignments. A comprehensive overview of that concept
can be found in Chapter 8.

3.5 Application Case Studies

The trust aware self-* properties introduced in this chapter concern basic middle-
ware concepts to provide guarantees of reliability, availability and scalability for
the TEM. Apart from these properties, the TEM implements mechanisms that allow
the application running on top of it based on the trust metrics to measure uncer-
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tainty at runtime and to take the trustworthiness of the applications’ entities into
account when making decisions. Within the OC-Trust research group several ap-
plication case studies are investigated for the TEM. The first case study comprises
an application from the domain of multi-agent systems called the Trusted Com-
puting Grid. The second application case study, the Autonomous Virtual Power
Plants, stems from the domain of decentralized energy management systems. And
the last case study is the Trusted Display Grid taken from the domain of multi-user
multi-display systems (see Figure 3.17). All these case studies have the main goal
to utilize trust at the application level. They are implemented on the TEM to make
use of the trust metrics and to profit from the robustness of TEM provided at the
middleware level by means of the self-* algorithms described above.

TEM middleware

Trusted Computing 
Grid

Autonomous Virtual 
Power Plants

Trusted Display
 Grid

Multi-Agent 
Systems

Decentralised Energy 
Management Systems

Multi-User Multi-Display 
systems

Scope of application

Figure 3.17: The TEM used as basis for the construction
of some trustworthy self-organizing applica-
tions.

The Trusted Computing Grid. The first application case study that profits from
the TEM middleware is the Trusted Computing Grid. This consists of a great num-
ber of client computers with different resources that work together in a grid to co-
operatively process computationally intensive tasks, e.g., face recognition [Rob09]
or ray tracing [Gla89]. Each client in the grid takes on one of two roles related to
the execution of an individual task: submitter or worker. A submitter is responsi-
ble for breaking down the task into work units, scheduling the execution of work
units, and collecting the results of their execution. A worker is responsible for the
actual execution of work units. However, not every worker in the grid is equally
interested to process work units. There are, for example, some workers that might
plan to exploit the system by accepting work units and canceling their processing,
so called Egoistic Workers [ESJ+15]. By making use of trust, the submitters can iden-
tify those untrustworthy workers and form Trusted Communities (TCs) [KBA+13].
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This represents a community formed by workers and submitters with strong mu-
tual trust relationships that aims to reduce the probability of receiving invalid re-
sults. Each Trusted Community is managed by an elected trustworthy manager,
called the Trusted Community Manager (TCM), which has as goal to maintain the
stability of community members using self-* properties. This TCM is an example
for an important service in the TEM middleware, since its failure can deteriorate
the entire TC.

The Autonomous Virtual Power Plants. Another example of application that
profits from the TEM middleware is the Autonomous Virtual Power Plants pre-
sented in [SASR13]. This is a power management system composed of a variety of
power plants which provide either dispatchable or non-dispatchable power produc-
tion. The dispatchable production is made by power plants whose output can be
determined in advance such as coal or atomic power plants. In contrast, the non-
dispatchable production is made by power plants whose output is unpredictable
like wind turbines or solar power plants. One of the main challenges posed here is
to maintain the balance between power production and consumption at all times.
This is a non-trivial task for non-dispatchable power plants since their production
depends on the availability of natural resources like sunlight, air, or wind, that
cannot be controlled by humans. The Autonomous Virtual Power Plants applica-
tion overcomes this issue by integrating trust to allow an automatic regulation of
non-dispatchable power plants, so that the dispatchable power plants can be used
only as needed [ASS+15, KASR15]. This allows the formation of Autonomous Vir-
tual Power Plants (AVPPs), that group dispatchable and non-dispatchable power
plants together based on the Observer/Controller architectural pattern [SENR13].
If an observer identifies during runtime that the organisational structure of an
AVPP is not suited, e.g., because maybe one or more AVPPs cannot maintain the
power balance any more, the controller performs a new organization of AVPPs in
order to bring back the power balance optimized in the system again [ASR15]. The
autonomous organization of AVPPs is an essential aspect of this application case
study and is therefore considered as an example for an important service in the
TEM middleware.

The Trusted Display Grid. The third application case study that profits from the
TEM middleware is the Trusted Display Grid [WHKA14]. This allows users to in-
teract in the system with multiple self-organizing displays at the same time. The
displays are divided into two types of usage: private and public. Private displays
are those that can protect the personal data of users from external observation like
smart phones and tablets. In contrast, public displays are those that everyone can
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use, whose data is public and can be shown in presence of other people like Mi-
crosoft Surfaces 3. The major challenge here is to self-organize the transfer of data
between public and private displays at runtime. However, such an organization
is a non-trivial task. This is because the displays should continuously protect the
users’ privacy on the one hand and on the other hand maintain the user’s accep-
tance. Otherwise, the user might abandon the system. The Trusted Display Grid
tackles this problematic situation by using the User Trust Model (UTM) [HWA15],
which allows the displays to monitor the interaction of users, to measure their cur-
rent trustworthiness, and to apply appropriate self-organizing mechanisms to in-
crease the users’ trust as well as usability in the system. This UTM is essential for
the operability of the Trusted Display Grid and is therefore treated as an important
service by the TEM middleware.

3.6 Conclusions and Future Work

In this chapter, a middleware architecture for trustworthy self-* properties in open
distributed systems is presented. The design of the architecture relies on trustwor-
thy algorithms to provide guarantees of reliability, availability and scalability to
service-oriented middlewares. The baseline middleware used in this work is OCµ.
We have explained how the trustworthy self-* layer can be easily integrated into
OCµ to make it more robust in the face of untrustworthy components. The re-
sulting middleware is TEM, a trust-enabling middleware that can profit from the
advantage of trust and OC principles at the same time. The TEM makes use of dif-
ferent trust metrics, i.e., such as direct trust, reputation, and confidence to monitor
the behavior of nodes in the system at runtime. This monitoring is very impor-
tant to guide and control the self-organization process between nodes by means of
trust-aware self-* properties. The self-* properties examined in this work are self-
configuration, self-optimization, and self-healing. We believe that these properties
are fundamental for the design of every autonomous, scalable and fault-tolerant
service-oriented middleware. The self-configuration is related to the ability to per-
form an initial distribution of services on nodes taking the resource requirement
and importance level of services into account. The self-optimization focuses on op-
timizing the allocation of services at runtime by monitoring the trust and resource
consumption of nodes. And the self-healing aspect is concerned with the ability
to handle failures of nodes in order to guarantee that all services running on them
stay available even in case of network partitions. We applied the TEM middle-

3Microsoft Surface – [Accessed: October 21, 2015] – http://www.microsoft.com/en-us/
pixelsense/whatissurface.aspx.
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ware to different application case studies and clarified how uncertainty in open
environments can be mastered by using trust. Due to the fact that future applica-
tion services will become more autonomous, we expect to see more self-* systems
based on our (or a similar) architecture. The future design of self-* middlewares
will increase the demand of trustworthy self-* properties to ensure robustness in
the system. The architecture presented in this chapter is a step in this direction.
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4
Trust-Aware Self-Configuration

Abstract. This chapter presents a trust enhancement of the self-

configuration algorithm based on the well-known Contract Net Proto-

col. This baseline algorithm can be used in a distributed system, i.e.,

multi-agent system, cloud computing or grid system, to equally dis-

tribute the load of services on the nodes. However, the trust enhance-

ment of self-configuration assigns services with different importance

levels to nodes so that more important services are assigned to more re-

liable nodes. Evaluations have been conducted to rate the effectiveness

of the algorithm when nodes are failing, i.e., the reduction of failures

of important services. The results show that our self-configuration al-

gorithm increases the availability of important services by more than

12%.

4.1 Introduction

The growing complexity of today’s computing systems requires a large amount
of administration, which poses a serious challenging task for manual administra-
tion. Therefore, new ways have to be found to autonomously manage them. They
should be characterized by so-called self-* properties such as self-configuration,
self-optimization, and self-healing. The autonomous assignment of services to
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nodes in a distributed way is a crucial part for developing self-configuring sys-
tems. In this chapter, a trust-aware self-configuration algorithm for self-* systems
is presented, which aims on the one hand to equally distribute the load of services
on nodes as in a typical load balancing scenario and on the other hand to assign ser-
vices with different importance levels to nodes so that the more important services
are assigned to more trustworthy nodes. The trust definition [SKL+10] adopted for
this work is the definition provided by the research unit OC-Trust of the German
Research Foundation (DFG) by regarding different facets of trust, as, for example,
safety, reliability, credibility and usability. The focus here lies on the reliability as-
pect. Furthermore, it is assumed that a node can not realistically assess its own
trust value because it trusts itself fully. Therefore, the calculation of the trust value
in this work must be done with the previously introduced trust metrics presented
in chapter 3.4. Recall, the value tn represents the current trust of node n and will
always range between 0 and 1. The value of 0 means that n is not trustworthy at
all while a value of 1 stands for complete trust. With trust information, nodes of a
system have a clue about which nodes to cooperate with, and this is important for
self-configuring systems. The chapter offers as contribution the following aspects:

(i) a decentralized self-configuration algorithm for the initial allocation of ser-
vices on nodes taking into account trust to increase the availability of impor-
tant services in open distributed environments (see Section 4.3),

(ii) some coverage metrics for the calculation of the quality of service in order to
determine the suitability of nodes to host services (see Section 4.3.1),

(iii) in the case of conflicting assignments a conflict resolution mechanism is used
to solve the conflict without any further message (see Section 4.3.3),

(iv) a fault handling approach to allow a manager to monitor its contractors after
the distribution of services (see Section 4.4), and

(v) a set of several coordination strategies enabling the system to operate with
multiple managers at the same time and to carry out several distribution
phases simultaneously (see Section 4.5)

All aspects are evaluated and discussed with respect to a toolkit based on the
TEM [ASM+13], a trust-enabling middleware for building real-world distributed
Organic Computing systems. The main results of our self-configuration algorithm
are provided in Section 4.3.4. Section 4.5.1 demonstrates benefits of the proposed
coordination strategies to support parallelism of multiple managers at runtime. Fi-
nally, the chapter is closed with a conclusion and future work in Section 4.6.
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4.2 Related Work

There are many sophisticated approaches to deal with the allocation problem of
services on nodes, either to achieve good load balancing or to minimize energy
consumption.

An approach that has become a standard by FIPA1 is the Contract Net Proto-
col [Smi80]. It consists of finding an agent that is the most suitable to provide a ser-
vice. This approach is often adapted and applied in many application domains, for
example, manufacturing systems [HC09], resource allocation in grids and sensor
web environments [KB09] [GG08], as well as in hospitals [DGB03], electronic mar-
ketplaces [DKRA00], power distribution network restoration [KHS+09], etc. Our
model is based on the Contract Net Protocol, extended by trust. In this context,
trust serves as a mean to give nodes a clue about with which nodes to cooperate.

Bittencourt et al. [BMCB05] presented an approach to schedule processes com-
posed of dependent services onto a grid. This approach is implemented in the
Xavantes grid middleware and arranges the services in groups. It has the draw-
back of a central service distribution instance and therefore a single point of failure
can occur.

A biologically inspired solution for load balancing in distributed environments
called Honeybee Foraging is presented in [RTBL08, RLTB10]. This approach works
based on the behavioral motion of honeybees who fellow each other in harvesting
food. The bees returning from hive provide information to other bees about the
status of resting food in the hive. In the same way, resource nodes are allocated to
incoming services based upon information provided by previous services regard-
ing the global load in the whole system. In contract to our approach, this technique
does not take the priority of different service classes into account.

Trumler et al. [TKU06] described a scheduling algorithm for distributing services
onto nodes based on social behavior. It is implemented in the OCµ middleware.
In their model, nodes can calculate a QoS for the services to decide which service
is assigned to which node. In this case only resource constraints are used to de-
scribe cases when a service should be hosted depending on a specific hardware. In
contrast to our approach, this algorithm does not include trust constraints.

In [THW02], Topcuoglu et al. presented an approach to consider the priorities of
tasks. They try to select tasks in order of their priorities and to schedule them to
the best machine that minimize their finish time in an insertion based manner. This
approach has been shown to significantly improve the schedule computation time.

1FIPA: Interaction Protocol Specifications - [Accessed: November 6, 2015]
http://www.fipa.org/specs/fipa00029/
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However, a disadvantage is that important tasks might run on unreliable nodes
and are prone to fail.

Later, in [BEDL13], reliability constraints were considered to find a homogeneous
allocation of the instances of services. Contrary to this work, our approach is able to
work with heterogeneous systems. More precisely, we are looking for a scalable al-
location approach that has neither a central control nor complete knowledge about
the system with the property to solve the initial trust and load allocation problem of
heterogeneous services solely based on reliability measurements, greatly improv-
ing the availability of important services in open distributed environments. Fur-
thermore, the algorithm must includes a fault handling mechanism enabling the
system to continue hosting services even in the presence of faults. Parts of the con-
tent of this chapter have been published by the author in the following workshop,
conference and journal:

• [MKFU14]: Nizar Msadek, Rolf Kiefhaber, Bernhard Fechner, and
Theo Ungerer. Trust-Enhanced Self-Configuration for Organic Computing Sys-
tems. In ARCS 2014: Proceedings of the 27th International Conference on Ar-
chitecture of Computing Systems, pages 37-48, Lübeck, Germany, Springer,
2014.

• [MKU14a]: Nizar Msadek, Rolf Kiefhaber, and Theo Ungerer. Simultane-
ous Self-Configuration with Multiple Managers for Organic Computing Systems.
In SAOS 2014: Proceedings of the second International Workshop on Self-
Optimisation in Organic and Autonomic Computing Systems in conjunction
with ARCS 2014, pages 1-7, Lübeck, Germany, IEEE Computer Society, 2014.

• [MKU15a]: Nizar Msadek, Rolf Kiefhaber, and Theo Ungerer A Trustworthy,
Fault-tolerant and Scalable Self-Configuration Algorithm for Organic Computing
Systems. In JSA 2015: Journal of Systems Architecture, issn 1383-761, http:
//www.sciencedirect.com/science/article/pii/S138376211500082X

4.3 The Trust-Enhanced Self-Configuration

This section presents a trust enhancement of the baseline self-configuration algo-
rithm based on the well-known Contract Net Protocol [Smi80]. This baseline algo-
rithm can be used in a distributed system, i.e., multi-agent system, cloud comput-
ing or grid system, to equally distribute the load of services on the nodes. However,
the trust enhancement presented in this section aims mainly on finding a robust dis-
tribution of services by including trust. The services are categorized into important
services with a high required trust, and non important services with a low required
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trust. Important services are those, which are necessary for the functionality of
the entire system. E.g., Bernard et al. [BKHC10] present a computing grid to solve
computationally intensive problems. In their model, trust is incorporated to enable
nodes to form Trusted Communities (TCs). The manager, that administrates these
TCs is an example for an important service, since its failure deteriorates the entire
TC.

The goal is to maximize the availability of important services. Therefore, it is
necessary to assign important services to more trustworthy nodes. Trust in this
context is expressed by a trust value based on previously introduced trust metrics
presented in chapter 3.4. In addition to trust, resource requirements (e.g., like CPU
and memory) should also be considered to balance the load of the nodes.

4.3.1 Metrics

The self-configuration focuses on assigning services with different required trust
levels to nodes which have different trust levels so that more important services
are assigned to more trustworthy nodes. Furthermore, the overall utilization of
resources in the network should be well-balanced. Therefore, a metric is defined
in 4.1 to calculate a Quality of Service (QoStotal), i.e., the suitability of node to host
a specific service.

QoStotal = (1− α) ·QoStrust + α ·QoSworkload. (4.1)

The relationship between trust and workload can be set through α ∈ [0, 1]. If α =

1, the QoStotal is only obtained by the current value QoSworkload, i.e., the suitability
of a node to host a specific service with regard to its workload. If α = 0, the QoStotal

is decided only by the actual QoStrust value, i.e., the suitability of a node to host a
specific service with regard to its trust value. A higher value α favors QoSworkload

over QoStrust.

• QoStrust indicates how well the trustworthiness of a node fulfilled the re-
quired trust of a service. Figure 4.1 visualizes formula 4.2 to calculate the
QoStrust.

tn represents the current trust of node n calculated based on previously intro-
duced trust metrics presented in chapter 3.4 and will always range between
0 and 1. The value of 0 means that n is not trustworthy at all while a value of
1 stands for complete trust. In this work, it is assumed that tn is constant at a
certain point in time. However, tn is likely to change over time. This issue will
be addressed in depth in Chapter 5. The value ts represents the required trust
value of service s defined by the user according to the importance level of the
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𝑡𝑛  : Current trust value   of a node.   
𝑡𝑠  : Required trust value   of a service. 

𝑡𝑛 +  δ𝑐𝑟𝑖𝑡  𝑡𝑛 +  δ𝑐𝑟𝑖𝑡  

Figure 4.1: QoStrust based on the difference between the
trust tn of node n compared to the required
trust ts of service s

service. The value of 1 means that the service s is very important and requires
to be hosted only on trustworthy node while a value of 0 stands for an unim-
portant service and means that s can tolerate to be hosted on untrustworthy
node. If both values are close enough then n has fulfilled the required trust
value of a service s. Close enough is defined by the threshold δopt (optimal
area). If the difference between tn and ts is more than δopt, then QoStrust will be
gradually decreased until it reaches 0 at tn ± δtol (tolerance area). If ts is even
beyond tn ± δtol then the QoStrust will drop below 0 (critical area). In the case
that the divergence between tn and ts is more than δcrit, the QoStrust remains
constant at -1. This is expressed by the formula 4.2, with ts, tn ∈ [0, 1] and
0 < δopt < δtol < δcrit. Please note that our interest for the metric introduced
here focuses only on a symmetric behavior of QoStrust in order to ensure a
fair allocation of services on nodes. This means that a lower QoStrust value is
given not only for important services trying to be hosted on untrustworthy
nodes, but also for unimportant services trying to be assigned on trustworthy
nodes. Otherwise, the important services might be handicapped later in the
distribution phase (see Section 4.3.2) to find still unloaded trustworthy nodes
which can be hosted on.

• QoSworkload gives an estimation of the workload of a node. As long as the
load of a node is lower than two times its maximum capacity, the quality
of service (QoS) decreases linearly, otherwise it remains constant at −1. It
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QoStrust(ts) =



1 if 0 ≤ |tn − ts| ≤ δopt

−|ts−tn|+δtol
δtol−δopt

if δopt < |tn − ts| ≤ δtol

−|ts−tn|+δtol
δcrit−δtol

if δtol < |tn − ts| ≤ δcrit

−1 otherwise

(4.2)

is assumed that the capacity of a node has not a hard limit, e.g., swapping
data from RAM to hard drive provides extra memory at the cost of runtime.
Please note that swapping has an extremely high cost and will noticeably
degrade the overall performance of the host node. Therefore in this work,
it is assumed that only swapping with two times of the nodes’s capacity is
tolerated and not three times or more. The QoS regarding only one resource i
is calculated using Formula 4.3 as follows:

workloadi(Vreqi , Vavi) =


Vavi−Vreqi

Vmaxi
if Vreqi ≤ Vavi + Vmaxi

−1 otherwise
(4.3)

QoSworkload =
1
n

n

∑
i=1

workloadi(Vreqi , Vavi) (4.4)

with Vmaxi > 0, Vreqi > 0, and Vavi ≤ Vmaxi . It is to note that Vreqi means the
required resource i of a service. The available resource amount of a node is
denoted by Vavi and its maximum resource amount by Vmaxi . However, every
node can have multiple resources n. Therefore the QoSworkload is calculated by
the average sum of all resource values (See Equation 4.4).

