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First-passage times of non-Markovian processes: The case of a reflecting boundary
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Mean first-passage times (MFPT) of non-Markovian processes driven by Markovian two-state
noise of finite correlation time are considered. Absorbing as well as reBecting boundary conditions
are constructed, and new results for the first-passage-time density and the MFPT are derived. We
extend our study to dichotomic Fokker-Planck processes, i.e., a stochastic dynamics in which the
random walker jumps between two difFerent Fokker-Planck processes with a dichotomic noise dy-
namics. In this general case, too, we derive the boundary conditions explicitly and obtain novel ex-
pressions for the MFPT. A number of special cases and limits are considered which elucidate the
physics of the more general results. Finally, we consider the problem of bistability driven by dicho-
tomic noise and express the MFPT in terms of the stationary probability density. For the escape
rate at weak noise we establish the connection between the MFPT approach and the current over-
population method.

I. INTRODUCTION

The mean first-passage time (MFPT), i.e., the time at
which a stochastic process starting at a given initial value
reaches an a priori assigned threshold value for the first
time, has become a useful concept with many applica-
tions in physical, chemical, and engineering sciences, '
Explicit, closed analytical expressions for the MFPT are
known for one-dimensional Fokker-Planck processes, '
birth and death processes with nearest-neighbor transi-
tions, ' continuous-time random walks with nearest-
neighbor jumps, ' and processes involving jumps next to
nearest neighbors. The intricate difficulties encountered
in obtaining exact first-passage time results for general
non-Markovian processes have been illustrated in Ref. 8.
Exact results for non-Markovian processes driven by
two-state noise have been obtained first in Ref. 9. Re-
cently, those results have been rederived and generalized
in a series of papers by various groups. ' Clearly, for
non-Markovian processes the construction of correct
boundary conditions is a delicate problem. ' In the case
of two-state noise, the construction of absorbing boun-
daries follows a natural scheme which has already been
presented in Ref. 9. In this context, it should be stressed
that all of the recent work' explicitly deals with such ab
sorbing boundaries only.

Our objective in this work is to generalize the bound-
ary problem to reflecting boundaries as well As it w.ill
turn out, the construction of reflecting boundaries is
more subtle because the reflection process can happen on
a varying time scale. Moreover, we shall investigate the
relationship in bistable situations between the activation
rate and the MFPT when the noise strength is small.

The paper is organized as follows. In Sec. II we study
free diffusion generated by a two-state Markov process.
%'e review the known results for absorbing boundaries
and then study a boundary with immediate reflection. In
Sec. III we study generalized diffusion in which a particle
jumps back and forth between two different diffusion pro-

cesses (dichotomic Fokker-Planck processes). MFPT's
for reflecting as well as absorbing boundaries are derived
for specific situations. Finally, we study in Sec. IV the
MFPT for a general, nonlinear flow driven by multiplica-
tive Markovian two-state noise. This process results as a
degenerate dichotomic Fokker-Planck process in which
the white-noise diffusion is set equal to zero. We present
new results for the MFPT, both with absorbing and
reflecting exit boundaries. In the Appendix we study the
detailed description of the boundary conditions by start-
ing from a discrete random walk on two layers and then
performing the continuum limit.

II. FREE DICHOTOMIC FLOW
(PERSISTENT DIFFUSION)

Our investigation starts with a free process driven by
Markovian two-state noise g(t )=+1 according to

i=a((t), a)0 (2.1)

with equal jump rates ( l~—1)=p and (—1~1)=p, re-
spectively. The symmetric dichotomic noise has zero
mean and an exponential correlation

(Pt)C(~)&=exp( —
l
~—~

I
«) (2.2)

where ~=(2p) ' is the noise correlation time. Now, let
Ft(y;+a ) denote the probability for a particle that start-
ed out at ye[A,B],with positive or negative velocity, re-
spectively, to be found at time t still in the safe domain
[A,B], A &B. This quantity F,(y;+a } obeys the back-
ward equation

dF, (y;+a )
F,(y;a }=a +p[F, (y;—a } F,(y;a )], —

By

(2.3a)

dF, (y;—a )
F, (y;—a)=—a +p[F,(y;a) F, (y; —a)] . —

By

(2.3b)