4.3.2 Self-Configuration Process

This section discusses the methodology for distributing services. This consists of a
collection of services with different importance levels which should run on nodes
with different trust values. It is known to be a NP-hard problem to find an optimal
solution for the distribution of the services on the nodes, so that the quality of
service is optimal [Rei99]. Furthermore, there is no known algorithm which can,
for a given solution, in a polynomial time identify whether it is optimal. The aim
behind self-configuration is to find a distributed and robust but not necessarily
optimal yet good enough solution.

The quality of service metric presented in Section 4.3.1 is used to evaluate the dis-
tribution phase which is based on the Contract Net Protocol [Smi80]. During the
distribution phase, every node in the network can act as a manager or contractor. A
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(1) Announcement

(1) Announcement

(1) Announcement

(2) Bidding

(2) Bidding

(3) Awarding

(2) Bidding

node1
(Manager)

node2
(Contractor)

node4
(Contractor)

node3
(Contractor)

Figure 4.2: Elementary representation of the distribution phase

manager is responsible for assigning services. A contractor is responsible for the ac-
tual execution of the service. An algorithm that helps contractors to autonomously
elect their own managers can be found in [MSKU15]. For the sake of simplicity,
in the self-configuration process, the usage of multiple managers is omitted. Fig-
ure 4.2 visualizes a step-by-step example on how the negotiation process is run
between nodes.

1. Announcement: The manager (e.g., node1) that wants to distribute a service,
initiates contract negotiation by advertising the existence of that service to
the other contractors (e.g., node2, node3 and node4) with a service announce-
ment message. A service announcement can be transmitted to a single con-
tractor in the network (unicast), to a specific set of contractors (multicast) or
to all contractors (broadcast).

2. Bidding: Every contractor node that receives the announcement calculates
the value QoSworkload for the given service based on its own available re-
sources and then submits its bid in form of QoSworkload to the manager. Note
that the service announcement is ignored if the service cannot be hosted due
to missing resources.

3. Awarding: When the expiration time (i.e., the deadline for receiving bids)
has passed, the manager that sent the service announcement must calculate

64



4 Trust-Aware Self-Configuration

QoStrust for every contractor in order to build the QoStotal and decide whom
to award the contract to. In the basic Contract Net Protocol the manager se-
lects among the received bids the contractor with the highest QoSworkload. Our
enhancement improves the Awarding phase by including trust (QoStrust) so
that more trustworthy contractors always have a higher chance to receive the
service than less trustworthy contractors. The result of this process will be
then communicated to the contractors that submitted a bid. It is to note that
the expiration time is defined by the user.

4.3.3 Conflict Resolution

During the self-configuration process, several nodes could be ranked with the same
QoStotal . This might lead to a conflict for the manager to decide to whom to award
the service. To avoid this a conflict resolution mechanism is used which does not
need any further messages. The conflict resolution mechanism consists of three
stages which might be used in the following chronological order:

1. Minimum latency: The node with the lowest latency will get the service.

2. Minimum amount of already assigned services: The node with the least
amount of already assigned services will get the service, assuming that a
lower amount of services will produce less load (e.g., a thread switch or pro-
cess switch would produce additional load).

3. Random assignment: It is unlikely but not impossible that all of the former
values were equal. In this case one node will be selected at random to get the
service.

4.3.4 Evaluation

In this section an evaluation for the introduced self-configuration approach is pro-
vided. For the purpose of evaluating and testing, an evaluator tool based on our
TEM [ASM+13] middleware has been implemented which is able to simulate the
distributed self-configuration process. The system network consists of 50 nodes,
where all nodes are able to communicate with each other using message passing.
Experiments with more nodes were tested, and yielded similar results, but with 50
nodes more observable effects for the two first parts of the evaluation were seen.
Each node has a limited resource capacity (e.g., CPU and memory) and is judged
by an individual trust value without any central knowledge. Notice that the trust
values will always range between 0 and 1. The value of 0 means that the node is
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Node Type CPU (MHz) Memory (MB) Trust Amount (%)

Type 1 200-800 500-1000 0.7-0.9 10
Type 2 500-1500 500-1500 0.3-0.6 50
Type 3 1500-2000 2000-4000 0.4-0.8 30
Type 4 2000-3000 4000-8000 0.4-0.9 10

Table 4.1: Mixture of heterogeneous nodes

not trustworthy at all while a value of 1 stands for whole trust. Four type of nodes
are defined with different resources and trust levels (see Table 4.1).

Then 150 services, 75 of them important and 75 unimportant (50/50 ratio), with
random resources (CPU ∈ [0, 800] and RAM ∈ [0, 1000] are generated so that all
nodes are loaded on average to 60%. Without additional information important
services might run on untrustworthy nodes and are prone to fail. Such situations
can be avoided. Using trust as a constraint, the trust of a node can be measured and
taken into consideration for the service distribution. Hence, the goal is to maximize
the availability of important services. Therefore, it is necessary to assign the more
important services to more trustworthy nodes. In the following the results of the
conducted evaluations are presented.

Quality of Distribution. To evaluate the distribution of important services with
regard to trust, the mapping between the trust of the node and the required trust
of the service is compared using different values for α. If α = 1, the service distri-
bution is only obtained by considering the resource utilization as in a typical load
balancing scenario. Figure 4.3 shows the results of this experiment with α = 1,
whereas the values on the x-axis represent important services together with nodes
and their trust is depicted on the y-axis. The dotted line represents the expected
trust of important services sorted in descending order. However, the rectangular
points show the trust of nodes on which an important service is running. In the
majority of cases, the divergence between both values, i.e., the current trust of a
node and the required trust of the service is very important. This explains why the
majority of important services are hosted on untrustworthy nodes.

To overcome this issue, trust has been taken into consideration. Figure 4.4 illus-
trates exactly the same information as Figure 4.3, but with α = 1/2 to provide a
better assigning of important services on trustworthy nodes. Please note that the
allocation of services is referred to as the trust and workload trade-off problem in
which it is impossible to make any trust distribution better without making at least
the load balancing distribution worse. This trade-off depends on the specific as-
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Figure 4.3: Quality of distribution without trust (α = 1, i.e, nodes
could be shown multiple times in this figure, since they
can host multiple services at the same time)
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Figure 4.4: Quality of distribution with trust (α = 1/2, i.e., nodes
could be shown multiple times in this figure, since they
can host multiple services at the same time)
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sortment of α. Learning the optimal trade-off α between trust and workload could
further improve the performance of the proposed self-configuration algorithm and
could be a starting point for future work.

Permanent Node Failures. The improved self-configuration algorithm should as-
sure beside load balancing that the majority of important services runs on trustwor-
thy nodes. This can be shown by letting untrustworthy nodes fail and comparing
the amount of unavailable important services of the baseline algorithm (i.e., load
balancing distribution using Contract Net Protocol) with the trust-enhanced ver-
sion. However, it should be noted that in a real life situation it is unlikely that all of
the untrustworthy nodes fail at once. For this purpose a more realistic approach is
adopted using a selection metric to decide which node fails at each time step. This
selection metric is based on a roulette wheel selection, where nodes with lower trust
values have a higher chance to fail than other nodes with a higher trust values. Our
goal is to evaluate the cumulative amount of unavailable important services for the
trust-enhanced and baseline algorithm.
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Figure 4.5: Failure of important services

Figure 4.5 shows the results of this experiment. The values on the x-axis stand for
time-steps and their cumulative amount of unavailable important services are de-
picted on the y-axis. Within one time-step, one node is failed based on the selection
made by the roulette wheel selection. The dotted line represents the cumulative
number of important services that failed per time step using the trust-enhanced al-
gorithm. However, the square line illustrates exactly the same information but with
the baseline algorithm. At the first step, the two curves look the same, because all
nodes are still running. The most interesting part in the figure is the middle part,
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where a number of nodes has failed and the number of still running important ser-
vices is higher for the trust-enhanced algorithm than in the baseline. At the time
step 50, i.e., in that case, all the nodes have failed, all important services are down
(exactly 75 services), which explains the similarity again of the two curves. To
quantify the obtained enhancement of our approach, the availability enhancement
(AE) of important services is calculated as follows:

AE =
1
ts

ts

∑
i=1

(ci − ti) (4.5)

where ts means the number of time steps. ci is the amount of unavailable services
at time step i calculated with the baseline algorithm. However, ti is the amount of
unavailable services at time step i calculated with the trust-enhanced algorithm. As
a conclusion, we can state that the use of trust leads to positive impact on the QoS
metric because an availability enhancement (AE) of more than 12% was achieved
with α = 1

2 . In addition, we did not observe any simulation run2 with the trust
metric that showed a bad mapping between trust of nodes and required trust of
services.

4.4 Fault Handling Mechanism

As has been indicated in Section 4.3.2, contractors play an important role in the
establishment of the self-configuration process. Assuming that a contractor might
crash, the manager has to be able to detect contractor’s failure and take appropri-
ate self-healing actions, otherwise the services running on it might block forever.
Hence, it is important for the manager to regular monitor its contractors. During
the self-configuration process two monitoring strategies are supported: polling and
pushing. In the polling strategy as mentioned in Section 3.4.3, the manager peri-
odically sends a ping message to a contractor. If the ping fails, then the manager
assumes either contractor has crashed or the reachability problem has occurred.
However, in the pushing strategy, a contractor periodically sends an alive message
to the manager. If the manager does not receive an alive message within a certain
duration then it considers that the contractor hangs. Please note that the pushing
strategy is capable of detecting both crash and hang failures, whereas the polling
strategy is only capable of crash failures. The user decides based on its need which
one of these strategies should be used. Figure 4.6 shows how the monitoring
process between a manager and a contractor works. The contractor periodically

2In total, about 10000 runs were evaluated.
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Figure 4.6: Contractor monitoring using the push-
ing strategy presented in Section 3.4.3.

Manager

Contractor

(2) What’s wrong with 
the contractor?

(2) What’s wrong with 
the contractor?

(3) Are you alive?(3) Are you alive?

(1) Are you alive?
1Helper 2Helper

Figure 4.7: Simplified illustration of the detection model showing how to distin-
guish between crash and reachability failure by making use of helpers.
Solid circle represents the manager, dashed circle represents the helpers,
and dotted circle represents the contractor. Please note that in the prac-
tice, the manager would expect to have more helpers than only the two
ones depicted here.

70



4 Trust-Aware Self-Configuration

sends to the manager an alive message. When the manager fails to receive such a
message from the contractor and after it has waited for a time period of ∆Timeout, it
considers that a failure has occurred. Now, it remains to the manager to discover
the type of failure. This can be either a crash failure or reachability failure between
the manager and the contractor. In order to determine which one of these failures
has occurred, the manager needs at least the help of two other nodes, i.e., helper 1
and helper 2. As shown in Figure 4.7, both helpers send to the contractor, the "Are
you alive?" messages. If no response is received by both helpers (i.e., helper1 and
helper2) from the contractor within a configurable time period, then a crash failure
is confirmed. If one of the two helpers, receives the response from the contractor,
then a reachability failure is confirmed.

4.5 The Simultaneous Self-Configuration

In this Section, coordination strategies as enhancement are incorporated to the self-
configuration process in order to make it scalable. As has been indicated in Sec-
tion 4.3.2 (and as is shown in Figure 4.2), a manager locates viable contractors via a
process of bidding which happens in three stages:

• a manager announces a service,

• contractors evaluate the service with respect to their workload and send bids
to the manager.

• the manager combines the received bids with trust, rates them and chooses a
contractor to award it the contract.

The self-configuration introduced so far only considers the sequentially assign-
ing of services. This means that it is not suited to operate with multiple managers
at the same time. Hence, the basic algorithm neither detects nor resolves conflicts,
which is the principal reason why coordination is needed. The simultaneous self-
configuration proposes enhancement coordination strategies, which allow multiple
managers to carry out several distribution phases simultaneously. In this enhance-
ment, available contractors evaluate service announcements made by their man-
agers and submit bids on those for which they are suited. All these contractors are
not completely sure to be contracted when they submit their bids. This means that
when a contractor receives a new service announcement it does not know if the ear-
lier announced services are to be awarded at the same time. Figure 4.8 visualizes
this concept using a simple example of two managers.

Let us assume two managers, m1 and m2: m1 is responsible for assigning service
s1, m2 is responsible for service s2. It is assumed that both services s1 and s2 are
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Figure 4.8: Multiple concurrent bids

different and are executed concurrently. Contractor c submits two different bids b1
and b2 to m1 and m2 (i.e., even in the case of a potential overload if both contracts
are awarded).

The following presents all possible situations that can happen after a:

• Non-Coordination: Contractor c is not awarded with a new contract which
is a trivial case, nothing has happened.

• First Coordination Situation: Manager m1 sends an award message to c in-
forming him to be the most appropriate. Contractor c sends then an acknowl-

New contract c1 
+

Old Contracts 

c
(Contractor)

m1
(Manager)

m2
(Manager)

Ack New b2

Figure 4.9: Inconsistency resolution

edgment message of the award back to m1 announcing his willingness to
perform service s1. This leads to an inconsistent configuration because b2 is
now becoming obsolete for manager m2. To avoid this inconsistency, c sends
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at the same time a new bid message b2 to manager m2 announcing him the
recalculated value of QoSworkload for service s2, as shown in Figure 4.9.

• Second Coordination Situation: Contractor c receives at the same time a con-
tract c1 from m1 and a contract c2 from m2 leading to an inconsistent and
potential overload situation, as shown in Figure 4.10. In order to solve this,

Old Contracts 

c
(Contractor)

m1
(Manager)

m2
(Manager)

c1 c2

Figure 4.10: Simultaneous contracts

contractor c sends an acknowledgment message to m1 and a new bid message
b2 to manager m2, as shown in Figure 4.11. Here the principle of first-come
first-serve is adopted. Then, the contract of m2 will be refused.

New contract c1 
+

Old Contracts 

c
(Contractor)

m1
(Manager)

m2
(Manager)

Ack New b2

c1 c2

Figure 4.11: Inconsistency resolution
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4.5.1 Evaluation

In this section an evaluation for the improved self-configuration approach is pre-
sented. For the purpose of evaluating and testing, the basic evaluator has been
extended to simulate the simultaneous self-configuration algorithm. The evalua-
tion network consists of 50 nodes, where all nodes are able to communicate with
each other using message passing. Each node has a limited resource capacity (e.g.,
CPU and memory) and is judged by an individual trust value (reliability) without
any central knowledge. To keep consistency with the previous experiments, we
use the same setting as in Table 4.1. This means that four type of nodes are also
defined with different trust and resources. Then 150 services, 75 of them impor-

Node Type CPU (MHz) Memory (MB) Trust Amount (%)

Type 1 200-800 500-1000 0.7-0.9 10
Type 2 500-1500 500-1500 0.3-0.6 50
Type 3 1500-2000 2000-4000 0.4-0.8 30
Type 4 2000-3000 4000-8000 0.4-0.9 10

Table 4.2: For reasons of consistency with the previous results, the
same network setting as in Table 4.1 is used.

tant and 75 unimportant (50/50 ratio), with random resources (CPU ∈ [0, 800] and
RAM ∈ [0, 1000]) are generated so that all nodes are loaded on average to 60%.
With the basic self-configuration only one manager is responsible for assigning ser-
vices. This means that its processing time may take a long time. Such situation can
be omitted. With the use of the simultaneous self-configuration, multiple managers
are determined to carry out several distribution phases at the same time.

Hence, the goal is to minimize the self-configuration time. Therefore, it is nec-
essary to use multiple managers during the distribution phase. Moreover, it is
measured how many messages are needed to accomplish both algorithms. Our
evaluation use the concept of logical clocks [Mat89] to capture clausal ordering of
messages (i.e., to provide information as to which message have been sent before
a message). Each evaluation scenario has been tested 1000 times with randomly
generated networks and the results are averaged. In the following the results of the
conducted evaluations are presented.

Self-Configuration Time. The improved simultaneous self-configuration should
assure a shorter time to assign services on nodes than the baseline algorithm. This
can be shown by varying the number of managers and comparing the behavior
of the self-configuration time in both algorithms. Figure 4.12 shows the result of
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this experiment, whereas the values on the x-axis stand for time steps and the cu-
mulative amount of assigned services are depicted on the y-axis. A time step is a
self-configuration process where all managers distribute simultaneously one of its
services (as has been explained in Section 4.3.2). It can be observed that the im-
proved simultaneous self-configuration algorithm with four managers reached the
best result followed by the simultaneous version of two managers and the baseline
algorithm. To quantify the obtained enhancement of our approach, we calculate
the self-configuration time enhancement (STE) as follows (with tsb > tss) :

STE =
tsb − tss

tsb
(4.6)

where tsb means the number of time steps needed to accomplish the baseline al-
gorithm and tss is the number of time steps needed to accomplish the simultaneous
self-configuration algorithm. As a conclusion to all simulations we have done so

0

20

40

60

80

100

120

140

160

0 20 40 60 80 100 120 140

C
um

ul
at

iv
eO

nu
m

b
er

Oo
fOa

ss
ig

ne
dO

se
rv

ic
es

Time-steps

FourOManagers
TwoOManagers
OneOManager

Figure 4.12: Self-configuration using different amount of managers

far (about 1000 runs were evaluated) we can state that STEs of 75% and 50% were
achieved respectively to the version of four and the two managers of the simulta-
neous self-configuration algorithm.

Message Overhead. In the following, the message overhead is evaluated for the
proposed self-configuration algorithm. Figure 4.13 shows the result of this experi-
ment. It depicts the number of sent messages on the y-axis. The x-axis stands for
the time steps. Figure 4.14 presents a similar information as Figure 4.13, but with a
cumulative data to provide a better comparison between the algorithms. The base-
line algorithm performs with the least of messages. The number of sent messages
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Figure 4.14: The cumulative number of sent messages after the execution
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is dependent on the number of managers due to their coordination. Compared to
the baseline version, overheads of 71 and 111 messages were produced to the si-
multaneous algorithm with two and four managers, respectively.

Conclusion of the Results. Concluding, the evaluation result shows that the use
of multiple managers in a context of 50 nodes and 150 services improves at least
50% the time to perform the self-configuration while causing a very little deterio-
ration of the message overhead. Compared to the baseline algorithm, overheads of
0.92% and 1,45% were produced to the simultaneous algorithm with two and four
managers, respectively. This can be seen as a tolerable trade-off between the mes-
sage overhead and the self-configuration time and will have more positive impact
than negative on the whole system. However, this trade-off depends obviously on
the specific size of the network as well as the amount of services running on it, and
on the number of managers used in the assignment process. Therefore it is inter-
esting to analyse this trade-off within different context settings. The next section
examines this trade-off with respect to different context settings.

Trade-off Exploration. In the following, nine experiments are conducted to fur-
ther investigate the trade-off between self-configuration time and message over-
head. The experiments differ in the in the size of the network η, the amount of
services χ and the number of used managers M. The first three experiments exam-
ine the trade-off with a fixed η = 100 but different amounts of χ and M.

• Experiment 1.1: η = 100, χ = 50, M ∈ {1, 2, 4, 8, 16}
(see Figures 4.15 and 4.16)

• Experiment 1.2: η = 100, χ = 100, M ∈ {1, 2, 4, 8, 16}
(see Figures 4.17 and 4.18)

• Experiment 1.3: η = 100, χ = 150, M ∈ {1, 2, 4, 8, 16}
(see Figure 4.19 and 4.20)
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Figure 4.15: Experiment 1.1: η = 100, χ = 50, M ∈ {1, 2, 4, 8, 16}
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Figure 4.16: Experiment 1.1: η = 100, χ = 50, M ∈ {1, 2, 4, 8, 16}
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Figure 4.17: Experiment 1.2: η = 100, χ = 100, M ∈ {1, 2, 4, 8, 16}
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Figure 4.18: Experiment 1.2: η = 100, χ = 100, M ∈ {1, 2, 4, 8, 16}
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Figure 4.19: Experiment 1.3: η = 100, χ = 150, M ∈ {1, 2, 4, 8, 16}
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Figure 4.20: Experiment 1.3: η = 100, χ = 150, M ∈ {1, 2, 4, 8, 16}
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Experiments 2.1-2.3 consider a fixed network size of η = 150 but the amount of
services χ and the number of managers M have been varied.

• Experiment 2.1: η = 150, χ = 50, M ∈ {1, 2, 4, 8, 16}
(see Figures 4.21 and 4.22)

• Experiment 2.2: η = 150, χ = 100, M ∈ {1, 2, 4, 8, 16}
(see Figures 4.23 and 4.24)

• Experiment 2.3: η = 150, χ = 150, M ∈ {1, 2, 4, 8, 16}
(see Figure 4.25 and 4.26)
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Figure 4.21: Experiment 2.1: η = 150, χ = 50, M ∈ {1, 2, 4, 8, 16}
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Figure 4.22: Experiment 2.1: η = 150, χ = 50, M ∈ {1, 2, 4, 8, 16}
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Figure 4.23: Experiment 2.2: η = 150, χ = 100, M ∈ {1, 2, 4, 8, 16}
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Figure 4.24: Experiment 2.2: η = 150, χ = 100, M ∈ {1, 2, 4, 8, 16}
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Figure 4.25: Experiment 2.3: η = 150, χ = 150, M ∈ {1, 2, 4, 8, 16}
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Figure 4.26: Experiment 2.3: η = 150, χ = 150, M ∈ {1, 2, 4, 8, 16}

The following three experiments are similar to the first ones but the the network
size is set to η = 200

• Experiment 3.1: η = 200, χ = 50, M ∈ {1, 2, 4, 8, 16}
(see Figures 4.27 and 4.28)

• Experiment 3.2: η = 200, χ = 100, M ∈ {1, 2, 4, 8, 16}
(see Figures 4.29 and 4.30)

• Experiment 3.3: η = 200, χ = 150, M ∈ {1, 2, 4, 8, 16}
(see Figure 4.31 and 4.32)
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Figure 4.27: Experiment 3.1: η = 200, χ = 50, M ∈ {1, 2, 4, 8, 16}
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Figure 4.28: Experiment 3.1: η = 200, χ = 50, M ∈ {1, 2, 4, 8, 16}
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Figure 4.29: Experiment 3.2: η = 200, χ = 100, M ∈ {1, 2, 4, 8, 16}
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Figure 4.30: Experiment 3.2: η = 200, χ = 100, M ∈ {1, 2, 4, 8, 16}
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Figure 4.31: Experiment 3.3: η = 200, χ = 150, M ∈ {1, 2, 4, 8, 16}
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Figure 4.32: Experiment 3.3: η = 200, χ = 150, M ∈ {1, 2, 4, 8, 16}
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Conclusion Deduced From Conducting Experiments. The results of the trade-off
explorations of Experiments 1.1 - 3.3 are depicted in Figure 4.15 - 4.32. The results
attest the introduced simultaneous approach a very good performance in all kind of
settings. Indeed, it is characterized by high STEs and low message overhead. The
more managers are used in the assignment process, the better will be the improve-
ment of STEs, often with higher although still acceptable overhead below 2.55% in
worst context setting (i.e., η = 150, χ = 100, M = 16).

Scalability Behavior. In this part, the scalability behaviour of the simultaneous
self-configuration regarding service amount and network size is examined. The
number of desired managers is set to 10, while each manager knows all other nodes
in the network. As stated in the specification, messages need to be sent to estab-
lish the simultaneous self-configuration process. This overhead is evaluated on the
basis of the following four experiments:

• Experiment 1: χ = 100 services, network size η ∈ [50, 500]

• Experiment 2: χ = 200 services, network size η ∈ [50, 500]

• Experiment 3: χ = 400 services, network size η ∈ [50, 500]
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Figure 4.33: Scalability of the self-configuration regarding
network size (10 managers)
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Please note that all experiments are conducted according to the description given
above in Section 4.5.1. Figure 4.33 shows the results of these experiments, whereas
the values on the x-axis stand for the network size and the average number of
messages by each node is depicted on the y-axis. In all experiments, the results in-
dicate that our self-configuration approach can be classified as being independent
from the network size, since nodes do not send more messages within a bigger net-
work. By contrast, the proposed algorithm performs better in a bigger network.
The reason for this behaviour is that large networks tend to reduce the competition
between managers and thus reduce the message overhead arising from their coor-
dination. In general, the bigger the network, the less coordination between man-
agers is needed. Concluding, thanks to the independence of the message overhead
caused by the self-configuration from the network size, our proposed approach
seems suitable to be applied in adaptive self-* systems within large number of
nodes.

4.6 Conclusions and Future Work

In this chapter, a trust-aware self-configuration algorithm for self-* systems has
been proposed. The proposed algorithm extends the well-known Contract Net
Protocol [Smi80] by including trust to allow in the system a robust and trustwor-
thy distribution of services on nodes. The trust-based distribution approach was
presented in Section 4.3. It aims on the one hand to equally distribute the load of
services on nodes as in a typical load balancing scenario and on the other hand to
assign services with different importance levels to nodes so that the more important
services are assigned to more trustworthy nodes. Performance measurements have
been conducted in Section 4.3.4 to evaluate the trust-enhanced self-configuration
against the baseline Contract Net Protocol. The results showed that the trust-
enhancement mechanisms indeed provide an even better availability for hosting
important services than the baseline algorithm. However, self-configuration must
take into account the termination time needed for assigning services not only by
using one manager but also with multiple managers. Therefore, a way is sug-
gested in Section 4.5 to extend the self-configuration with multiple managers to
achieve a simultaneous behaviour of assigning services on nodes. The simulta-
neous self-configuration have been evaluated within different context settings in
Section 4.5.1. The results show an outstanding performance for the simultaneous
self-configuration with a decrease in processing time of minimum 50%. For fu-
ture work, learning mechanisms are planed to investigate the optimal trade-off α

between trust and workload. This is very important to further improve the per-
formance of the proposed self-configuration algorithm. One possible solution to
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address this issue could be to provide a function that maps the important levels of
services with the assortment of α, but as it goes beyond the scope of this work it is
not further discussed here.
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5
Trust-Aware Self-Optimization

Abstract. In this chapter, we present a self-optimization approach that

does not only consider pure load-balancing but also takes into account

trust to improve the assignment of important services to trustworthy

nodes. Our approach uses different optimization strategies to deter-

mine whether a service should be transferred to another node or not.

The evaluation results showed that the proposed approach is able to

balance the workload between nodes nearly optimal. Moreover, it

improves significantly the availability of important services, i.e., the

achieved availability was no lower than 85% of the maximum theoreti-

cal availability value.

5.1 Introduction

Open distributed systems are rapidly getting more and more complex. Therefore,
it is essential that such systems will be able to adapt autonomously to changes
in their environment. They should be characterized by so-called self-* properties
such as self-configuration, self-optimization and self-healing. The autonomous
optimization of nodes at runtime in open distributed environments is a crucial
part for developing self-optimizing systems. In this chapter, a trust-aware self-
optimization algorithm for self-* systems is presented. It does not only consider
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pure load-balancing but also takes into account trust to improve the assignment
of important services to trustworthy nodes. The proposed self-optimization ap-
proach makes use of different optimization strategies based on trust to determine
at runtime whether a service should be transferred to another node or not. The
trust definition [SKL+10] adopted for this work is the definition provided by the
research unit OC-Trust of the German Research Foundation (DFG) by regarding
different facets of trust, as, for example, safety, reliability, credibility and usability.
The focus here lies on the reliability aspect. Furthermore, it is assumed that a node
can not realistically assess its own trust value because it trusts itself fully. Therefore,
the calculation of the trust value in this work must be done with the previously in-
troduced trust metrics presented in chapter 3.4. With trust information, nodes of a
system have a reference about which nodes to cooperate with, and this is impor-
tant for self-optimizing systems. The chapter offers as contribution the following
aspects:

(i) a decentralized self-optimization algorithm for load balancing taking into ac-
count trust — respectively reliability — to increase the robustness of impor-
tant services in open distributed environments (see Sections 5.3 and 5.4),

(ii) a formal description of the optimization strategies to determine at runtime
whether a service should be transferred to another node or not (see Sec-
tion 5.5), and

(iii) a set of extensions for the basic algorithm to further improve its performance
time in case of multiple simultaneous requests (see Section 5.6)

All aspects are evaluated and discussed with respect to a toolkit based on the
TEM [ASM+13], a trust-enabling middleware for building real-world distributed
Organic Computing systems. Section 5.7 provides evaluation results of the pro-
posed self-optimization algorithm and demonstrate the benefits of the proposed
extensions. Finally, the chapter is closed with a conclusion and future work in Sec-
tion 5.8.

5.2 Related Work

A lot of papers have been published to deal with the assignment problem of ser-
vices on nodes, either to achieve a static or dynamic load balancing [KAA+13,
BKL00, PM15, SKC15, AUNDFMGS+15, ABAS16]. In most existing algorithms,
the consideration of the trustworthiness of nodes has been neglected so far. For
instance, the work of Rao et al. [RLS+12] proposes several methods for solving the
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load balancing problem in distributed systems. One of these methods, called one-
to-one, is similar to our approach: two nodes are picked at random. Then, a virtual
server transfer is initiated if one of the nodes is heavy and the other is light. Their
method, however, does not consider how the availability of important services may
be improved, and does not distinguish between trustworthy and untrustworthy
nodes. Bittencourt et al. [BMCB05] presented an approach to schedule processes
composed of dependent services onto a grid. This approach is implemented in the
Xavantes grid middleware and arranges the services in groups. It has the draw-
back of a central service distribution instance and therefore a single point of failure
can occur. In [LSJB11], two different self-optimization algorithms for LTE networks
are presented. One of these algorithms, called Load Balancing in Downlink LTE
networks, is similar to our approach. The authors try to shift the virtual load of
overloaded cells to less loaded adjacent cells by changing the virtual cell borders.
The virtual load is modeled as the sum of resources needed to achieve a certain QoS
for all active user equipments. Matrix [WZL+14] is another approach to combine
load optimization with data-aware scheduling. The authors propose to apply adap-
tive work stealing techniques to achieve load balancing in distributed many-tasks
computing environment. Tasks are organized in queues based on their size and lo-
cations. Then, a ZHT is used to submit tasks to idle schedulers and to monitor the
execution progress of tasks in a scalable way. Whenever a scheduler has no more
tasks, it communicates with other heavy-loaded schedulers to receive new tasks.
Their approach does not take the priority of different service classes into account.
In [SMB+09], the authors presented a receiver-initiated optimization algorithm that
automatically balances the workload of nodes in distributed computing environ-
ments. It is implemented in the OCµ middleware. In their algorithm, services
can be relocated or transferred to other nodes to balance the resource consump-
tion among nodes. Moreover, it takes the trust constraints of nodes into account to
transfer important services only to trustworthy nodes. However, it is based on the
unrealistic assumption that all nodes have the same resource capacity. Contrary to
this work, our approach is able to work with heterogeneous capacities. More pre-
cisely, we are interested in a dynamic receiver-initiated [DLEJ86] self-optimization
algorithm (i.e., since services are assumed not to be stolen from other nodes) that
has neither a central control nor complete knowledge about the system. The algo-
rithm must not only consider pure load-balancing but also takes into account trust
to improve the assignment of important services to trustworthy nodes. And all this
at runtime. Parts of the content of this chapter have been published by the author
in the following conference and journal:

• [MKU14b]: Nizar Msadek, Rolf Kiefhaber, and Theo Ungerer. A Trust- and
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Load-Based Self-Optimization Algorithm for Organic Computing Systems. SASO
2014: Proceedings of the 8th International Conference on Self-Adaptive and
Self-Organizing Systems, pages 177-178, London, England, IEEE Computer
Society, 2014. 2014.

• [MKU15b]: Nizar Msadek, Rolf Kiefhaber, and Theo Ungerer. Trustworthy
Self-Optimization in Organic Computing Environments. In ARCS 2015: Proceed-
ings of the 28th International Conference on Architecture of Computing Sys-
tems, pages 123-134, Porto, Portugal, Springer 2015.

• [MU17b]: Nizar Msadek and Theo Ungerer. Trustworthy Self-Optimization
for Organic Computing Environments Using Multiple Simultaneous Requests. In
JSA 2017: Journal of Systems Architecture, issn 1383-7621, http://www.
sciencedirect.com/science/article/pii/S1383762117301388

5.3 Basic Idea of the Self-Optimization Algorithm

A distributed system consisting of a set of n nodes N = {n1, n2.., nn} is consid-
ered, where each node can interact with each other through a set of application
messages. They can optimize at runtime the assignment of services in the network
by transferring their own services to other nodes. Suppose that node j at a certain
point during runtime sends an application message to another node i. It appends
onto the outgoing message (a) its trust in node i (b) its current workload and (c)
some information (i.e., importance level and consumption) about services, which
are running on it. Based on this information node i decides which of the following
optimization strategies should be performed:

5.3.1 No Optimization

• Description: The workload between nodes is well balanced and their trust
values are similar enough.

• Discussion: This is the simplest case that can happen between nodes. Both
of them are well optimized in terms of trust and workload.

• Solution: Nothing will happen

5.3.2 Load Optimization

• Description: Trust of nodes is similar enough but their workload is unbal-
anced.
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• Discussion: This strategy aims to find a pure load balancing between nodes
since their trust is similar enough.

• Solution: Services are transferred in order to balance the workload between
the nodes. Then, two cases are distinguished: (a) either the workload of i is
higher or (b) the workload of j is higher. In the case of (a), node i balances the
workload of the nodes by transferring a subset of its services to j. Otherwise,
node i sends an alert message to j together with all information which are
necessary for the optimization. Case (a) will be then triggered on side of j.

5.3.3 Trust Optimization

• Description: The workload between nodes is well balanced but their trust
values differ significantly. In this case important services might run on un-
trustworthy nodes and are prone to fail.

• Discussion: This strategy aims to use particularly trustworthy nodes for im-
portant services. Therefore, important services have to be relocated to more
trustworthy nodes and unimportant services to less trustworthy nodes. Fur-
thermore, the overall workload resources between nodes should still be well-
balanced.

• Solution: By this strategy, we distinguish between two cases: (a) either i is
more trustworthy than j or (b) j is more trustworthy than i. If (a), then i
swaps its unimportant services for important services of j. In the case of (b),
node i swaps its important for unimportant services of j. Note that the load
consumption between important and unimportant services should be similar
to keep the load-balancing property in both nodes satisfied.

5.3.4 Trust and Load Optimization

• Description: Trust of nodes differs significantly and their workload is unbal-
anced.

• Discussion: This strategy aims at workload balancing with additional con-
sideration of the services’ priority, i.e. to avoid hosting important services on
untrustworthy nodes.

• Solution: Four cases are distinguished: (a) either the workload of i is higher
and i is more trustworthy than j, (b) the workload of i is higher but j is more
trustworthy, (c) the workload of j is higher but it is less trustworthy than i, or
finally (d), the workload of j is higher and it is also more trustworthy than j.
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In the case of (a), node i balances the workload of load by transferring only
unimportant services to j. If there are no unimportant services available, then
no optimization is done. The rationale for this step is that there is a trade-off
between trust and workload. Improving one of these criteria will typically
deteriorate the other. In the case of (b), node i balances the workload by trans-
ferring only important services to j. Just as the case of (b), no optimization is
done, if there are no available unimportant services. In other cases (i.e., c and
d), node i sends an alert optimization message to j to piggy-back information
necessary for self-optimization. Depending on the situation, case (a) or (b)
will be then triggered on side of j.

5.4 Metrics and Notions

Since it is very complex to address the self-optimization problem in its full gener-
ality, we make some simplifying assumptions. Firstly, we assume that the load of
a service is stable (or can otherwise be predicted) over the time interval it takes for
the self-optimization algorithm to operate. Secondly, we assume there is only one
bottleneck resource we are trying to optimize for. Let wi denote the workload of
a node i, where wi represents the sum of the resource consumptions of all services
running on node i (see Formula 5.1).

wi = ∑
s∈Si

cs, with 0 ≤ wi ≤ Cmax
i . (5.1)

It is to note that cs means the resource consumption of a service s. The maxi-
mum resource capacity of a node i is denoted by Cmax

i and its set of services by Si.
Moreover, we divide services Si into two sets based on their importance levels:

• S imp
i : Set of important services (running on node i), which are necessary for

the functionality of the entire system.

• Sunimp
i : Set of unimportant services (running on node i), which have only a

low negative effect on the entire system if they fail.

Then, considering only the context of pure load optimization, our goal is to balance
the workload between nodes. Let us assume two nodes, i and j: node i is under-
loaded. However, node j is overloaded and its task is to balance the workload
by service transfers to i. Thus, as you can see in Figure 5.1, j transfers its services
whose cumulative resource consumption is close enough to |wj−wi |

2 (optimal balanc-
ing). Although this simple idea seems to make a lot of sense, its drawback arises
when the resource capacities of nodes are significantly different (see Figure 5.2).
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Figure 5.1: Simple load optimization method

Figure 5.2: Nodes still unbalanced due to their
different resource capacities

Therefore, we introduce a new optimal theoretical workload Oi, which should
serve as a target reference point for every node. The node which surpasses this
reference point (wi > Oi + δtol) is considered to be overloaded, otherwise it is un-
derloaded (wi < Oi − δtol) or balanced (|Oi − wi| ≤ δtol), where a δtol is a tolerable
threshold and represents the quality to reach the perfect workload. The optimal
theoretical workload of a node i is calculated using Formula 5.2. Since wi is nor-
malized in a different capacity than wj, we must first divide the sum of workload
wi + wj by the sum of capacity cmax

i + cmax
j to obtain the optimal theoretical work-

load per one unit capacity, which will be then multiplied by cmax
i . Furthermore,

each node has an individual trust value calculated based on the previously intro-
duced trust metrics presented in chapter 3.4. Recall, the trust value ti(j) represents
the subjective trust of node i in node j and will always range between 0 and 1. The
value of 0 means that i does not trust j at all while a value of 1 stands for com-
plete trust. Two nodes i and j are considered to have a similar trust behavior if
|ti(j) − tj(i)| ≤ γtol , where γtol is a tolerable threshold and reflects the quality to
achieve a good trust similarity between nodes.

Oi =
wi + wj

cmax
i + cmax

j
cmax

i (5.2)
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5.5 The Algorithm in Detail

The algorithm proposed in this section represents a best-effort approach to improve
the assignment of services on nodes so as to satisfy both workload and trust con-
straints. It is used to solve this problem in a distributed manner. We assume that
nodes of the network do not know the workload of others until they receive a mes-
sage from a node with information about that. The workload of nodes also might
change over time. We further assume that a node can not assess its own trust value,
but is rated by other nodes. Therefore, its trust value must be calculated from the
neighbor nodes of the network (see [KJMU13] for more details). Note that the trust
of nodes might also change over time. Again we are considering two nodes i and j,
where j sends an application message mj to i, on which it piggybacks the following
additional information:

• Sunimp
j : Set of less important services running on node j

• S imp
j : Set of important services running on j

• tj(i): Current trust value of j in i

• wj: Current workload value of j

• cmax
j : Maximum resource capacity of j

Based on this information node i decides which optimization strategy should be
performed. In the following we consider all possible decisions a node i has to make:

5.5.1 No Optimization

• Formal description: |ti(j)− tj(i)| ≤ γtol and |Oi − wi| ≤ δtol

• Solution: Nothing will happen

5.5.2 Load Optimization

• Formal description: |ti(j)− tj(i)| ≤ γtol and |Oi − wi| > δtol

– Case a: wi > Oi and wj < Oj

Node i balances the workload by transferring some of its services to j,
regardless of whether they are important or not since the trust of nodes
is similar. Firstly, it determines Ψi,j (see Formula 5.3 and 5.4) as a set of
services that could be selected to balance the workload of nodes. Note
that C(Is) represents the consumption function of a set of services Is and
is calculated by the sum of all its service consumptions.
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Ψi,j = {Is | Is ⊆ (S imp
i ∪ Sunimp

i ) : max C(Is) and

C(Is) ≤ (Oj − wj) and 0 < C(Is) ≤ (wi −Oi)}
(5.3)

C(Is) = ∑
s∈Is

cs (5.4)

If Ψi,j is empty, then no optimization is done. Otherwise i transfers Ψi,j

to j.