38 4213 1988 The American Physical Society



4214 V. BALAKRISHNAN, C. VAN den SROECK, AND P. HANGGI 38

F, 0(y;+a )=8(y—A )8(B—y ), (2.4)

where 0 is the step function. In what follows we also as-
sume that at time t =0 we have, for the initial probability
Wo of finding the particle at y with positive and/or nega-
tive velocity, Wo(a

~ y }=w+, and Wo( —a
~
y)=w, re-

spectively. Obviously, one has

w++w =1 . (2 5)

The initial condition at time t=0 of preparation for
F,(y;+a ) reads

fact that a particle starting at the boundary with an in-
ward velocity will first jump back into the safe domain
[A,B], the average residence time in the corresponding
velocity state being of the order of I /p.

Next we turn to the problem of a re+ecting boundary.
In the following we always identify A to be a reflecting
boundaiy while B remains absorbing. Ef the particle hits
with negative velocity the boundary x = A and if it is
reinjected immediately, i.e., the corresponding rate con-
stant is infinite (see the Appendix), we have the natural
reffecting boundary condition

The first-passage-time density (t(((y; ka ) itself is given in
terms of F,(y; ha }by

(2.6)

P( {A; —a )={{}((A; +a ),
whence, for the MFPT,

T(A;—a)=T(A;+a) .

(2.12a)

(2.12b)

=1 zI', (y; k—a ) (2.7)

It obeys with the substitution F(~P—( the same equa-
tion (2.3) with initial condition

0(y; +a )=&(y—A )8(B—y )+8(y—A )5(B—y ) .
In terms of the Laplace transform

{{(,(y;ka)= f "P((y;ka }e "dr
0

T(y }=w+ T(y;a )+w T(y;—a } (2.13a}

For A absorbing and B reflecting, a similar condition is
readily derived. If particles are reinjected with a finite
rate A, , the process of reflection is not unique. For the
general derivation of the reflecting boundary condition
we refer the reader to the Appendix.

Table I contains a summary of the various results.
T(y ) and (t(((y ) are obtained by using

(where P,~+ 1 as z ~0), the n th moment of the FPT,
T„(y;ka ) reads P((y)=w+y((y;a)+w y((y; a) . — (2.13b)

T„(y;aa )= f t "P((y;ka )dt
0

(}"P,(y; ka )=(—1)"
z=0

=(—1)" „[ zP, (y;+a )+—1] i,Z"

n Oy 1s ~ ~ ~ ~ (2.8)

III. DICHOTOMIC FOKKER-PLANCK PROCESS

A situation of great practical importance is the case in
which a system switches between two (or more) stochastic
dynamics. " Here, we shall consider the case of a switch-
ing between two Fokker-Planck processes, i.e., in terms
of the dichotomic noise g(t )=21 we write the stochastic
differential equation

@[T(y; —a )—T(y;a )]+aT'(y; —a )=—1,
IJ,[T(y; a )—T(y;—a ) ] aT'(y; a )=—1—,

(2.10)

In the following, the first moment T, (y; +a ) is simply
denoted by T~ (y; +a )—=T(y; +a ).

The first moment

T, (y, +a)=T(y;+a)= f F((y;ka)dt (2.9)
0

obeys froin Eqs. (2.3) and (2.8) the backward equation

x = ,'[f+(x )+g+(—x)g(t }+f (x )+g (x )ri(t )]
+ ,'[f+(x)+g+(x—)ri(t) f (x)—g (x)r}(t—)]g(t) .

(3.1)

Here, ri(t) is Gaussian white noise of zero mean and
correlation (g(t )ri(s ) ) =25(t—s ). The product
g(x)ri(t) is interpreted using the Ito rule. '2 For g(t)=1
one probes the Fokker-Planck dynamics

where T'=BT/By.
In previous works ' the MFPT problem has been

solved for absorbing boundaries only. With the exit boun-
daries A and 8 both being absorbing, one has

x =f+ (x )+g+ (x )g(t ),
whereas for g( t }=—1 we have

x(r)=f (x)+g (x)g(t) .