– Case b: wi < Oi and wj > Oj

Since services are assumed not to be stolen from other nodes, node i
sends an alert message to j to piggy-back information necessary for self-
optimization as described above. Then, case (5.5.2-a) will be triggered
but on the side of j.

5.5.3 Trust Optimization

• Formal description: |ti(j)− tj(i)| > γtol and |Oi − wi| ≤ δtol

– Case a: tj(i) > ti(j)
In this case i determines Ψi,j (see Formula 5.5) as a set of unimportant
services (i.e., with the maximum load consumption) that could be ex-
changed for important services of j so that the difference of their load
consumption never exceeds Ctol to keep the load-balancing property in
both nodes satisfied.

Ψi,j = {Is | Is ⊆ Sunimp
i , ∃Js ⊆ S imp

j : max C(Is) and

|C(Is)− C(Js)| ≤ Ctol and (C(Is) + wj) ≤ cmax
j }

(5.5)

Then, after transferring Ψi,j, node i sends an alert optimization message
to j (i.e., including all information which are necessary for the optimiza-
tion) in order to trigger case (5.5.4-b) on side of j. Note that the execution
of this step aims to balance again the workload between the nodes.

– Case b: tj(i) < ti(j)
In contrast to case (5.5.3-a), Ψi,j is determined only from important ser-
vices (see Formula 5.6), since j is more trustworthy than i. Then, i sends
an alert optimization message to j in order to trigger case (5.5.4-a) on
side of j.
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Ψi,j = {Is | Is ⊆ S imp
i , ∃Js ⊆ Sunimp

j : max C(Is) and

|C(Is)− C(Js)| ≤ Ctol and (C(Is) + wj) ≤ cmax
j }

(5.6)

5.5.4 Trust and Load Optimization

• Formal description: |ti(j)− tj(i)| > γtol and |Oi − wi| > δtol

– Case a: wi > Oi and wj < Oj and tj(i) > ti(j)
Node i balances the workload only by transferring unimportant services
to j (i.e., due to the fact that i is more trustworthy than j). It determines
Ψi,j as a set of only unimportant services that could be selected to balance
the workload of nodes (see Formula 5.7). Then, i transfers Ψi,j to j.

Ψi,j = {Is | Is ⊆ Sunimp
i : max C(Is) and C(Is) ≤ (Oj − wj)

and 0 < C(Is) ≤ (wi −Oi)}
(5.7)

– Case b: wi > Oi and wj < Oj and tj(i) < ti(j)
Since j is more trustworthy than i, Ψi,j will be determined only from
important services (see Formula 5.8). Then, just as the case of (5.5.4-a), if
Ψi,j is empty, no optimization is done. Otherwise i transfers Ψi,j to j.

Ψi,j = {Is | Is ⊆ S imp
i : max C(Is) and C(Is) ≤ (Oj − wj)

and 0 < C(Is) ≤ (wi −Oi)}
(5.8)

– In other cases:
Node i sends an alert message to j (i.e., including all information which
are necessary for the optimization). Depending on the situation, case
(5.5.4-a or 5.5.4-b) will then be triggered on the side of j.
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5.6 Multiple Simultaneous Requests

In the evaluation, we have shown that the basic self-optimization algorithm pre-
sented in Section 5.5 led to good performance in terms of trust and workload, but
we think that there is a room for improvement with the mechanism presented in
this section. Therefore, we analyze now a network situation consisting of multi-
ple simultaneous requests which are addressed to a single node to trigger the self-
optimization process. Figure 5.3 gives an overview of this situation. Let ni denote

in

Multiple simultaneous
 requets at this time

Time

1l 2l kl… ...

start

End

start

End

…
...

start

End

Figure 5.3: Current execution of the basic algorithm

the node that receives the requests and let be Li = {l1, l2, ..., lk} the set of requesters
considered by ni. We first start with the description of the environment of ni that
has full information about its requesters. It can easily determine the set of poten-
tial service transfers Ψni ,lj for each requester lj ∈ Li, using the equations cited in
Section 5.5, depending on the current situation of nodes. In the basic approach, as
shown in Figure 5.3, ni optimizes itself with the requesters one after another in a
random way without having preference for those that have many potential service
transfers. By this means, the overall optimization in the system might take a long
time before a large amount of services are transferred, particularity with a growing
number of requesters. As a result, too much time can be spent in the whole system
to get better optimized nodes. Our goal is to reduce this time by transferring the
maximum amount of services as early as possible at runtime. Two approaches can
be used to handle this problem.
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5.6.1 Selective Request Handling

The first approach is called selective request handling because it always allows ni to
select the best requester to perform the optimization. We make use of two param-
eters in our approach, namely X and SΨ. The first parameter X is initialized as the

Algorithm 1 Node ni:

1: X ← Li . initialize X as the set of all involved requesters
2: SΨ = nil . SΨ is initialized as empty list of fixed size |Li|
3: for x ∈ X do
4: calculate |Ψni ,x| and append it to SΨ

5: end for

6: while X 6= ∅ do
7: select from SΨ the requester x with:
8: {x|∃x ∈ X : |Ψni ,x| is max and |Ψni ,x| > 0}
9: if no requester with such a property exists then

10: exit
11: else
12: x perform an optimization with ni

13: remove x from X
14: end if
15: end while

set of all involved requesters — in our case always Li — and SΨ is an empty list
of fixed size |Li| used to store the potential number of service transfers. The basic
idea behind the algorithm is: Whenever ni receives multiples requests, it calculates
the number of service transfers for every requester and applies an optimization
with the requester whose services are most among the remaining requesters in X.
If there is no requester with such a property, nothing will be done, as the nodes
are already optimized. Otherwise, the found requester is removed and this process
is repeated until all requesters are processed. In Algorithm 1, the above described
algorithm is formalized as pseudo-code. This approach is very simple – and even
in the worst case it is at least never worse than doing optimization with random
selection – but the optimization output might be suboptimal regarding the overall
self-optimization time due to its sequential processing. Therefore, we are interested
in the second approach to provide a solution which supports parallelism through
the optimization of requesters.
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5.6.2 Parallel Request Handling

While in the first approach we match ni to a single requester to perform the opti-
mization process, in this approach we consider a parallel optimization between re-
questers that work together to maximize the number of service transfers, as shown
in Figure 5.4. This has the benefit to further decrease the optimization time in the
whole system. However, nodes in our system have different trust and workload

in
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start
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start
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Figure 5.4: Simplified representation of
the parallel request handling

values and some of them can transfer more services with one than others. There-
fore, an important aspect for ni is the formation of pairs between nodes — to apply
the optimization algorithm in pairs and parallel — but in a way that the number of
service transfers will be maximized in the system in order to deliver better results.
Algorithm 2 shows the proposed mechanism formalized as pseudo-code.

At the beginning, we initialize two parameters X and TΨ. The first parameter
X = {ni} ∪ Li represents the set of all nodes involved in the multiple requests,
whereas the second parameter TΨ stands for an integer matrix of size |X| × |X|,
which we use to store the number of service transfers between nodes. Again, we
say that x can optimize itself better with y than z, if and only if |Ψx,z| ≤ |Ψx,y| with
y 6= z. Then, the algorithm is split into two phases, the first of which is similar to
the selective request handling, but we now allow to calculate the number of service
transfers between any two nodes in X. Intuitively, reflexive suitability values such
as Ψx,x are not computable in this phase, simply because it is not allowed that a
node is optimizing itself. Afterwards, the algorithm enters in its second phase ex-
ploring pairs having at least a service transfer of one and maximizing at the same
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Algorithm 2 Node ni:

1: X ← {ni} ∪ Li . initialize X as the set of all involved nodes

2: TΨ ←

ni l1 . . . lk

ni 0 0 . . . 0

l1 0
. . . 0

... 0 0
lk 0

. is an empty lookup table of size |X| × |X|

Phase 1

3: for x ∈ X do
4: for y ∈ X \ {x} do
5: calculate |Ψx, y| and append it to TΨ

6: end for
7: end for

Phase 2

8: while two nodes remain in X do
9: select from TΨ the pair (x, y) with:

10: {(x, y)|∃x, y ∈ X : |Ψx,y| is max and |Ψx, y| > 0}
11: if no pair with such a property exists then
12: exit
13: else
14: x and y become engaged to perform the optimization
15: remove x and y from X
16: end if
17: end while
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time the number of service transfers. If there is no pair with such a property, the
algorithm terminates. Otherwise, the found pair becomes engaged to perform the
optimization process. Then, the pair is finally removed from the set of X. The while
loop continues until there are no more pairs to perform the optimization process.
To demonstrate the proposed algorithm an example is discussed.

• Example: In this example, an instance of parallel request handling involving
five requesters is considered, with X = {ni, l1, l2, l3, l4, l5}. We assume that
the set of service transfers between nodes has already been processed by ni,
leading to the relation graph illustrated in Figure 5.5.

l1 l3

ni l5

l4l2

|Ψni ,l1 | = 3

|Ψni ,l2 | = 7
|Ψni ,l4 | = 4

|Ψl1,l3 | = 11

|Ψl1,l4 | = 5

|Ψl1,l5 | = 8

|Ψl2,l4 | = 2

|Ψl3,l5 | = 4

|Ψl4,l5 | = 9

Figure 5.5: Relation graph of potential service transfers

Based on this information, the algorithm starts its first phase by calculating
TΨ. So phase one ends with the table of matrix presented in Figure 5.6. In
the second phase, we need to define for each node its best partner that con-
tributes to maximize the service transfers in the whole system. In the iter-
ation loop1 the pair (l1, l3) is identified first. This is because (l1, l3) returns
the maximum number of service transfers in TΨ. Eliminating them gives
X = {ni, l2, l4, l5}. Next, pair (l4, l5) is identified in loop2 and its elimination
yields X = {ni, l2}. Finally, the pair (ni, l2) is identified and its elimination
gives X = {∅}. Hence, the algorithm finishes with the following optimiza-
tion pairs {(l1, l3), (l4, l5), (ni, l2)}.
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TΨ =

ni l1 l2 l3 l4 l5
ni 3 7 0 4 0

l1 0 11 5 8

l2 0 2 0

l3 0 4

l4 9

l5

Figure 5.6: A simplified representation of TΨ after
the execution of phase one

5.7 Evaluation

In this section an evaluation for the introduced self-optimization approach is pro-
vided. For the purpose of evaluating and testing, an evaluator based on the TEM
middleware [ASM+13] has been implemented which is able to simulate the self-
optimization algorithm. The evaluation network consists of 100 nodes, where all
nodes are able to communicate with each other using message passing. Experi-
ments with more nodes were tested and yielded similar results, but with 100 nodes
more observable effects were seen. Each node has a limited resource capacity
(memory) and is judged by an individual trust value without any central knowl-
edge. Furthermore, four type of nodes are defined with different trust and resource
values (see Table 5.1).

Table 5.1: For reasons of consistency with the previous self-configuration results,
the same network setting is considered as in Table 4.1.

Node Type Memory (MB) Trust Amount (%)

Type 1 [500 - 1000] [0.7 - 0.9] 10

Type 2 [500 - 1500] [0.3 - 0.6] 50

Type 3 [2000 - 4000] [0.4 - 0.8] 30

Type 4 [4000 - 8000] [0.4 - 0.9] 10

Then, a mixture of heterogeneous services with different resource consumptions
are randomly generated for nodes. The sum of all node’s service consumptions
does not exceed a node’s capacity (i.e., as defined in Formula 5.1). If, for exam-
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ple, a trustworthy node is already full, then the same procedure is repeated for
an untrustworthy node and so on until the average load of the system reaches
50% (workload = 50%). This means that some nodes may have many services
and others none to unbalance the workload between nodes. Important services
are created only for untrustworthy nodes and unimportant services for trustwor-
thy nodes. Without the self-optimization techniques the workload of nodes are still
unbalanced. Moreover, important services running on untrustworthy nodes are
prone to fail. With the use of direct trust and reputation, the trust of a node can
be measured and taken into consideration for the transfer of services. Two rating
functions are used to evaluate the fitness of a service distribution regarding trust
and workload. The first rating function for workload Fworkload aims to calculate the
average deviation of all nodes from the desired workload workload (in our case,
50%). This is expressed by the Formula 5.9, where N is the set of all nodes and
|N | the cardinality of N . The main idea of the second rating function Ftrust is to

Fworkload =

∑
n∈N
|workload(n)− workload|

|N | (5.9)

workload =

∑
n∈N

workload(n)

|N | (5.10)

reward important services running on trustworthy nodes. This is expressed by the
Formula 5.11, where N is the set of all nodes, Sn is the set of services on a node n,
t(n) its trust value and p(s) the priority of a service s (i.e., if s is important, P(s) has
the value of 1, otherwise 0).

Ftrust = ∑
n∈N

∑
s∈Sn

p(s)t(n) (5.11)

At the beginning of the simulation, the network is rated by using both Ftrust and
Fworkload. Then, the simulation is started and after each optimization step the net-
work is rated again. Within one optimization step, 50 pairs of nodes (sender/re-
ceiver) are randomly chosen to perform the self-optimization process, i.e., ρ = 50%.
Senders send an application message to receivers to piggyback necessary informa-
tion for the self-optimization, as described in section 5.3. Based on the extracted
information the receiver determines whether it transfers its services or not. The
goal is to maximize the availability of important services, which means that Ftrust

should be maximized (i.e., to an optimal theoretical point that we explain later
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in 5.7.2). Therefore, it is necessary to transfer the more important services to more
trustworthy nodes. Furthermore, the overall utilization of resources in the network
should be well-balanced, i.e., Fworkload should be minimized near to zero.

5.7.1 Results regarding the rating function Fworkload

As mentioned above, the first rating function Fworkload indicates the average work-
load deviation of all nodes from the desired workload workload (in our case, 50%).
The lower the value of Fworkload, the better the performance of workload balancing.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 0  10  20  30  40  50

R
at

in
g 

fu
nc

tio
n 

fo
r 

W
or

kl
oa

d

Optimization-steps

Figure 5.7: Rating function for the workload deviation (Fworkload)

Figure 5.7 shows the result of this experiment, whereas the values on the x-axis
stand for optimization steps and the average workload deviation of nodes is de-
picted on the y-axis. It can be observed that the proposed algorithm improves the
workload balancing by about 93%. However, it does not reach the theoretical max-
imum rate of 100% due to the trade-off between trust and workload.

5.7.2 Results regarding the rating function Ftrust

In the following, the service distribution for the proposed self-optimization algo-
rithm is evaluated regarding Ftrust.

Figure 5.8 shows the result of this experiment. The square line represents the re-
sult of Ftrust using the proposed self-optimization algorithm. It can be observed
that the algorithm improves during runtime the availability of important services.
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Figure 5.8: Rating function for Trust (Ftrust)

This means that the consideration of workload does not prevent the algorithm to
relocate important services to trustworthy nodes. However, it remains to investi-
gate the quality of the obtained result compared to an optimal theoretical result,
when all important services are hosted only on trustworthy nodes (pure trust dis-
tribution, i.e., regardless of whether nodes are balanced or not). For this purpose
we use an approximation algorithm that sorts in decreasing order the trust values
of nodes and relocates all important services only to most trustworthy nodes until
their capacity is full. The triangular marked line in the figure illustrates the result
of the approximation algorithm. As a conclusion to all simulations we have done
so far (about 1000 runs were evaluated) we can state that the proposed algorithm
greatly improves the trust distribution of services. More precisely, it achieves 85%
of the theoretical maximum result. However, it stays by 15% behind the theoretical
maximum result due to the trade-off between trust and workload.

5.7.3 Basic Algorithm vs. Extensions

In this section, the gain of applying the proposed extensions with respect to Sec-
tion 5.6 is investigated. We use the similar parameter settings of the initial eval-
uation, but we now allow for a certain percentage of randomly chosen nodes to
receive multiple optimization requests simultaneously. This has the benefit to put
the evaluation more in a context of real life. In this part of work, the following three
algorithms are compared regarding their ability to perform the optimization in the
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system.

• Basic algorithm (ALG.1): The basic optimization algorithm as in the previous
experiments.

• Basic algorithm + Selective Request Handling (ALG.2): A variation of the
basic optimization algorithm using the extension of the selective request han-
dling (see Section 5.6.1).

• Basic algorithm + Parallel Request Handling (ALG.3): A variation of the
basic optimization algorithm using the extension of the parallel request han-
dling (see Section 5.6.2)

The three algorithms differ in the way they handle multiple requests, either se-
quential or parallel. Figures 5.9 and 5.10 present their comparison results with
respect to the rating functions Ftrust and Fworkload.
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Figure 5.9: Comparison results according to the rating function Fworkload

It is easy to see that both investigated variations of ALG.2 and ALG.3 indeed pro-
vide an even better optimization time than the basic algorithm ALG.1, especially
the variation of ALG.3, currently shows the best time performance to achieve the
optimization process. This is due to its ability to support parallelism through the
optimization of requesters such that every one optimizes itself with the node with
the highest gain of service transfers. This results — in the whole system — to a
reduce of the processing time into the overall optimization.
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Figure 5.10: Comparison results according to the rating
function Ftrust

5.7.4 Different Network Settings

In the following, additional experiments are conducted to further investigate the
behavior of the introduced self-optimization algorithm with different network set-
tings. We performed a binary classification of nodes with a ratio of 50/50, and for
each classification type, we generated a different amount of memory resources and
trust values, as shown in Table 5.2. Generally, the more trustworthy the nodes are,

Table 5.2: A binary classification of heterogeneous nodes

Node Type Memory (MB) Trust Amount (%)

Type 1 [8000 - 16000] [0.6 - 0.99] 50

Type 2 [1000 - 8000] [0.1 - 0.60] 50

the higher is the amount of their memory resources. We argue that this is a useful
and realistic network parametrization since it enables to model the behaviour of
servers and workstations which are expected to be trustworthy in real-world situa-
tions through the use of Type 1 as well the behavior of mobile devices (i.e., expected
in real-world to be less trustworthy than servers and workstations) through the use
of Type 2. The average workload workload is set to 45%. The experiments differ in
the adjustment of |N | and ρ. Recall, |N | states for the size of the network and ρ rep-
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resents the percentage amount of involved nodes within one optimization step to
perform the optimization process. In the following the results of conducted exper-
iments are presented. To ensure representative values, any experiment is repeated
300 times and the results are averaged.

The first three experiments examine the behaviour of the self-optimization algo-
rithm with a fixed |N | = 100 but different percentage of ρ.

• Experiment 1.1: |N | = 100, ρ = 30% (see Figures 5.11 and 5.12)

• Experiment 1.2: |N | = 100, ρ = 50% (see Figures 5.11 and 5.12)

• Experiment 1.3: |N | = 100, ρ = 70% (see Figures 5.11 and 5.12)

Experiments 2.1-2.3 consider a fixed network size of |N | = 200 and different per-
centage of ρ.

• Experiment 2.1: |N | = 200, ρ = 30% (see Figures 5.13 and 5.14)

• Experiment 2.2: |N | = 200, ρ = 50% (see Figures 5.13 and 5.14)

• Experiment 2.3: |N | = 200, ρ = 70% (see Figures 5.13 and 5.14)

The following three experiments are similar to the first ones but the the network
size is set to |N | = 400.

• Experiment 3.1: |N | = 400, ρ = 30% (see Figures 5.15 and 5.16)

• Experiment 3.2: |N | = 400, ρ = 50% (see Figures 5.15 and 5.16)

• Experiment 3.3: |N | = 400, ρ = 70% (see Figures 5.15 and 5.16)

The last three experiments examine the behaviour of the introduced algorithm with
|N | = 800 and different ρ.

• Experiment 4.1: |N | = 800, ρ = 30% (see Figures 5.17 and 5.18)

• Experiment 4.2: |N | = 800, ρ = 50% (see Figures 5.17 and 5.18)

• Experiment 4.3: |N | = 800, ρ = 70% (see Figures 5.17 and 5.18)
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Figure 5.11: Result of experiments 1.1 - 1-3 according to
the rating function Fworkload
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Figure 5.12: Result of experiments 1.1 - 1-3 according to
the rating function Ftrust
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Figure 5.13: Result of experiments 2.1 - 2-3 according to
the rating function Fworkload
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Figure 5.14: Result of experiments 2.1 - 2-3 according to
the rating function Ftrust
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Figure 5.15: Result of experiments 3.1 - 3-3 according to
the rating function Fworkload
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Figure 5.16: Result of experiments 3.1 - 3-3 according to
the rating function Ftrust
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Figure 5.17: Result of experiments 4.1 - 4-3 according to
the rating function Fworkload
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Conclusion Deduced From Conducting Experiments. The experiment results,
with the focus on workload, are depicted in Figures 5.11, 5.13, 5.15, and 5.17. These
figures show the optimization steps on the horizontal axis and the workload de-
viation of nodes on the vertical axis. Values near to the bottom left corner rep-
resent small deviation of workloads with few number of optimization steps. The
results attest the introduced self-optimization algorithm a continuous reduction of
the workload deviations in all kind of settings. Beside the workload balancing, the
introduced algorithm provides also a good ability to improve its speedup over the
parametrization of ρ, making it suitable to be applied in overfilled situations with
too many number of messages. Figures 5.12, 5.14, 5.16, and 5.18 show similar re-
sults to the workload experiments, but with the focus on trust. The optimization
steps are depicted on the horizontal axis and the fitness function for trust on the
vertical axis. Optimal theoretical values considering pure trust distributions are
marked with red triangular lines for each experiment. Similarly to the last results,
we can state that the algorithm developed in this work is able to always improve
the availability of important services at runtime and that the parametrization of ρ

plays here also an important role to increase the speedup of the trust optimization
in the whole system.

5.8 Conclusions and Future Work

In this chapter, a novel self-optimization algorithm for open distributed self-* sys-
tems has been proposed. The algorithm does not only consider pure load-balancing
but also takes into account trust to improve the assignment of important services
to trustworthy nodes at runtime. More precisely, the algorithm makes use of differ-
ent optimization strategies —- as cited in the corresponding part of Section 5.5 —
to determine whether a service should be transferred to another node or not. Sec-
tion 5.7 presents the results of the performance measurements that are conducted
to evaluate the algorithm. The results indicate that for our model trust concepts
improve significantly the availability of important services while causing a small
deterioration (i.e., by about 7%) regarding load balancing. Therefore, we classify
our algorithm as a kind of best-effort approach that provides good but not neces-
sarily optimal solutions to this trade-off problem. Then, a set of variations of the
basic algorithm are introduced in Section 5.6 to improve its performance in case of
multiple requests. The difference between the variations arises in the way to handle
requests, either sequential or parallel. In Section 5.7.3, a comparative evaluation is
conducted to analyze the performance results of the variations compared to the ba-
sic approach. The results attest a good performance for the extended optimization
algorithm with parallel request handling. In Section 5.7.4, an additional evalua-
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tion is provided to further investigate the behavior of our approach for different
network settings. The results indicate here as well a good performance for our al-
gorithm. It clearly attains its goals of both trust and load optimizations in all kind of
parametrizations and network sizes. Apart form this, the algorithm provides also
a good possibility to increase its speedup over the parametrization of ρ making it
suitable to be applied in overfilled situations with too many number of messages.
In future work, extensions are planed to deal with the Cold-Start-Problem, i.e., the
need to integrate new nodes with unknown trust values with other nodes in the
network. This is very important to improve the robustness of the proposed self-
optimization algorithm. One possible solution to address this issue could be to
make runtime prediction or online training for the new participating nodes, but as
it goes beyond the scope of this work it is not further discussed here.
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6
Conflicting Trust Values

Abstract. In an open self-* system with nodes representing machines,
the trust behavior of node participants may change during runtime. Ev-
ery node in the system can execute services of other nodes and also pro-
vide services to other nodes. It has to decide using trust for which nodes
it wants to execute the services and to which nodes it wants to give its
services. This service distribution is performed by using our former de-
veloped trust-based self-configuration approach, which were devised
to improve the availability of important services. However, this works
only well for environments, where all nodes see the same trust value
for a certain node. Hence, the baseline algorithm is not suited to oper-
ate with conflicting trust values. This situation can occur by collecting
trust values independently from the neighbors of a node that contra-
dict each other. The contribution of this chapter is a conflict resolution
mechanism as an extension to the baseline algorithm to operate with
conflicting trust values at the same time.

6.1 Introduction

Current self-* systems — such as AC/OC — focus on developing novel mecha-
nisms capable of so-called self-* properties to manage the growing complexity of
today’s computing systems. In such systems, trust has become an important aspect
to reduce the information uncertainty of misbehaving nodes. With appropriate
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trust techniques, nodes in the system can have a clue about which nodes to co-
operate with. This is very important to improve the robustness of self-* systems,
which depends on a cooperation of autonomous nodes. So far, we have enhanced
the self-configuration and self-optimization properties with trust capabilities (for
more details we refer to Chapters 4 and 5) but these approaches were based on the
assumption that nodes in the system have the same trust value in a certain node.
This means that our former work on the self-* properties is not suited to operate
with conflicting trust values at the same time. This situation can happen by col-
lecting trust values independently from the neighbors of a node that can contradict
each other. The contribution of this chapter is a conflict resolution mechanism as an
extension to our former work to cope with the problem of conflicting trust values
in self-* systems. The chapter offers as contribution the following aspects:

(i) A highlight of our former developed work to easily put the reader in the
context needed for understanding the problem of conflicting trust (see Sec-
tion 6.2),

(ii) a description of the recognized problem using a simple example to indicate
the specific purpose of our research (see Section 6.3),

(iii) an adaptive opinion mechanism enabling nodes in the system to individually
determine their opinion values at runtime (see Section 6.4), and

(iv) a conflict resolution mechanism — as an extension to our previous works —
to cope with the problem of conflicting trust values (see Section 6.5).

All aspects are evaluated and discussed with respect to a toolkit based on the
TEM [ASM+13], a trust-enabling middleware for building real-world distributed
Organic Computing systems. Section 6.6 provides evaluation results of the pro-
posed mechanism. Finally, the chapter is closed with a conclusion and future work
in Section 6.7.

6.2 Previous and Related Work

Previous Work. Recall, in this thesis we adopt the same definition of trust of the
OC-Trust research unit (see Chapter 2.4). We see that trust consists of several facets,
as for example, safety, reliability, credibility and usability. Our investigation focuses
in this part of work on the reliability aspect. Furthermore, it is assumed that a
node can not realistically assess its own trust value because it trusts itself fully.
Therefore, the calculation of the trust values in this thesis is done with the trust
metrics introduced in Chapter 3.4.2 that can be summarized as follows:

120



6 Conflicting Trust Values

• Direct Trust is based on the own experiences a node has made directly with
an interaction partner node. Typically, trust values are calculated by taking
the mean or weighted mean of past experiences.

• Reputation is based on the trust values of others that had experiences with
the interaction partner. Reputation is typically collected if not enough or out-
dated own experiences exist.

• Confidence Before both values, direct trust and reputation, can be aggregated
to a total trust value, the reliability of one’s own trust value has to be deter-
mined, the so-called confidence. If a node does have a direct trust value but
is not confident about its accuracy, it needs to include reputation data as well.

When all the aforementioned values are obtained, a total trust value tni ,nj based
on direct trust and reputation values can be calculated using confidence to weight
both parts against each other (see Chapter 3). This value represents the current
trust of ni in node nj and will always range between 0 and 1. The value of 0 means
that ni does not trust nj at all while a value of 1 stands for complete trust. These
trust metrics are important to enhance the self-* properties of self-* systems with
trust capabilities (i.e., the self-configuration introduced in Chapter 4 and the self-
optimization provided in Chapter 5). However, these trust-enhanced properties
perform only well when no contradicting trust values occurs. Therefore, we think
that there is room for further improvement with the mechanism presented in this
chapter.

Related Work. The presented conflict resolution algorithm differs from the most
existing state of the art manager election mechanisms, e.g., [BA06, LB11] in two
important points: First, it takes into account the trust constraints of nodes to elect
managers. Thus, our algorithm can be applied to untrustworthy networks since
trustworthy and untrustworthy nodes are treated differently. Furthermore there is
no global instance that coordinates all managers. Therefore, we want to compare
it to systems employing the same approach. A very similar system can be found
in [VCPG06], where some efforts have been done to select leaders based on their
reasonable trust levels. The system achieves interesting results in preventing the
election of untrustworthy leaders. However, a main disadvantage is that it is not
suitable to deal with colluding nodes, as we do in this work. Parts of the content
of this chapter have been published by the author in the following conference and
book chapter:

• [MSKU15]: Nizar Msadek, Alex Stegmeier, Rolf Kiefhaber, and Theo Un-
gerer A Mechanism for Minimizing Trust Conflicts in Organic Computing systems.
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In SAOS 2015: Proceedings of the second International Workshop on Self-
Optimisation in Organic and Autonomic Computing Systems in conjunction
with ARCS 2015, pages 1-7, Porto, Portugal, IEEE Computer Society, 2015.

6.3 The Problem of Conflicting Trust Values

Our application scenario is a real organic computing system with nodes represent-
ing client machines, which can interact with each other through a set of messages.
The system is distributed without a global control. The considered applications
are composed of services, which are distributed among the network. Such a sce-
nario would be suited for systems where clients run applications that produce large
amount of services and thus are in high demand of computing resources, e.g., face
recognition [Rob09] or ray tracing [Gla89]. We distinguish two types of nodes:
managers and contractors. A manager is responsible for hosting services and collect-
ing results, whereas a contractor is responsible for the execution of services. In our
scenario, contractors have to cope with untrustworthy managers, which might be
unavailable for large periods of time. This means that their services and previously
computed results might be unavailable as well. This situation would harm the effi-
ciency of the overall system as it leads to repeated execution of services and resub-
mission of results. By introducing trust, contractors can identify those untrustwor-
thy managers prior to fail and move their services to more trustworthy managers.
This issue was addressed in a former work of trust-enhanced self-optimization and
has the drawback that it works only well under the assumption that all nodes have
the same trust value in a certain node. However in a real life situation, contractors
should be able to operate with conflicting trust values. These conflicts are caused
by collecting trust values independently from the neighbors of a node that can con-
tradict each other. Figure 6.1 visualizes this problem in a short example of three
nodes.

Considering a network with just three nodes: two contractors c1 and c2 and one
managers m1. Let us now suppose that a shielding wall is set between two nodes
i.e., c2 and m1, producing poor reliability values between them, while the third
node c1 is not affected. In this case, contractor c2 considers the manager m1 as
untrustworthy and thus not able to properly host services. Hence, it wants to nom-
inate another manager for taking over the current manager’s role, while contractor
c1 sees no need for action. Such situations cause conflict between contractors and
must be resolved. Therefore, we analyze in this chapter the problem of conflicting
trust values and propose a solution as extension to our former work.
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(Manager)

1m

(Contractor)

1c
(Contractor)

2c

Poor reliability

Good reliability

Figure 6.1: The conflicting trust values problem in
an example of three nodes

6.4 Metric for Opinion

In this section a metric is given to enable contractors to calculate individual opinion
values about managers. This calculation plays an important role in the conflict
resolution algorithm as it directly influences the overall satisfaction of contractors
and thus contributes to reduce the number of conflicts between them. The metric
reflects the subjective belief of contractor c in the ability of manager m to properly
act as manager and is defined as follows:

opinion
−→c,m(tc,m) =

q
√

1− (tc,m)q (6.1)

where tc,m means the trust value a contractor c has about a manager m, i.e., this
values is calculated based on our former work (see Section 6.2 for more details) and
q represents the subjective behavior of c, since contractors can behave differently
towards managers. The opinion value will always range between 0 and 1. The
value of 1 means that manager m from the perspective of c is totally unqualified
for hosting services and therefore it has to give off its manager role and transfer its
services to another manager. However the value of 0 would represent a perfectly
qualification for acting as manager. The border of changing the opinion from one
belief to the other is located at 0.5. Figure 6.2 illustrates how the metric would look
like using different values of q.
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6.5 Conflict Resolution Mechanism

In this section a new trust conflict resolution mechanism that can be extended to
our former work is presented. It is designed for flexible generic usage as a basis
to reduce trust conflicts between contractors. Figure 6.3 provides a global outline
of it as EPC diagram. The description of the algorithm is given in the following
sections.

6.5.1 Extracting Opinions

In Figure 6.4, the Extracting opinions process is formalized as a sequence diagram.
When a dissatisfied contractor detects a trust conflict, it notifies the existence of
that conflict to its manager with an alert message. This message contains a list of
candidate nodes that the dissatisfied contractor believes they are suitable for taking
over the role of manager. These candidates are determined based on the opinion
metric presented in Section 6.4. The manager performs then a lookup operation
to find other contractors that are involved in the conflict. It asks them to provide
their opinions about all received candidates. This is achieved by using either a
limited broadcast or a multicast message. Contractors that receive such a message
evaluate each candidate using the opinion metric. The most suitable ones are those,
which can remove or reduce the conflict to an acceptable level. Afterwards, each
contractor communicates its opinion to the manager. If all opinions are received,
the Nomination phase starts (See Section 6.5.2).
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Nomination
(Section 6.5.2)

Opinions 
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XOR
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Extracting 
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Services 
transferred 

Figure 6.3: Event-driven process chain of the conflict
resolution mechanism

125



6 Conflicting Trust Values

Dissatisfied  
Contractor

sendAlertMessage()

provideOpinions()

<<return>>

Manager
Other 

Contractors

evaluateCandidates()

perfromLookupOperation()

Figure 6.4: Sequence diagram for the Extracting
opinions process

6.5.2 Nomination

The Nomination phase is illustrated in Figure 6.5. In this phase, the manager has to
nominate one candidate for taking over its role as manager. Therefore, candidates
are ranked such that good opinion of contractors (i.e., the closer the opinion val-
ues are to zero the more candidates are considered to be suitable) and low conflict
number positively influence the rank. Note that the emphasis at that stage is more
on the conflict number than on the opinion. The result of the best candidate will be
then communicated to the contractors. It may happen that some contractors are not
satisfied with the nominated candidate. In that case, they send a rejection message
to the manager and trigger thereby the Negotiation process (See Section 6.5.3). Oth-
erwise, the service transfer can take place between the manager and the nominated
candidate (See Section 6.5.4).

6.5.3 Negotiation

After Nomination, several contractors could be dissatisfied with the nomination re-
sult. This might lead to inconvenience for the manager to decide who could take
over its manager role. In that case as illustrated in Figure 6.6, the manager iterates
through all dissatisfied contractors. Let be c the current dissatisfied contractor. It
asks c to provide a list of new candidates, which should have not yet been proposed
in earlier nominations and that c believes they are suitable to take over the role of
manager. These candidates are submitted to the manager. The manager asks then
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Manager  Contractors

evaluateResult()

nominateBestCandidate()

[Some contractors are not satisfied]

[else]

accept()

ref

Negotiation Process

ref

Service Transfer Process

Figure 6.5: Sequence diagram for the Nomination process

the other contractors about their opinions about each one of them. All opinions are
collected and finally the Nomination process (See Section 6.5.2) is performed again.
If the Nomination phase succeeds, then the iteration breaks and the Service transfer
between the manager and the nominated candidate takes place (See Section 6.5.4).
Otherwise, the Negotiation process (See Section 6.5.3) is repeated until all dissatis-
fied contractors have been iterated. It may occur that at the end no candidate has
been nominated because the manager could not find a candidate that other contrac-
tors were all satisfied with. In such case, the manager retains its manager role for a
given time interval ∆T before recalling the Negotiation process again, with the hope
that in the future the result would be better, since it is assumed that contractors can
change over time their opinions.

6.5.4 Service Transfer

After the Nomination process has finished without contradicting opinions, the ser-
vice transfer takes place between the manager and the nominated candidate. The
manager requests the contractors to remain idle and to stop using services during
the period of service transfer. It saves the last computation states of all services on a
reliable storage [TEP+07]. These computation states are referred as snapshots and
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       Nomination Process

ref

                 Service Transfer Process
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Figure 6.6: Sequence diagram for the Negotiation process
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are used to allow the nominated candidate later to resume the forward execution of
services without having to discard all the work done up to the time of service trans-
fer. Afterwards, services are stopped and transferred together with their snapshots
to the nominated candidate. Immediately after the service transfer, the manager
gives off its manager role and the nominated candidate starts to act as manager. It
uses the snapshots to restart the services from their last stored execution point, and
finally, requests the contractors to resume their activities by using the services. In
Figure 6.7, the above described process is formalized as a sequence diagram.

remainIdle()

Contractors

createSnapshots()

Manager
Nominated 
Candidate

<<ack>>

transferServices()

restartServices()

resumeActivities()

<<ack>>

Figure 6.7: Sequence diagram for the Service transfer process

6.6 Evaluation

For evaluation purposes, an evaluator based on TEM [ASM+13] has been imple-
mented which is able to simulate the introduced conflict resolution approach. It
is written in Java and includes a conflict injection component enabling to simulate
conflicts artificially between nodes. The evaluation network consists of 30 nodes,
where all nodes are able to communicate with each other using message passing.
Experiments with more nodes were tested and yielded similar results, but with 30
more observable effects were seen. Each node has a limited resource capacity (e.g.,
CPU and memory) and is judged by an individual trust value without any central
knowledge. Then 10 services, 5 of them important and 5 unimportant are created
with random values for each resource. The initial service assignment is performed
randomly to ensures that the proposed approach is evaluated under a great vari-
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ety of start conditions. After the assignment, each node adopts either the role of a
manager, who possesses a service, or the role of a contractor, who executes a ser-
vice hosted by a manager. Using the conflict injection component, different rates of
conflict have been simulated. Our goal focuses on reducing those conflicts via the
proposed algorithm. Additionally, it is measured how many messages are needed
to accomplish the algorithm. Each evaluation scenario has been tested 500 times
with randomly generated networks and the results are averaged. In the following
the results of the conducted evaluations are presented.