(3.2a)

(3.2b)

P(( A; —a )=0, P((B;a )=0 .
For the MFPT itself, this implies

T(A;—a)=0, T(B;+a)=0 .

(2.11a)

(2.11b) x =f(x )+g(x )g(t ) (3.3)

With g+ ——g =0 and f+—— f =a, we recov—er the
free persistent diffusion of Sec. EE. The general nonlinear
dichotomic flow

The values T(A;+a) and T(B;—a} are determined by
(2.10). Generally, both T(A;+a) and T(B;—a) will
take on nonvanishing, positive values; this is due to the

is recovered from (3.1) if we set f+ (x )=f(x )
+g(x);f (x)=f(x)—g(x), and g+(x) =g (x)=0.
Because the pair (x,g) forms a Markov process, the so-
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—i [F,(y;+1)—F, (y;—1)], (3.4a)

a2F (y;—1)= f (y) +g' (y), F (y; —1)r ~ —
gy

—
gy 2

p[F—, (y; —1) F—, (y;+1)] . (3.4b)

Again, these equations must be supplemented with
boundary conditions. A detailed derivation of these
boundary conditions is given in the Appendix. Here we
merely state the results and elucidate their meaning.

(a) Absorbing boundaries at A and B. This implies for
the MFPT density, assuming g+(x )&O,g (x )&0

P, ( A; —1)=P, ( A;+1)=0, (3.5a)

journ probabilities F,(y;+1) and F, (y;—1), respectively,
obey the backward equations

a2
F,(y;+1)= f+(y ) +g+(y), F,(y;+1)+ gy +

zF, (y—;+1)+1,
one finds from (3.4) the coupled first-order equations

(3.9)

—1= zP, (y—;+1)+ f+ +g2+, P, (y;+1)+ g + g 2 z

—p[P, (y;+1)—P, (y; —1)], (3.10a)

dynamics in the plus state [g(t )= 1 at all times], while the
condition (3.6b) amounts to an instantaneous reinjection
from the minus into the plus state as already encountered
in Sec. II. Other, even more complex, types of boundary
conditions are, of course, also possible. For example, one
can construct situations that resemble radiation bound-
ary conditions ' ' by incorporating a suitable mechanism
by which particles are reflected from the (+ ) state to the
( +- ) state at the boundaries.

In terms of the Laplace transform

P, (y;+1)=J P, (y;+1)e "dt (3.8)
0

aP, (y; 1)[g+(y)]' =0,

P, (B;—1)=$,(B;+1)=0,
and for the first moment

T( A; —1)=T(A;+1)=0,
T(B;—1)=T(B;+1)=0 .

(b) A (rejlecting) and B (absorbing)

(3.5b)

(3.5c)

(3.5d)

(3.6a)

a 2a'—1=—zP, (y;—1)+ f +g, P, (y;—1)
ay ay 2

p[F.(y—"'—1)—P, (y'+1)] (3.10b)

obeying the boundary conditions mentioned above with
P, (y;+1) replaced by F,(y;+1). As lim, oP, (y;+1)=T(y;+1) we obtain from (3.10) for the MFPT's,

y=a
P, ( A; —1)=P, (A;+1),

while at 8 we have, as before,

P, (B;—1)=P,(B;+1)=0,

(3.6b)

(3.6c)

a a'—1= f+ +g+, T(y;+1)+ay +a 2

p[ T(y; +—1)—T(y;—1)], (3.11a)

with corresponding conditions for the first moment, i.e.,
T( A; —1)=T( A; + 1), etc.

(c)B (reflecting) and A (absorbing).

a 2a'—1= f +g T(y; —1)

—p[T(y;—1)—T(y;+1)] . (3.11b)
ay, (y, —1)

[g (y )]'
y=B

=0,

P, (B;—1)=P,(B;+1),
andat A

P, (A;—1)=P,(A;+1)=0 .

(3.7a)

(3.7b)

(3.7c)

The set of Eqs. (3.10), or, via Eq. (2.8) those for the corre-
sponding moments T„(y;+1),cannot be solved explicitly,
in general. In the following we shall consider only the
first moment, given by Eqs. (3.11), which we study for
some special choices of the set of functions
t f+(x),f (x),g+(x),g (x)t.

We note first that each boundary implies two boundary
conditions, yielding a total of four boundary conditions.
This is due to the presence of the Fokker-Planck dynam-
ics (a second-order differential operator) both for the
(+ 1) dynamics and the (—1) dynamics. Moreover, at a
"reflecting" boundary, one has no unique reflection
mechanism. The process of reflection at the boundary
must be specified in detail. The reflection condition in
Eqs. (3.6a) and (3.6b) corresponds to an immediate rein-
jection of particles that have hit the boundary y = A from
the "minus" state [g(t )=—1] into the "plus" state
[g(t)=+1]. Note that (3.6a) corresponds to the well-
known reflecting boundary condition for Fokker-Planck

A. Dichotomic diftusion

This process is defined by f+ f =0 and-—
g+ D+~, g =D——'~ . Then x(t) obeys the stochastic
equation

x(t )=—,'(D+'+D' ')ri(t)+ ,'(D'+~2 D'~2)q(t —)g(t) . —
(3.12)

This flow corresponds to a Brownian motion which
jumps between a diffusion process of strength D+ and a
diffusion process of strength D . From (3.11)we obtain
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D T"(y;—1)+D+T"(y;+1)=—2,

D+ T"(y;+1) p—[T(y;+1)—T(y; —1)]=—1,

or upon eliminating T(y; —1) the fourth-order equation

D D
(D +D+ }T"(y;+1)— T""(y;+1)=—2 .

p
(3.13)

%'hen both A and 8 are absorbing boundaries, we obtain
from (3.5c) and (3.5d) the following explicit result:

T' '(y )=w+ T(y; 1)+w T(y; —1)

+2(w+ D w—D+ ) sinh[ —,
' l (y—A ) ]sinh[ —,

' l (y —8 ) ]/cosh[ —,
' l (8—A )],(y —A )(8—y) (D+

D++D ' ' p(D++D )2

(3.14)
where

A, =p, (D+'+D ') .
For the average ( T' '(y ) ) over y uniformly distributed in [A,B], one has

(3.15)

(8—A)' (D+—D }
& T"'(y))= +(w+D6 D++D + + &(D

2 tanh[ —,'l(B—A }]
A,(B—A )

—1 (3.16)

When A is an instantaneously reflecting boundary one obtains, using (3.4), (3.6b), and (3.6c), the result

T""(y )= +(w+D wD+ ) — I 2 sinh[ —,'A(y —A )]sinh[ —,'A(y —8 )](8—y)(8—2A+y) (D+—D )

D++D IJ(D+ +D )

(D+ D)—
+A(y —8)sinh[ —'A(B —A )]) /cosh[ —'A(8 —A )]+ w A(y —8)tanh[ —'A(B—A )],2 p(D++D ) 2 (3.17)

with A, defined in (3.15). Its average (T"")=(8—A ) ' I „T""(y)dy can readily be evaluated.
A few specific cases are of special interest. These also serve as useful checks of the results derived above.

(i) D+ =D =D .
In this case we have

T' '( )= (y —A )(8—y)

(3.18)

(3.19)

(8—y)(B—2A+y)
2D

(3.20)

These are the well known MFPT's for a diffusion process with diffusion constant D. This is evident if one notes that
with D+——D, a switching mechanism between the plus and minus state does not affect the duffision processes.

(ii) Limit of infinite switching rate, p,~ Oo. This implies a standard diffusion process and thus yields again the above
results (3.19) and (3.20), respectively, with an effective overall diffusion constant D given by

D= —,'(D++D } .