6.6.1 Frequency of Conflicts Before and After Execution

As stated in the specification, the proposed conflict resolution algorithm is sup-
posed to reduce the frequency of conflicts among contractors. This can be shown
by comparing the total number of conflicts before and after its execution. Figure 6.3
shows the result of this experiment for different scenario cases. The Worst-case sce-
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Figure 6.8: Frequency of conflicts before and after execution

nario represents the maximum number of observed conflicts, the Best-case scenario
stands for the minimum number of observed conflicts and the Average-case sce-
nario speaks for the averaged number of conflicts, i.e., in total, about 500 runs were
evaluated. The evaluation results show that the proposed approach performs well
for all investigated scenarios. It is able to reduce significantly the number of con-
flicts among contractors. To quantify the obtained enhancement of our approach,
we calculate the average conflict reduction (ACR) as follows:

130



6 Conflicting Trust Values

ACR =
1
n

n

∑
i=1

(Cbe f ore
i − Ca f ter

i )

Cbe f ore
i

(6.2)

where n means the number of conducted experiments (i.e., in our case n = 8).
Cbe f ore

i represents the number of conflicts used for experiment i before the execution
of our approach, whereas Ca f ter

i stands for the resulting number of conflicts after the
execution of the algorithm. As a conclusion to all simulations we have done so far
(about 500 runs were evaluated) we can state that ACRs of 97.5%, 53,42% and 6,47%
were achieved respectively to the Best-case, Average-case and Worst-case scenarios
of the conflict resolution algorithm.

6.6.2 Mean Number of Messages

Regarding the amount of nodes and the number of messages needed to accomplish
the conflict resolution algorithm the mean number of messages per node can be
calculated. Figure 6.9 shows the result of this experiment, whereas the values on the
x-axis stand for time steps and the mean number of messages is depicted on the y-
axis. The red dashed lines illustrate the time at which conflicts between contractors
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Figure 6.9: Mean number of messages used to perform the conflict resolution algo-
rithm

are simulated. The results show that, with a small number of messages (i.e., much
less than four messages per node) valid conflict-free solutions are found using the
proposed approach. This means that the conflict resolution algorithm is able to
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reduce conflicts in the network without negative effects on the performance of the
network.

6.7 Conclusions and Future Work

In this chapter, we investigated the problem of how to include a voting mecha-
nism to our former work to cope with the problem of conflicting trust. We high-
lighted the problem by using a specific example and provided an adaptive opin-
ion mechanism in order to enable nodes in the system to individually determine
their opinion values at runtime. The latter is used as basis to recognize contradict-
ing interests among contractors when they have different trust values regarding a
manager. Evaluation has been conducted to rate the effectiveness of the proposed
approach and the experimental results showed that our mechanism has the advan-
tage of decreasing conflicts among contractors with a minor increase to the amount
of messages.
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7
Self-Healing: Trust-Based Monitoring

Abstract. Self-healing applied to distributed systems should have the

availability to continuously host services despite the failures of some of

their components. As a consequence, failure monitoring plays an im-

portant role in the engineering of such systems. Many approaches in the

literature make use of heartbeat messages to draw conclusions about

the failure of nodes within the system. The contribution of this chapter

is a heartbeat-style monitoring approach based on trust of which the

benefits are twofold. On the one hand, it aims to improve the failure

detection delays by adapting to the trust conditions of the network. On

the other hand, it aims to reduce the number of messages that arises

from sending heartbeat messages. As this technique is not limited to

specific topological structures, it can be applied to many other domains.

To quantify the introduced approach, evaluations have been conducted

to show how such trust-based monitoring can be used to improve the

efficiency of distributed self-healing systems.

7.1 Introduction

It is well-known that failure monitoring constitutes an essential building block for
ensuring fault-tolerance in distributed self-healing systems [Ray05]. They pro-
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vide information of nodes that have failed in the system. While the current re-
search [MWG15, TSG+15, WYC15] focuses so far on enhancing the quality of fail-
ure monitoring, this work aims at reducing their message overhead by considering
trust. The contribution of this chapter is a generic trust-based monitoring approach,
which aims on the one hand to improve the failure detection delays by adapting to
the trust conditions of the network and on the other hand to reduce the number
of messages that arises from sending heartbeat messages. In our approach, trust
can be seen as an enabler for observing the availability of monitored nodes to opti-
mize their failure rate at runtime. The chapter offers as contribution the following
aspects:

(i) an overview of current heartbeat-style monitoring approaches and their lim-
itations in addressing the problems of large-scale distributed environments
(see Section 7.2).

(ii) a formal description of the problem of how to monitor contractors effectively
based on trust with the decreased usage of message overhead in distributed
self-healing systems (see Section 7.3).

(iii) a decentralized trust metric covering the aspect of availability to predict the
trust values of contractors, based on their uptime in the last interaction steps
(see Section 7.4.1).

(iv) three round-based techniques allowing for more trustworthy contractors to
be monitored less frequently than the untrustworthy ones and thus reducing
the cost of message overhead at runtime (see Section 7.4.2).

All aspects are evaluated and discussed with respect to a toolkit based on the
TEM [ASM+13], a trust-enabling middleware for building real-world distributed
Organic Computing systems. Section 7.5 provides evaluation results of the pro-
posed trust-based monitoring algorithm and demonstrate the benefits of the hybrid
monitoring function. Finally, the chapter is closed with a conclusion and future
work in Section 7.6.

7.2 Related Work

In the realm of failure monitoring a considerable volume of literature has accumu-
lated notably in [BMS02, HDK03, HDYK04, PTT12, QZGSHK05]. One of the most
popular works in this direction is the paper of Chen et al. [CTA02], which pro-
poses a well-known technique to monitor failures based on a probabilistic analysis
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of a network traffic. The authors use sampled arrival times to compute an estima-
tion of the arrival time of the next heartbeat, where the timeout is set according to
this estimation plus a constant safety margin. This approach has been extended
in many directions. For example in [SPTU08], the Chen’s estimation function has
been replaced with another estimation based on a histogram density to compute
a suspicion value of a node’s failure. The histogram is then adapted whenever
the system receives a new heartbeat, taking the frequencies of the last estimations
into account. In [MLH+13], Miao et al. propose an online monitoring approach
for silent failures, called Agnostic Diagnosis. It explores the abnormal correlation
between system metrics (e.g., radio-on time, number of packets transmitted) to in-
dicate potential silent failures at runtime. The detection accuracy of this technique
is very close to 100% for small wireless sensor networks. However, it has the draw-
back of a central monitoring and therefore a single point of failure can occur. Our
monitoring algorithm differs from state of the art heartbeat-style mechanisms in
two important points: first, it can adapt to changing trust conditions of the net-
work and second, it is not limited to specific topological structures. Furthermore, it
is decentralized, generic, and applicable to any kind of trust-aware Recommender
Systems. Thus, we want to compare it to systems that employ the same approach.
The approach closest to us is [GMT06]. The authors propose an adaptive heart-
beat approach for DHT Networks. Based on an artificial exponential distribution
to model node failure, they estimate the uptime of a node and adjust its monitor-
ing frequency accordingly. However, as exponential distributions are memoryless
they cannot be used to predict uptime as we do in this work. Our algorithm can
be classified as a trust-based monitoring approach. It uses the current trust con-
dition of nodes to generate individual monitoring intervals for each contractor at
runtime. Parts of the content of this chapter have been published by the author in
the following conference and book chapter:

• [MU16b]: Nizar Msadek and Theo Ungerer. Trust-Based Monitoring for Self-
Healing of Distributed Real-Time Systems. The 7th IEEE Workshop on Self-
Organizing Real-Time Systems (SORT16) in conjunction with ISORC 2016,
pages 177-178, York, England, IEEE Computer Society, 2016.

• [MU16a]: Nizar Msadek and Theo Ungerer. Trust as Important Factor for Build-
ing Robust Self-x Systems. Book chapter in Trustworthy Open Self-Organising
Systems, Autonomic Systems series, Vol. 7, 2016, Springer International Pub-
lishing, pp 153-183, http://www.springer.com/de/book/9783319291994
ISBN: 978-3-319-29199-4
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7.3 Background and Contribution

In this section, we present our considered distributed system and the baseline mon-
itoring approach that we used in our former work to detect the presence of failures.

7.3.1 System model

We focus on the class of computer systems that follow the manager-contractor
paradigm of the well-known contract net protocol [Smi80]. This approach has be-
come a standard by FIPA1 and is often applied in many application domains for
example, Organic Computing [NB09b, MKFU14, MKU15a], Self-Organizing Net-
works [ZZ10], or Multi-Agent Systems [NB07] etc. Such a paradigm has three
main characteristics. First, it is generic and applicable to distributed environments.
Second, it can work under real-time constraints [QJDL96]. And third, it can cope
with the problem of scalability. In contrast to the classic master-slave paradigm
in which nodes have just one role type, either master or slave [BCG04], nodes in
the manager-contractor paradigm are decentralized in nature and can take on two
roles, manager and contractor. Recall, we have used this form of coordination in
the self-configuration Chapter 4 to assign services. This can be roughly interpreted
as follows: ”if a node cannot solve an assigned service due to a limited resources,
it will decompose the service in sub-services and try to find other disposed nodes
with the required resources to solve these sub-services”. The process of assign-
ing services is done by a contracting mechanism (see Figure 7.1) consisting of the
following steps:

1. In the first step, the manager sends a contract announcement to nodes that
are able to perform a certain service.

2. In the second step, the potential contractors use the description of the service
and its expiration time to build bids they send to the manager.

3. Finally, the submitted bids are evaluated by the manager, which leads to
awarding a service contract to the contractor with the most appropriate bid.

7.3.2 The Baseline Heartbeat Approach

Contractors play an important role in the execution of the services. Assuming that
a contractor might crash, the manager should be able to detect contractor’s fail-
ure and take appropriate self-healing actions, otherwise the services running on

1FIPA: Foundation for Intelligent Physical Agents - [Accessed: July 25, 2016] - http://www.fipa.
org/specs/fipa00029/
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Manager

Contractors

Manager

Contractors

Manager

Contractors

Figure 7.1: The coordination view applied by the self-configuration process to as-
sign services. A short revision of the scheduling used in Chapter 4.

it might block the whole system. Hence, it is important for the manager to regu-
larly monitor its contractors. A look at the literature [TVS07] reveals the two main
heartbeat-style monitoring strategies: push and pull (also known in the literature as
keep-alive, or as hello monitoring approaches). To see how these strategies work, as-
sume that a manager m is monitoring a contractor c. Using a push strategy, shown
in Figure 7.2, c sends at regular time interval ∆c an alive message to m. Upon alive
reception, m sets a timer ∆Timeout that triggers a suspicion if it expires before the
reception of a new alive message from the same contractor c. This timeout is set
according to ∆c plus a constant safety margin γ. However, in systems with a pull
monitoring strategy, the monitored contractor c adopts a passive role. m monitors
c by sending periodically an Are you alive message every ∆c. If c does not send an
answer within a certain time period of ∆Timeout, it gets suspected by m. Figure 7.3
illustrates how pull strategy is used for monitoring contractors. In this work the
push monitoring strategy is adopted as baseline approach, since it uses only half
the messages for an equivalent quality of pull monitoring approach.
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Alive Alive Alive 

Δ𝑐  Δ𝑐  
suspicion

Failure

Time

Time

Δ𝑇𝑖𝑚𝑒𝑜𝑢𝑡  

Contractor
c

Manager
m

Figure 7.2: The Push monitoring strategy. Recall, this rep-
resents the current form of monitoring imple-
mented by the self-configuration process as in-
troduced in Chapter 4
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Figure 7.3: The Pull monitoring strategy
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7.3.3 Manager Goal

Let ϕm = {c1, c2, ..., cn} be the set of contractors which are monitored by a manager
m. Let startm

i denote the time at which contractor ci ∈ ϕm starts sending an alive
message every ∆c to m. Let Uptimei be the time period that ci spends under con-
tract. If for instance ci leaves involuntary the network due to a failure, manager m

Δ𝑐  Δ𝑐  

start𝑖
𝑚  

Uptime𝑖  

Δ𝑐  

Suspect 

d𝑖  

Figure 7.4: Failure detection delay of contractor ci

would not learn of its departure until the next alive message gets suspected. As a
result there is a delay di which m falsely believes that ci is still under contract. This
delay is called the failure detection delay (see Figure 7.4). The purpose of the man-
ager node is twofold. On the one hand it wants to avoid or to reduce the failure
detection delay of contractors during the monitoring process. On the other hand it
wants to reduce the communication overhead produced by the monitoring process
without the negative effect on the failure detection quality.

7.3.4 Contribution

The baseline monitoring approach makes use of parameters like ∆Timeout and ∆c to
meet the current condition of the network. Adjusting these parameter values dur-
ing runtime is obviously a trade-off for the manager. If for example these param-
eters are chosen too short, then failures are detected quickly (i.e., short delays) but
more alive messages are sent in the network. A longer choice of these parameter
values results in a larger failure detection delay but less communication overhead.
This means that the idea to find the perfect monitoring process with the best delay
and communication overhead is unrealistic. The contribution of this chapter is to
help the manager to find a distributed and good enough but not necessary optimal
solution to this trade-off by applying the additional notion of trust.

7.4 The Trust-Based Monitoring Approach

In this section an enhancement of the baseline monitoring approach is presented.
It has been designed for systems that follow the manager-contractor paradigm as a

139



7 Self-Healing: Trust-Based Monitoring

basis to reduce the communication overhead produced by the monitoring of con-
tractors without the negative effect on their failure detection delays. In contrast to
most existing baseline approaches2 using a fixed uniform monitoring interval ∆c

across all contractors <c1, c2, ..., cn>, the proposed algorithm makes use of different
monitoring intervals <∆c1 , ∆c2 , ..., ∆cn > to allow for more trustworthy contractors
to be monitored less frequently than the untrustworthy ones and thus reduces the
cost of message overhead. However, to detect trustworthy or untrustworthy nodes,
managers need to gain knowledge about the trustworthiness of their contractors.
In our approach a trust establishment process is introduced to fill the information
gap of managers about the trust behavior of their contractors.

7.4.1 Trust Establishment

There are many facets of trust in computer systems [SKL+10]. Such facets may
concern for example availability, reliability, credibility, safety etc. Our investigation
focuses on the availability aspect. In this work it is assumed that a contractor can
not realistically assess its own trust value because it trusts itself fully. Therefore, the
generation of trust values must be done from the manager side. As also the cost of
determining permanent trust values during runtime could negatively influence the
performance of the system, we see that it is not necessary for the manager to con-
tinuously generate trust values whenever novel observations about its contractors
are made. This might lead to performance bottlenecks that become more severe
as the number of contractors in the system grows. For this purpose, we introduce
in this work the concept of rounds. Assume again that there is a contractor ci and
let k denote the index of the round. The trust establishment process in round k is
determined as follows:

T(k)
m→ci =

(1− α) · T(k−1)
m→ci + α ·Θ(k)

ci if k ≥ 1

Tinit k = 0
(7.1)

Θ(k)
ci =

Uptime of ci in period [k− 1, k]
Total time of period [k− 1, k]

(7.2)

Θ(k)
ci ∈ [0, 1] (7.3)

T(k)
m→ci ∈ [0, 1] (7.4)

k ∈N (7.5)

2The TCP/IP keep-alive interval for Windows Server 2008 and Windows Vista is set by default to
120 minutes — [Accessed: July 25, 2016] — https://technet.microsoft.com/de-de/library/
dd349797.aspx
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Manager m calculates a trust value T(k)
m→ci for ci based on the new observation

Θ(k)
ci and the previous trust value T(k−1)

m→ci (see Equation 7.1). This trust value T(k)
m→ci is

always within [0, 1] and reflects the subjective trust of manager m in contractor ci.
A trust value of T(k)

m→ci = 0 means m does not trust ci at all while a value of 1 stands
for whole trust. The factor α ∈ [0, 1] decides how strong the recent observations are
weighted compared to the previous ones. The larger the value α, the more the result
is computed by the recent observations. Initially, the trust value of each contractor
is set to Tinit and in every round k an update occurs for T(k)

m→ci .

7.4.2 Individual Monitoring Intervals

The calculation and adjustment of a contractor monitoring interval ∆(k)
ci in every

round k is certainly a crucial part for the manager. By extending each manager
with a trust component and modeling the relations between a manager and its
contractors with a trust mechanism, we are able to calculate these intervals.

Discrete Monitoring

One simple way to make this calculation is to classify the monitoring intervals by
using discrete frequencies. As shown in Figure 7.5, a constant value Tf req is de-
fined for frequently monitoring and another constant value Tin f req for infrequently
monitoring, i.e., with Tf req < Tin f req. If for example a manager m is monitoring

a trustworthy contractor ci (i.e., with a trust value T(p)
m→ci above a threshold δ) the

monitoring interval ∆(k)
ci in round k can be set to Tin f req, otherwise it is set Tf req. In

detail, the discrete monitoring function is calculated using Equation 7.6.

1  

𝑇𝑖𝑛𝑓𝑟𝑒𝑞  

0 δ 

𝑇𝑓𝑟𝑒𝑞  

Monitoring ( 𝑇𝑚  →𝑐𝑖
(𝑘)) 

𝑇𝑚  →𝑐𝑖
(𝑘) 

𝑇𝑓𝑟𝑒𝑞 + 𝑇𝑖𝑛𝑓𝑟𝑒𝑞

2
 

 

Figure 7.5: Discrete monitoring function
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Monitoring(T(k)
m→ci) =


Tf req if 0≤ T(k)

m→ci ≤ δ

Tin f req if δ < T(k)
m→ci ≤1

(7.6)

Continuous Monitoring

However, it might be critical to distinguish only between Tf req and Tin f req moni-
toring intervals, especially for contractors whose trust values are very close to the
defined threshold δ. We therefore examine another classification function with con-
tinuous monitoring values.

1  

𝑇𝑖𝑛𝑓𝑟𝑒𝑞  

0 

Monitoring ( 𝑇𝑚  →𝑐𝑖
(𝑘)) 

𝑇𝑚  →𝑐𝑖
(𝑘) 

𝑇𝑓𝑟𝑒𝑞 + 𝑇𝑖𝑛𝑓𝑟𝑒𝑞

2
 

 

𝑇𝑓𝑟𝑒𝑞  

Figure 7.6: Continuous monitoring function

Figure 7.6 depicts an overview of this function. It is easy to see that the moni-
toring function is always continuous on the interval [Tf req, Tin f req]. The larger the

value of T(k)
m→ci , the less frequently the resulted monitoring. In detail, the continuous

monitoring function is calculated using Equation 7.7.

Monitoring(T(k)
m→ci) = (Tin f req − Tf req) · T

(k)
m→ci + Tf req (7.7)

Continuous-Discrete Monitoring

The monitoring function can be further improved if the trust specification of the
system is taken into account. Therefore, a metric is examined which consists of
a combined continuous-discrete monitoring function with the ability to adapt the
trust threshold δ of the manager. The basic idea of this metric is quite simple. If
the trust value T(k)

m→ci is lower than the threshold δ, then ∆(k)
ci is determined contin-

uously from the interval [Tf req, Tf req+Tin f req
2 ]. It is always assumed that Tf req < Tin f req.
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If, however, the value T(k)
m→ci crosses δ, then ci is monitored less frequently with a

continuous value from the interval [ Tf req+Tin f req
2 , Tin f req]. In detail, the continuous-

discrete monitoring function is calculated using Equation 7.8.