(iii) The limit p~0.
'(y —A)(8—y) (y —A)(8 —y)

+

T""( )
(8—2A +y)(8 —y) +

( 8 )(8 A )
D+ +D 2D+D

(3.21}

(3.22)

+
L

D+—D (8—2A +y )(y —8 ) .D 2 D++D (3.23)
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The result in (3.22} follows because with }M=0 (and A and
8 both absorbing), the two diffusion layers are not in con-
tact with each other: Thus Eq. (3.19) applies, with corre-
sponding initial preparation weights m+ and w . With
the plus and minus states behaving differently at the
reflecting boundary A [see (3.6)], the result in (3.23) is
naturally more complex.

(iv) D =0. Now the minus state is not mobile. This
implies, from Eqs. (3.14) and (3.17},respectively,

lim T' '(V }=,b, (V —A)(B—V) +
D ~0 D+ p

{3.24)

Trcfl(V )
(8—2A +V)(8—V) + . (3.25)

D ~0 D+ p
In other words, with m =0, one obtains twice the
answers in (3.19) and (3.20), respectively. When m &0,
one has to add also the residence time in this state, name-
ly, w /p, .

(v) D+ ~0. For absorbing boundaries one has simply
(3.24) with w replaced by w+ and D+ by D . The sit-
uation for T""(V ) when the plus state has a mobility ap-
proaching zero is more tricky. One finds from (3.17)

x=aj(t)+D' 7){t) . (3.27)

Using (3.11},we obtain on eliminating T(V;—1) the equa-
tion obeyed by T(V; + 1), i.e.,

r

2 2
2D+ T"(V;+1)— T""(V;+1)=—2 .

P P
(3.28)

Due to the symmetry we find for absorbing boundaries at
A andB

an average time I/p and diffuses during this time away
from the boundary A a distance of the order of
{D+/p, )' . It then switches back to the minus state.
The process repeats over and over again, the number of
times A is hit being given by (8—V )/(D+ /p)', yield-
ing a total residence time (or MFPT) of p '(8—V)/
(D+ /p )'~, as in (3.26).

B. Forced dichotomic difFusion

Next we consider dichotomic difFusion driven by the
two-state process g(t) defined as in Eq. (2.1). In the fol-
lowing we therefore set f+——a, f =—a, and use a
"symmetric" diffusion g+ ——g =D ' . The diffusive
process reads

T"' (V)~, as D+~0,(8—V)
)1/2

(3.26) T'b'(V; + 1 )=T' '( A +8—V;—1 ) . (3.29)

i.e., the MFPT is (in leading order) independent of D
and it diverges like D+ '~ . The result in (3.26) can be un-
derstood intuitively as follows: The boundary A is hit by
the particle while it is in the mobile minus state. It is
then transferred to the plus state, in which it resides for

I

With

p =(a +2pD)/D (3.30)

one finds for the explicit solution of (3.28) with A, 8 both
absorbing [see Eqs. (3.5)]

T' '(V;+1)= 4a (8—A ) (Dp —2p)sinhabs . 2 B—A B—A
2 p +(8—A)ppcosh

2 p

X cosh[p[V ——,'(A+8)]}—cosh p
B—A

B—A B—A—4ap a sinh
2 p +(8—A )ppD cosh

2 P

(8—A )sinhIp[V ——,'( A +8 )]}—2[V——,'( A +8 )]sinh p
B—A

+ 2a pp2(B —A )sinh[(B —A )p] 21JD p (8——A )sinh[(B —A )p]

—gapa sinh p (8—V)(V—A) [(4(a +2pD)sinh[ —'p(8 —A)]8—A 2

2 2

X I(B—A )p (a —p D )cosh[ —,'p(8 —A )]—2pa sinh[ —,'p(8 —A )]}). (3.31)

lim lim T' '(V; + 1 )=0 .
D~Oy f A

(3.32)

In the limit a ~0, Eq. (3.31) reduces to the known result
in (3.19). The limit D~O is more elucidative and in-
teresting: In the open interval ( A,B } the result (3.31) for
the MFPT reduces to the result in Table I with ur+ =1.
In agreement with the boundary condition in (3.5c) we
find

Upon an interchange of limits, however, we find

lim lim T'"'(V;+1)={B—A )/a . (3.33)
yf A D~O

Indeed, the latter result follows for a particle located
close to y = A which starts with a positive velocity, +a,
and moves deterministically (D~O} towards the exit
boundary at y =8.
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IV. NONLINEAR DICHOTOMIC FLOW

The study of activation rates in nonlinear flows driven by
non-Gaussian noise has recently figured in several
theoretical discussions. ' ' Following Refs. 13 and 14,
we shall investigate the nonlinear flow

x=f(x)+ag(x)g(t), a ~0, g(x)&0 (4.1)

f+ (x )=f(x )+ag(x ),
f (x)=f(x)—ag(x), g+(x)=g (x)=0 .

(4.2)

where g(t ) is a dichotomic noise with unit jumps 1, as
in Eqs. (2.1) and (2.2). This flow is a special case of the
dichotomic diffusion considered in Sec. III if both
diffusive components g+(x) and g (x) are set equal to
zero. We shall assume further that f(x ) exhibits bistabil-
ity, with [ag(x )kf(x )] being positive within the bistable
region (see Ref. 14). In other words (with x, &x„&xz}
f(x, )=f(xz)=0 specifies the metastable states andf(x„)=0 the unstable state. Equation (4.1) follows from
(3.1) if we set

y o+ (z)=g g+—
a (4.8a)

( ) f d (g+f/ )P
z Dg

'2

yo (z)=g a

(4.8b)

(4.8c)

and

—
( ) fod g f/aP—

z
(4.8d)

the resulting MFPT's have the following explicit forms.
(a) A and 8 both absorbing:

T'"'(y )=f y + (z )dz f d

These equations can be solved explicitly with the bound-
ary conditions in (4.4) or (4.5). In terms of the auxiliary
functions

Setting T(y;+1)=T+(y) and T(y; —1)—:T (y), respec-
tively, we obtain from (3.11) +C+' f yo+ (u )du, (4.9a}

(f+ag)T'+ pT++p—T =—1,
(f ag)T' —pT +p—T+———1 .

(4.3)

Upon eliminating T+ or T we get a first-order
differential equation in T'+ or T', respectively. The
boundary conditions are as follows:

where

C+"=
—yi+(A)(f/a+g)(A) ——+ f yi+(z)dz

a 2D B

yo+(A )(f/a+g)(A )— f yo+(z)dz
B

T ( A )=0, A absorbing

T+ (8 )=0, 8 absorbing

T+(A)=T (A), A reflecting

T+(B)=0, 8 absorbing .

(4.4)

(4.5)

with (a 'f +g )( A ) denoting a 'f ( A )+g( A ), etc.
For T' '(y ) one finds

T"'(y)= f'y; (z)dz f ' ' du
A z Dg

(4.9b)

The stationary probability distribution corresponding to
the stochastic flow (4.1),p(x ), is explicitly given by' ' +C yo Q du (4.10a)

p(x }=
(g +f /a )(g f /a)—

o D(g f /a)(g+ f /a)— 4.6

where D =a~~=a /2p is the noise intensity. The
differential equation obeyed by T+(y) reads, from Eqs.
(4.3),

where

Cabs
—y, (8)(g f/a)(8)+ —+— f y, (z)dz1 a

a 2D B

yo (8)(g f/a)(8) — —f yo (z)dz2D B

(4.10b)

=+1,
while T (y } satisfies

2 f'
a

—g' T" + f+D —+g-a a

=+1 .