Monitoring(T(k)
m→ci ) =


(

Tin f req−Tf req
2δ ) · T(k)

m→ci + Tf req if 0≤ T(k)
m→ci ≤ δ

(
Tin f req−Tf req

2(1−δ)
) · T(k)

m→ci + Tin f req −
Tin f req−Tf req

2(1−δ)
if δ < T(k)

m→ci ≤1
(7.8)
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0 δ 

Monitoring ( 𝑇𝑚  →𝑐𝑖
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𝑇𝑓𝑟𝑒𝑞  

𝑇𝑓𝑟𝑒𝑞 + 𝑇𝑖𝑛𝑓𝑟𝑒𝑞

2
 

 

Figure 7.7: A combined continuous-discrete monitoring
function

7.5 Evaluation

7.5.1 Evaluation Setting

In this section a methodology is introduced to evaluate the proposed monitoring
approaches. For this purpose, an evaluator based on TEM [ASM+13] for heartbeat-
style monitoring approaches has been implemented. Using this tool, a series of
measurements have been conducted to explore the limit performance of the pre-
sented monitoring approaches and to compare them to the theoretical optimal re-
sult. All the evaluated approaches make use of the same network setting to create
fairness judgements. This consists of a network with 100 nodes, where all nodes
are able to communicate with each other using message passing. The number of
operating managers is set to 10 while every manager is responsible for monitoring
10 contractors. Each contractor has a limited resource capacity and an individual
trust value without any central knowledge, as shown in Table 7.1. The initial ser-
vice assignment is performed randomly to ensure that the proposed approaches
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Type CPU (MHz) Memory (MB) Trustworthiness Amount%

Type 1 200-800 500-1000 0.7-0.9 10

Type 2 500-1500 500-1500 0.3-0.6 50

Type 3 1500-2000 2000-4000 0.4-0.8 30

Type 4 2000-3000 4000-8000 0.4-0.9 10

Table 7.1: Heterogeneous contractors

are evaluated under a great variety of start conditions. After the assignment, the
manager starts to monitor its contractors using the following monitoring setting:

• The frequently monitoring parameter Tf req is set to 50 (in Time Units)

• The infrequently monitoring parameter Tin f req is set to 2000 (in Time Units)

• The constant safety margin γ is set to 10% of ∆c

In the conducted evaluation, it is assumed that the crash of contractors would never
occur at once but rather separately with a MTBF= 10000 in Time Units. There-
fore, a selection metric is used to decide which contractor fails at each time step.
This selection metric is based on a roulette wheel selection, where contractors with
lower trust values (untrustworthy contractors) have a higher chance to fail than
other contractors with a higher trust values (trustworthy contractors). The basic
methodology for investigating the monitoring approaches contains the following
two steps:

Exploring evaluation: In the first step an exploring investigation process is used
to examine the performance limit of each individual monitoring approach using
different tuning parameters.

Comparative evaluation: Based on the results of the exploring evaluation, a com-
parative performance analysis for the monitoring approaches is investigated and
thus for best solutions they are providing.

7.5.2 Exploring evaluation

The first barrier to compare the monitoring approaches are their different tuning
parameters. These influence the time when a manager starts to suspect a failure
and its subsequent message cost. To be able to compare later the monitoring ap-
proaches fairly, the behavior of each one of them has to be explored using different
parametrization. The first two Figures 7.8 and 7.9 examine the baseline monitor-
ing using different monitoring frequencies. As would be expected, by reducing the
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size of the monitoring frequency to Tf req (frequent monitoring), the average failure
detection delay is decreased but more overhead costs are incurred in the network.
However, by extending the monitoring frequency to Tin f req (infrequent monitoring)
the message overhead is reduced but a larger failure detection delay is resulted.
Therefore, there is a trade-off between the failure detection delay and the message
cost. A theoretical optimum is obtained by taking the best value of each criteria (i.e.,
the lowest value for detection delay O∗delay = 78 and lowest value for message over-
head O∗cost = 299). It is obvious that this optimum could never be reached in the
practice. However, we use this optimum as a lower bound in Section 7.5.3 to com-
pare the monitoring approaches. For the discrete monitoring the tuning parameter
is in this case the threshold δ. Therefore, experiments are conducted in Figures 7.10
and 7.11 by varying the amount of δ. The results showed that the larger the choice
of δ, the earlier the detection of failure will be. However, if δ is chosen too large
a huge amount of messages occurs. The continuous monitoring approach has no
tuning parameter. It is only one single point in the evaluation results, i.e., it took on
average 1416 for failure detection delay and 682 for message overhead. Finally, the
behavior of the continuous-discrete monitoring is explored with different amount
of δ. The results in Figures 7.12 and 7.13 showed that the hybrid monitoring attests
very good detection delays compared to the other approaches.
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Figure 7.8: Failure detection delay for the baseline moni-
toring approach using different monitoring fre-
quencies.
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Figure 7.9: Message overhead for the baseline monitoring
approach using different monitoring frequen-
cies.
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Figure 7.10: Failure detection delay for the discrete moni-
toring approach using different amount of δ.
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Figure 7.11: Message overhead for the discrete monitoring
approach using different amount of δ.
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Figure 7.12: Failure detection delay for the continuous-
discrete monitoring approach using different
amount of δ.
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Figure 7.13: Message overhead for the continuous-discrete
monitoring approach using different amount
of δ.

7.5.3 Comparative evaluation

In this section the monitoring approaches are compared regarding the best solu-
tions they are providing. The result of this experiment is depicted in Figure 7.14,
which shows the average failure delay on the horizontal axis and the message over-
head on the vertical axis. Values near to the theoretical optimum represent a short
detection delay with few messages. To quantify the reached performance of each
algorithm, the Euclidean Distance is used. Formula 7.9 describes how the latter is
calculated. O∗delay and O∗cost are lower bounds for delay and cost of the theoretical
optimum estimated a priori in Section 7.5.2. Sdelay and Scost represent the reached
delay and cost for the current used monitoring approach. Applying this formula to
our experiment leads to the following results:

• d f requent = 11410

• din f requent = 2339

• ddiscrete = 2589.67

• dcontinuous = 1391.73

• dcontinuous−discrete = 1182.38

Concluding, the result shows that the continuous-discrete monitoring attest the
shortest distance from the theoretical optimum. It performs better than the other
algorithms and therefore considered suitable for our test scenario.
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Figure 7.14: Best found solutions compared to the theoretical optimum

dist((O∗delay, O∗cost), (Sdelay, Scost)) =√
(O∗delay − Sdelay)2 + (O∗cost − Scost)2

(7.9)
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7.6 Conclusions and Future Work

In this chapter, we examined the problem of how to monitor contractors effectively
based on trust with the decreased usage of message overhead in distributed self-
healing systems. We formalized the problem, expressed it analytically in form of
a tractable trade-off problem in Section 7.3, and derived a trust-based monitoring
solution for it. More precisely, a trust metric has been developed covering the as-
pect of availability to predict the trust values of contractors at runtime, based on
their uptime in the last interaction steps (see Section 7.4.1). This is used to generate
different monitoring intervals allowing more trustworthy contractors to be mon-
itored less frequently than the untrustworthy ones and thus reducing the cost of
message overhead. To do so, three monitoring functions have been introduced in
Section 7.4.2: discrete monitoring, continuous monitoring, and continuous-discrete
monitoring. The results of Section 7.5 show that the continuous-discrete monitor-
ing performs best. It can adapt faster to changing trust condition in the network
than the others. Interesting starting point for future work is to bound the failure
detection delay to allow for rescheduling the services within a certain time period
set by the deadline.
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8
Self-Healing: Trust-Based Replication

Abstract. Replication occurs in a wide range of open systems, ranging
from Organic and Autonomic Computing to many other Multi-Agent
Computing Systems. All these systems face a common issue: how can
replicas automatically and efficiently be managed in a system despite
changing requirements of their environment? One way to overcome
this issue is trust. The contribution of this chapter is a novel approach
based on trust that provides a good management of replicas — espe-
cially for those of important services — despite malicious behavior of
nodes in the network. Depending on the importance level of a service
possessing the replicas and the assessment of the trustworthiness of a
node, we can optimize the trust distribution of replicas at runtime. For
evaluation purposes we applied our approach to an evaluator based
on the TEM middleware. In this testbed, the usage of trust reduced
the replication overhead by about 14% while providing a much better
placement of important replicas than without trust.

8.1 Introduction

Implementing replication mechanisms for practical systems like Organic and Auto-
nomic Computing is a non-trivial task. This is due to the fact that such systems are
becoming increasingly complex in their organisational structures, especially when
unknown heterogeneous entities might arbitrarily enter and leave the network at
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any time. Therefore, new ways have to be found to develop and manage them. One
way to overcome this issue is trust. Using appropriate trust mechanisms, entities in
the system can have a clue about which entities to cooperate with. This is very im-
portant to enhance the robustness of such systems, which depend on a cooperation
of autonomous entities. In this chapter, we primarily focus on self-healing and note
that our goal is to develop an autonomous replication mechanism based on trust
that works in a distributed manner and also ensures global optimality. The mech-
anism should provide a good replica management and placement — especially for
those of important services — despite malicious behavior of nodes in the network.
Therefore, the contribution of this chapter leads to a methodology that offers:

(i) An overview of the system model and the considered problem to indicate the
specific purpose of our research (see Sections 8.2 and 8.3),

(ii) a mechanism for specifying the importance level of services based on the
number of requests as well as a mechanism to monitor the trust behavior
of nodes at runtime (see Section 8.4.1), and

(iii) a replication model considering the above introduced points to manage the
amount of replicas for better trustworthiness of important services (see Sec-
tion 8.4.2)

All aspects are evaluated and discussed with respect to a toolkit based on the
TEM [ASM+13], a trust-enabling middleware for building real-world distributed
Organic Computing systems. Section 8.5 provides evaluation results of the pro-
posed mechanism and Section 8.6 aligns the trust-based approach in the context of
state of the art systems. Finally the chapter is closed with a conclusion and future
work in Section 8.7.

8.2 System Model and Assumptions

We target a distributed system consisting of a finite set of nodesN = {n1, n2.., nn},
representing machines which can interact with each other through a set of mes-
sages. The i-th node is denoted by ni, or alternatively by i if it is not ambiguous.
These nodes are heterogeneous in terms of storage resources. Thus, every node
provides a storage space with a free capacity Capai to offer services in the system
a place for storing their data. The set of services is denoted by S = {s1, s2.., sk}
and the data of a service sj is expressed by Dataj. This data is replicated among the
nodes of the network. Thus, a Dataj is partitioned into a set of owner and repli-
cas with Dataj = {Ownerj} ∪ {Replj,1, Replj,2, ..., Replj,rj

}. The Ownerj is the central
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element that performs all write requests. It has multiple replicas which replicate
its data. We assume that these replicas are completely identical to the owner in
contrast to erasure codes 1. This means that the storage consumptions for all repli-
cas are the same, which is given by the value Consumj. Whenever an Ownerj per-
forms a write request, it delivers an update with a new version of its data to the
replicas. These replicas are used to perform read requests and to overcome node
failures. Their amount is fixed so far as a system parameter rj within the interval
[Rmin, Rmax] to avoid that not too many but also not too few replicas are created.
Should an owner of a data service fail, the system will elect one of the replicas with
the latest version to takeover the role of owner. We also assume that the number
of requests may affect the importance level of services. Services having a large
amount of requests are considered to be important for the functionality of the en-
tire system. From this point of view, important services are supposed to be rational
in the sense that they want to place their replicas as well as possible in the system,
by choosing only high trustworthy nodes.

8.3 Problem Statement and Baseline

A crucial point in our system is the trustworthiness of the service storage, especially
for important services. Their data should be hosted on trustworthy nodes having
a high degree of trustworthiness despite malicious behavior of nodes in the net-
work. Therefore, we formulate the trustworthy replication management problem
as follows. Given a set of services with different importance levels and a network
topology with a finite number of nodes representing possible replica locations, we
are interested to determine a trustworthy placement for replicas such that the trust-
worthiness of important data is improved by hosting them on trustworthy nodes.
On the other hand, the storage of nodes should be optimized in terms of resource
consumptions as well. To do so, four fundamental decisions have to be considered:
(1) which services are considered as more important than others in the system, (2)
when should the categorization of services be determined, (3) how to fix the right
amount of replicas, and (4) where to place these replicas on nodes. Depending on
these decisions, different replication strategies can be applied. Figure 8.1 shows the
baseline replication strategy considered in this work. It is based on thresholds for
determining the importance level of services. These thresholds are fixed at design
time and do not change during run time. Then, a scheduler is used for creating and

1An erasure code provides redundancy without saving the identical complete copy of an object
element. It divides the element into m fragments and recodes them into n fragments, where
n > m. Details can be found in the paper referenced here [WK02].
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Whether valid 
replication is found

Figure 8.1: Elementary representation of the baseline
replication management

assigning replicas. For every service, it selects a node with a uniform probability
without considering its trust value or up probability and put it into a replica set. If
for example a node is already selected or its storage space is full, it picks another
new node, until the given number of replicas reaches the threshold Rmax for impor-
tant services or the threshold Rmin for unimportant services. This strategy has the
ability to improve the availability of service data in the system. However, it is only
suited for classical systems where the benevolence of nodes is assumed [SFSR94],
because all nodes are treated identically even though some of them are less trust-
worthy than others. In open distributed systems, it would not provide good results
due to the fact that unknown nodes might arbitrarily enter and leave the network
at any time. Therefore, we propose to incorporate trust mechanisms into the man-
agement of replicas.

8.4 The Trust-Based Replication Approach

8.4.1 Models and Metrics

Our aim is to provide a continuous good trustworthiness for data especially for
important services and to reduce the performance overhead produced by creating
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too many replicas in the system as well. As a consequence, our approach should
consider the following factors: (1) We want a mechanism for specifying the required
trust of services based on their number of requests. (2) We need a mechanism to
regularly monitor the trust behavior of nodes. (3) And we want a model to manage
the amount of replicas for better trustworthiness of important services. It is worth
mentioning that all solutions provided should always be round-based over the time
to ensure that the system is continuously optimized at runtime.

Determine the Required Trust of Services

As mentioned, the number of requests plays a crucial role in the categorization
of services. Services with a large number of requests are considered to be more
important than others in the system. They should have a higher degree of required
trust in order to be hosted on trustworthy nodes. The baseline approach does not
take such a decision into account at runtime. It categorizes the importance level of
services at the beginning which is then not changed during execution. Our aim is
to give the system more responsibility by moving this decision from design-time to
runtime. The algorithm for this strategy consists of two phases which are bounds
calculation and required trust calculation phase. In the first phase, we compute the
cumulative number of requests for each service sj ∈ S at every round k as follows:

Requestk
(sj)

= Requestk
(Ownerj)

+
rj

∑
i=1

Requestk
(Replj,i)

(8.1)

Where Requestk
(Ownerj)

stands for the number of read and write requests performed

by the owner until round k is reached, and Requestk
(Replj,i)

represents the total num-
ber of read requests that were performed by every replica i of sj until k is reached.
Then, we determine the minimum and maximum values over these requests as
follows:

MinRequestk = {Requestk
(sj)
|∀si, sj ∈ S : Requestk

(si)
≥ Requestk

(sj)
} (8.2)

MaxRequestk = {Requestk
(sj)
|∀si, sj ∈ S : Requestk

(si)
≤ Requestk

(sj)
} (8.3)

By this means, the request number of every service is always bounded between
MinRequestk and MaxRequestk. Values near to the MinRequestk reflect unimportant
services, whereas values close to MaxRequestk stand for important services. In the
second phase, we aim to compute the required trust of each service. Assume that
MinTrust and MaxTrust are the desired thresholds for minimum and maximum
trust set in the system, where 0 ≤ MinTrust ≤ MaxTrust ≤ 1. Then, a value of
Requestk

(sj)
can be mapped to a required trust value ReqTrustk

(sj)
in the new specified
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range [MinTrust, MaxTrust] using min-max normalization as follows:

ReqTrustk
(sj)

=
Requestk

(sj)
− MinRequestk

MaxRequestk − MinRequestk · (MaxTrust− MinTrust) + MinTrust

(8.4)
We give a high degree of trust for important services by shifting the minimum and
maximum number of requests to MinTrust and MaxTrust, respectively. Figure 8.2
shows – as example – the required trust scores that can take services si and sj after
min-max normalization. The original distribution of requests is retained for both
services and is then transformed in required trust values in the new specified range
of [MinTrust, MaxTrust].

(Original Range)

(New Specified Range)

MinRequestk MaxRequestkRequestk
(si) Requestk

(sj)

MinTrust MaxTrust

ReqTrustk
(si )

ReqTrustk
(sj )

Figure 8.2: Mapping of requests from the range
of [MinRequestk, MinRequestk] to re-
quired trust in a new specified range of
[MinTrust, MaxTrust] using min-max normal-
ization.

Assess the Trust Behavior of Nodes

A trust-based replication needs a component which generates trust values based on
direct experiences to detect the presence of untrustworthy nodes in the system. Ac-
cording to [SKL+10], this trust generation can be measured by regarding different
facets of trust, such as reliability, availability, functional correctness, and usability.
The facet of interest in this work is availability, since we are interested to check the
availability of nodes based on their uptime in the last interaction steps. Also we
assume that the trust relation Trust between nodes is always irreflexive on N , i.e.,
∀ni ∈ N :⇔ ¬(ni Trust ni) meaning that we do not allow the possibility for nodes
to assess their own trust values. Otherwise, nodes would trust themselves fully
and the system will be prone to exploitation from malevolent nodes. Equation 8.5
shows the metric we set to calculate direct trust using the facet availability. It cor-
responds mainly to the same metric of Section 7.4.1, but the focus here is set on
replication purposes.
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Trustk
(ni ,nj)

=

(1− α) · Trustk−1
(ni ,nj)

+ α ·Θk
nj

if k ≥ 1

Trustinit k = 0
(8.5)

Θk
nj
=

Uptime of nj in period [k− 1, k]
Total time of period [k− 1, k]

(8.6)

Θk
nj
∈ [0, 1] (8.7)

Trustk
(ni ,nj)

∈ [0, 1] (8.8)

k ∈N (8.9)

In every round k, a node ni calculates a trust value Trust(k)
(ni ,nj)

about its direct

neighbor nj based on the new observation of Θ(k)
nj and the previous trust value

Trust(k−1)
(ni ,nj)

. This trust value Trust(k)
(ni ,nj)

ranges always within [0, 1] and reflects the
subjective trust of node ni in node nj based on its experiences. A trust value of
Trust(k)

(ni ,ci)
= 0 means ni does not trust nj at all while a value of 1 stands for full

trust. The factor α ∈ [0, 1] decides how strong the recent observations are weighted
compared to the previous ones. The larger the value α, the more the result is com-
puted by the recent observations. Initially, the trust value of nj is set to Trustinit

and in every round k an update occurs for Trust(k)
(ni ,nj)

. With increasing number of
mutual interactions over k, we expect to correctly estimate the behavior of nodes in
the system. This is very important to prevent the hazardous placements of replicas
on nodes.

Perform the Placement of Replicas

A crucial point in the baseline algorithm is the trustworthy placement of service
data. To guarantee a specific level of trustworthiness the nodes hosting the replicas
have to be chosen correctly. An optimal selection of these nodes is not considered
in the baseline version. Therefore, we are interested in our approach to improve the
replica placement by considering the trust behavior of each replica. Let us assume
the required trust of a service sj is known and that Ownerj has multiple replicas
{Replj,1, Replj,2, ..., Replj,rj

}which replicate its Dataj. These replicas are distributed
on different nodes and the trust values of nodes are independent of each other.
The probability of Dataj to be in a trustworthy state at round k is represented by
Trustk

(Dataj)
and its untrustworthiness is denoted by Trustk

(Dataj)
= 1− Trustk

(Dataj)
.

It is obvious that Dataj is in an untrustworthy state if and only if all replicas as
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well as the owner are not trustworthy. So the untrustworthiness of Dataj can be
determined by Equation 8.10.

Trustk
(Dataj)

= Trustk
(Ownerj)

·
rj

∏
i=1

(
Trustk

(Replj,i)

)
(8.10)

This means that the probability of at least one replica to be in a trustworthy state
can be written as follows:

Trustk
(Dataj)

= 1−
(

Trustk
(Ownerj)

·
rj

∏
i=1

(
Trustk

(Replj,i)

))
(8.11)

To ensure that this probability is always greater than or equal to ReqTrustk
(sj)

, we
make use of Equation 8.12 as a condition.

1−
(

Trustk
(Ownerj)

·
rj

∏
i=1

(
Trustk

(Replj,i)

))
≥ ReqTrustk

(sj)
(8.12)

By this means, solving the placement problem consists of minimizing the amount
of replicas rj needed such that the constraint of Equation 8.12 is met. This is very
important to prevent the hazardous placements of replicas on nodes and to reduce
the replication overhead during runtime.

8.4.2 The Approach

The interaction between the activities of the trust-based replication approach is il-
lustrated in Figure 8.3. In the first step, we make use of the trust metric of Equa-
tion 8.5 — by regarding availability as a facet of trust — to assess the behavior of
nodes. Our metric takes the advantage to converge to the true hidden trust values
of nodes with increasing number of mutual interactions over k. This is very im-
portant to detect trust anomalies in node behavior and to allow owners to decide
where to place their replicas trustworthily in the system. Then an update is initiated
at every round k to refresh the trust values of nodes as well as the recognition of
important services at runtime. Services with a large amount of requests are consid-
ered to be important for the functionality of the entire system. As a consequence,
we give them a high degree of required trust using Equation 8.4. Then, replicas
are managed for every service so that the condition of Equation 8.12 will hold.
This replication management is accomplished by removing, replacing or adding
the minimum number of replicas for every service. The smaller the amount of repli-
cas is, the lower the replication cost and the better the performance of the system
will be. Using trust, our replication management has the following benefits com-
pared to conventional replication systems: On the one hand it reduces the overall

158



8 Self-Healing: Trust-Based Replication

List
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Perform the 
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Figure 8.3: Elementary representation of the trust-based
replication management

number of replicas produced in the system. This optimization cost is continuously
performed over the system lifetime. On the other hand, it improves the trustworthy
placement of replicas on nodes so that the more important replicas will be always
placed only on highly trustworthy nodes.

8.5 Evaluation

In this section, we investigate the effectiveness of the trust-based replication ap-
proach. For the purpose of evaluating and testing, an evaluator based on our
TEM [ASM+13] middleware has been implemented which is able to simulate our
approach over a period of 2000 rounds. The evaluation network consists of 1000
nodes where all nodes are able to communicate with each other using message
passing. Each node has a random storage capacity and is judged by an individual
trust value without any central knowledge. The trust values of nodes are generated
in two steps. Firstly, according to [BLF09, RDB10], we created different behaviors
of nodes with different proportions in the system:

• Durable trustworthy: with a mean value of 0.95 and proportion of 10%

• Stable trustworthy: with a mean value of 0.87 and proportion of 25%
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• Unstable trustworthy: with a mean value of 0.75 and proportion of 30%

• Erratic : with a mean value of 0.33 and proportion of 35%

Then, we added a Gaussian noise of σ = 0.1 to each trust and capped the resulting
value into [0, 1]. The evaluation has been conducted using 100 services (i.e., 50%
of them are important and 50% unimportant). The service assignment has been
performed randomly to ensure that the proposed approach is evaluated under a
great variety of start conditions. After the assignment, replicas are created in the
system using the following parameters:

• The minimum replication factor Rmin is set to 5.

• The maximum replication factor Rmax is set to 20.

Our goal is to recognize the importance level of services solely based on the number
of requests and to improve the trustworthy placement of replicas at runtime. Fur-
thermore, replication cost should be reduced in contrast to the baseline approach
in order to get a better performance in the overall system. Each evaluation scenario
has been replayed 500 times and the results have been averaged.

8.5.1 Trust Examination

In the following, it is demonstrated how the placement of replicas can be improved
— using the proposed algorithm — in response to trust changes in the environment.
Therefore, the importance level of services is changed during runtime. We varied
the rate of requests for every service and compared the deviation of actual trust
from the required trust. Figures 8.4 and 8.5 show the results of this experiment
with and without trust, respectively. The results attest a good performance for the
trust-based replication compared to the baseline approach. Most of services show
either an equal or a better actual trust than the required trust. However, there exists
a small number of services which have a less trustworthy state than the required
value. This is explained by the fact that nodes in our system have a limited capacity
available for storage. This makes the replica process difficult for some services to
find still unloaded trustworthy nodes on which to place their replicas.

8.5.2 Overhead Examination

To establish replication, replicas need to be created in the system. In the follow-
ing, this overhead is investigated for the baseline and the trust-based replication
approach. For this experiment, the same settings as above has been used and Fig-
ure 8.6 shows its result. The values on the x-axis stand for the replication approach
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Figure 8.4: The density of trust deviations using the trust-
based approach.

 0

 1

 2

 3

 4

-1 -0.5  0  0.5  1

N
um

be
r 

of
 s

er
vi

ce
s

Actual Trust - Required Trust

Figure 8.5: The density of trust deviations using the base-
line replication approach.
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Figure 8.6: Measuring the impact of overhead for different
categories of services using the trust-based vs.
the baseline replication approach.

used and the total number of replicas is depicted on the y-axis. To perform detailed
measurements, we separated the important services from unimportant ones and
calculated also the replica overhead created for each category. From the results,
we can observe that the overhead is reduced by about 20 % for important services.
But for unimportant services, the overhead is maintained nearly at a constant level.
This is because the condition set in the system does not tolerate to produce less
replicas than Rmin for unimportant services. Overall, we can say that the cost of
replication is decreased using our approach by about 14% for all services. This
means that the consideration of trust does not prevent our algorithm to save over-
head by placing the replicas.

8.6 Related Work

As far as we know, a previous study of replication for self-healing systems based
on trust in open and distributed environments has never been done before. How-
ever, some works have already been done on their design, for instance the sys-
tem designed by Google called Spanner [CDE+13], OriFile [MBHM13], MinCopy-
sets [CSR+13], Scada [KGA+14], CalvinFS [TJA15], etc. Our approach differs from
the current sate of the art in four major points. First, the benevolence assump-
tion of nodes is not made in our work. In contrast, we use the social concept of
trust to mitigate hazards that can occur from placing replicas randomly in the sys-
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tem. Second, our approach can adapt to changing behavior of nodes as well as
to changing condition of services. Third, it possesses a regulation mechanism to
save replica overhead at runtime, and finally it is applicable to any kind of trust-
aware Recommender Systems. Thus, we want to compare our mechanism to sys-
tems that employ the same approach. The closest approach to us is to perform
the replica placement based on a forecast regarding the availability of nodes. For
example, the authors of [LGR15] analyze how to maximize the number of objects
that remain available when node failures occur. Existing systems based on such
availability placement include [RDB10, MCM15, BMSV03, BLF09]. The main dis-
advantage of those approaches is that they do not take the priority of services into
account and need a high computation power to perform the placement. This would
not be suitable for ubiquitous or embedded systems. Very recently, the authors
of [HNZSY+16] proposed an interesting replication technique based on trust to
minimize the impact of inoperable TMS instances in the system. Based on an arti-
ficial exponential distribution to model trust, the authors estimate the trust of each
node and determine the amount of replica accordingly. However, as exponential
distributions are memoryless they cannot be used to predict trust as we do in this
work. The second disadvantage of this approach is that it does not consider the
number of requests to determine the importance level of services at runtime.Parts
of the content of this chapter have been submitted by the author in the following
conference:

• [MU17a]: Nizar Msadek and Theo Ungerer. An Efficient Replication Approach
Based on Trust for Distributed Self-Healing Systems. In ICINCO 2017: Proceed-
ings of the of the 14th International Conference on Informatics in Control,
Automation and Robotics, (Submitted but not yet published), Madrid, Spain,
Springer 2017.

8.7 Conclusion and Future Work

In this work, a novel replication approach for self-healing systems is proposed. It is
based on the notion of trust to improve the trust distribution of replicas and to min-
imize replication overhead in the system. The algorithm makes use of a trust metric
to model the trust relationship between nodes, which is missing in most existing
state of the art systems. Then, a mathematical model is formulated to determine
the required trust of each service based on how many times it was requested in the
last rounds. This is important to enhance the management of replicas for better
trustworthiness of important services. An evaluation is provided with respect to a
real-world Organic Computing middleware. Overall, the results show a better trust
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distribution for replicas with a significant reduction in overhead when compared to
the baseline. However, there are still some studies to be done for future work. For
instance, further improving the trust distribution of replicas and further decreas-
ing the replication overhead. We also plan to investigate more the categorization of
services by including other factors such checkpoint size and service centrality.
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9
Conclusions and Future Work

Abstract. The contributions of this thesis are approaches that enable
to improve the robustness of self-organizing systems in open and dis-
tributed environments. This chapter summarizes these approaches, and
gives an overview of the achieved outcomes. Finally, it discusses future
research challenges related to the context of the proposed approaches.

9.1 Thesis Summary

This thesis dealt with trust techniques that enable to increase the robustness and
performance of self-* systems, in open and distributed environments. After an
analysis of the state of the art, a system view has been introduced. This corresponds
to the baseline system used for all conducted measurements within this thesis. It
belongs to the category of Organic Computing systems and covers the most impor-
tant characteristics of self-* properties mentioned in the literature. In the light of
these properties, a number of key challenges and issues have been identified — to
drop the benevolence assumption of self-* systems that hinder their acceptance to
be applied in open environments. The investigations conducted in this thesis are
solutions for these issues with a strong focus on trust that can be summarized as
follows:
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Trust-Enhanced Self-Configuration. The self-configuration approach introduced
in Section 4.3 is able on the one hand to equally distribute the load of services on
nodes as in a typical load balancing scenario and on the other hand to assign ser-
vices with different importance levels to nodes so that the more important services
are assigned to more trustworthy nodes. Evaluations have been conducted to rate
the effectiveness of the algorithm when nodes are failing, i.e., the reduction of fail-
ures of important services. The results show that the proposed self-configuration
algorithm is able to increase the availability of important services by more than 12%
compared to the baseline version without trust.

Simultaneous Self-Configuration. The simultaneous algorithm presented in Sec-
tion 4.5 deals with coordination strategies as enhancement to the aforementioned
self-configuration in order to operate with multiple managers at the same time.
The results show an outstanding performance for the simultaneous approach with
a decrease in processing time of minimum 50%. Furthermore, the simultaneous
algorithm includes a fault handling mechanism enabling the system to continue
hosting services even in the presence of failures. The types of failures considered
in this work are crash failure, execution failure and reachability failure.

Trust-Enhanced Self-Optimization. The introduced self-optimization approach
of Section 5.3 is used to optimize the allocation of services on nodes during run-
time. It does not only consider pure load-balancing but also takes into account trust
to improve the assignment of important services to trustworthy nodes. Different
optimization strategies are applied in this context to determine whether a service
should be transferred to another node or not. The evaluation results showed that
the proposed approach is able to balance the workload between nodes nearly opti-
mal. Moreover, it improves significantly the availability of important services, i.e.,
the achieved availability was no lower than 85% of the maximum theoretical avail-
ability value.

Simultaneous Self-Optimization. A set of variations have been investigated in
Section 5.6 for the above mentioned self-optimization in order to improve its per-
formance in case of multiple requests. The difference between the variations arises
in the way to handle requests, either sequential or parallel. At the end, a compar-
ative evaluation is conducted to analyze the performance results of the variations
compared to the basic approach. The results attest a good performance for the ex-
tended optimization algorithm with parallel request handling.

Conflicting Trust Values. The conflict resolution mechanism of Chapter 6 aims
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to solve trust conflicts at runtime based on an iterative exchange of trust values
between contractors and managers. We analyzed its performance for different sce-
nario cases and the results showed that an average conflict reduction of 97.5%,
53,42% and 6,47% were achieved respectively to the Best-case, Average-case and
Worst-case scenario.

Self-Healing: Trust-Based Monitoring. The benefits of the trust-based monitor-
ing algorithm presented in Chapter 7 are twofold. On the one hand, it aims to re-
duce the number of messages that arises from sending keep-alive messages. On the
other hand, it aims to improve the failure detection delays by adapting to the trust
conditions of the network. For this purpose, three monitoring functions have been
introduced: discrete monitoring, continuous monitoring, and continuous-discrete
monitoring. The results show that the continuous-discrete monitoring performs
best. It can adapt faster to changing trust condition in the network than the others.

Self-Healing: Trust-Based Replication. The trust-based replication of Chapter 8
is an approach based on trust that provides a good management of replicas, es-
pecially for those of important services despite malicious behavior of nodes in the
network. Depending on the importance level of a service possessing the replicas
and the assessment of the trustworthiness of a node, we can optimize the trust dis-
tribution of replicas at runtime. For evaluation proposes we applied our approach
to an evaluator based on the TEM middleware. In this testbed, the usage of trust
reduced about 14% the replication overhead while providing a much better place-
ment of important replicas than without trust.

9.2 Future Research Challenges

In this section, we discuss future work related to the context of the proposed ap-
proaches that can further advance the robustness of self-* systems. Some of these
feasible advancements are outlined in the following:

Split-Brain Problem. One limitation of the service recovery that we faced during
the evaluation process is the Split-Brain Problem [BK14]. This represents a state in
which nodes in the network are partitioned into clusters. And each one believes it
is the only active cluster in the network. Figure 9.1 provides a better comprehen-
sion of that problem. Assume we have one contractor c1 that operates to report
some service results to manager m. Let us further assume that m can no more com-
municate with its contractor c1, due to a reachability failure which can happen at
any time in our system. In such case, manager m asks helpers h1 and h2 to check
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Partition in the network due 
to reachability failures

Cluster 
A

Cluster 
B

Figure 9.1: Simplified illustration of a network partition
isolating a manager m from its contractor c1

due to a reachability failure in the network.
Once the problem is resolved, an automatic
reconciliation will be required in order to bring
the network in a consistent state again.

whether c1 is alive or not, as explained above. The two helpers cannot reach c1.
Consecutively, m believes that c1 has crashed. It uses the data storage to recover
all services which were running on c1 and to restart them on another contractor c2.
Until now, the system seems to run correctly. However, a problem arises when the
partition between the two clusters is lost and m is not aware of it, leading to incon-
sistency in its service results. In the literature, there are many different approaches
to deal with the split-brain problem. The most common one is the Quorum ap-
proach [Shi06, UKT13], which consists of selecting the cluster with a majority of
votes. A disadvantage of this method is that it does not operate if clusters in the
system have the same number of votes causing a non-determinism in the solutions
computed. Therefore we are interested in providing a better approach that is able
to consider additional constraints (beside the voting constraint) such as the last ver-
sion of services, the number of run services, the workload and trust of contractors
and so on. More research related to this is left for future work.

Self-Protecting Mechanisms. For future work, we plan also to investigate more
sophisticated self-protecting mechanisms for the TEM that might further increase
its robustness against trust manipulation. For this purpose, we have to analyze and
study the most common security threats present in the field of trust in distributed
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environments such as the ones presented in [MP09] to get a deeper understanding
of that issue. Of course, such investigation could also include other related fields
such as Cloud Computing and peer-to-peer systems. Based on this study, we have
to build self-protecting solutions that can be applied in our trustworthy self-* layer.
It is important to note that the found solutions should also be characterized by low
overhead in order to be integrated in TEM – no self-protection at any cost.

Extension for Real-Time Systems. Our TEM middleware is currently able to ex-
amine the logical correctness of services at runtime. This is performed mainly by
comparing the output results of at least two contractors executing the same service,
as discussed in Section 3.4.3. However, what the TEM does not provide are tem-
poral correctness mechanisms [WG98] to allow managers in the system to specify
which of the services should be well completed in due time, i.e., within a given
deadline. Therefore, a step further will be the integration of timing techniques for
services, helping the support of real-time applications over TEM. Depending on the
importance level of a service, two type of deadlines can be defined [BU10]: namely
firm and hard deadlines. Firm deadlines can be helpful especially for unimportant
services. If the deadline is missed, the computation result can loose it relevance but
no serious damage will be caused in the system, like a service controlling the GPS
position of a car. In contrast, hard deadlines are necessary for important services
where the miss may result in harm or damage, such as a service controlling the
Airbag system of a car. To guarantee that these deadlines hold, the worst-case exe-
cution time (WCET) of every service has to be determined. This corresponds to the
the highest possible timing limit that could take a service to be executed over TEM.
Interesting will be in this context to investigate different priority inversion mecha-
nisms — as those for instance proposed in [SRL90, HJ06, SMFGG01] — that can be
applicable to TEM, and moreover, to find out how the failure detection delay can ef-
ficiently be bounded— during the self-healing process — to allow for rescheduling
the services within a certain time period set by the deadline. Therefore, it is im-
perative for the near future to make our trust-enhanced self-* approaches real-time
capable. Furthermore, estimating efficiently and precisely the WCET of a service —
first with low overhead and foremost without extensive under- and overestimation
— is not a simple task to achieve in open systems since this estimation can depend
on several uncertain factors, such as service dependencies, resource conflicts, data
conflicts, network delays, trust behaviors etc. For this purpose, studies are needed
to get a deep understanding of how WCETs can be realistically estimated in open
environments and to investigate which state of the art techniques originated maybe
from other fields such as Real-Time Systems and Reactive Computing can also be
applied to TEM.
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9 Conclusions and Future Work

On the road to Industry 4.0 & industrial IoT. The developed self-* algorithms
provided in this thesis can be seen as a step to further help the realization of smart
factories in the current trend of industrial IoT [JBSR17] and Industry 4.0 [PMF+16].
Many autonomous robots — equipped with different computing technologies and
tools — could be connected to a network in order to collectively solve services that
a single robot cannot solve. The system is open in the sense that robots can enter
and leave the network arbitrarily at any time. The behavior of such robots must not
influence the correct processing of services, otherwise the business will be exposed
to serious risks. The importance level of services can change during runtime. The
system should recognize which services are considered to be more important than
others and perform the self-configuration process. This self-configuration consists
of finding an initial allocation of services allowing the more important services to be
operated only from high trustworthy robots. The overall load in the system should
be well-balanced as well. If an additional robot joins the network, the system would
try to optimize the assignment of services by means of the self-optimization prop-
erty. The self-healing property comes into play to perceive services that are not
operating correctly and to make the necessary adjustments to restore them au-
tonomously, without causing any adverse impact on the system.

Other Possible Future Application Domains. There are a lot of areas in which
open self-* algorithms are conceivable to be applied in the technologies that sur-
round us today. Example include Warehousing, health, smart home as well as
smart grid.

• Warehousing: An intelligent warehouse of the future will include a large
number of robots that can move freely among different storage racks within
multiple distribution centers. They can shift up and down aisles to store and
retrieve cases. They coordinate with other robots autonomously to perform
complex tasks, such as optimizing the storage space when facility expansion
for instance of one center is no more possible. Self-* algorithm capable of
operating in an open environments are highly needed for such a scenario.

• Health: Domestic medical robots can be developed in the future to help older
people in their home to perform activities such as medication management
and to provide services for emergency situations. In such a scenario, there
is a need for recognizing important services and balancing their workload
between high trustworthy robots, and thus to increase the system’s safety
and robustness.
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9 Conclusions and Future Work

• Smart Home: Autonomous robots can be tailored in the near future to the
individual need of single homes. They provide services increasing the com-
fort assistance, pleasure, and well-being of residents without restricting their
daily routine. Trustworthy self-* algorithms from the basis of realizing such a
scenario.

• Smart grid: A smart grid of the future will be composed of several hetero-
geneous entities that cooperate with each other in a parallel way. With the
use of an open network the system has to implement robust self-organizing
approaches as those introduced in this thesis.
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