2 I—g' T" + f+D ——g +g-'a a a
T+

(4.7a)

(4.7b)

In the Gaussian white-noise limit, i.e., a~00, p~~,
such that D=a /2p, finite, T+(y) equals T (y) and
coincides with the well-known expression' for an (Ito)-
Fokker-Planck process, i.e., x =f(x)+g(x)g(t), where
the noise g is 5-correlated according to (g(t)g(s))
=2D5(t —s ).
Next we turn to the problem of escape and its connec-

tion with the concept of the MFPT. In order to compare
mean first-passage times with activation rates we must
evaluate the MFPT with A taken to be a re/i'ecting
boundary. We obtain the following results.

(b) A reflecting and 8 absorbing:
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T"'"(y)=f yo+(z)dz f Pdu

with

+C+ f y 0+ (z )dz,

grefl ~ g+ a p g'— a A pdQ
ag(A)

(4.11a)

and
X

, (g f la—)(g+f /a )
(4.16c)

V. CONCLUSIONS

This result coincides in leading order [i.e., to order
O(D )] with the result derived in Refs. 13 and 14 by
means of the "flux-over-population" approach.

g dQ

x Dg+ a g— ap
Likewise, we obtain for T""(y ),

(4.12)

Trefl( ) g dz z p (g f /a)du
~ D(g fla) (g—+fla)p & g
D p(A)[g —(f/a) ](A)
a g(A)

x + Trefl(B )
x Dg — a g+ ap

(4.13)

Here T""(B)is obtained by setting y = A in Eq. (4.13),
using the identity T""(A )= T'+" ( A ), and involving Eq.
(4.12) with y = A for the latter quantity. In the limit of
Gaussian white noise, both expressions (4.12) and (4.13)
yield the well-known expression'

lim T'+" (y )= lim T""(y )

=f f p(y )dy, (4.14)
~ D(x}p(x)

where D(x)=Dg (x) is the white-noise diffusion coef-
ficient, and p(x ) denotes the corresponding stationary
probability.
For the activation rate in the case of weak noise (i.e.,

D « 1), we have for the forward rate I + with A &x„
8=x2,

r+= 1

TI efl+

1 as D—+0.Trefl (4.15)

From both (4.12) and (4.13) we obtain, by the use of a
steepest-descent approximation (D « 1),

ae (4.16a)
277 Dexp

where.

f'(x& )~0, A„= f—'(x„)&0, —(4.16b)

(4.11b)

Equations (4.11a) and (4.11b) can be combined to yield
the useful expression

Trefl ( ) g dz f r p(g+f/a)du3' =
x D(g+f la ) (g f la )p —& g

+-D p(A)[g —(f/a) ](A)
a g(A)

Following the recent activity (see Refs. 9 and 10) aimed
at obtaining exact results for the MFPT of non-
Markovian processes that are driven by two-state noise,
we have considered in this work the case of a reflecting
boundary. Moreover, we have extended our previous
studies ' ' to the dichotomic Fokker-Planck process,
i.e., a process in which a random walker hops between
two different one-dimensional Fokker-Planck dynamics.
The main new results obtained in the present work are (i}
exact results for the MFPT and the first-passage-time
density for a free dichotomic flow (Sec. II) with both ab-
sorbing and reflecting boundaries. (ii) Exact results for
the MFPT for free and forced dichotomic diffusion [Eqs.
(3.14), (3.17), and (3.31)] which in some specific limits
reduce to rather simple expressions that help elucidate
the underlying physics. (iii) Closed-form expressions (in
terms of the exact stationary probability density) for the
MFPT of nonlinear, bistable dichotomic flows (Sec. V).
These exact results are closely related to similar, well-
known expressions for the MFPT of one-dimensional
Fokker-Planck processes. '

The results of Sec. V also clarify the connection be-
tween the rate approach' ' and the MFPT concept. Us-
ing appropriate boundary conditions, the well-known re-
lationship to the effect that the rate equals the inverse
MFPT for leaving the metastable state x

&
(with a

reflecting boundary to the left of x, ) and being absorbed
in the neighboring metastable state x2 is shown to hold
well also for one-dimensional non-Markov processes of
the kinds considered.

APPENDIX

Consider a random walk on two sets (n, +) and
(n, —),n=0, 1, . . . , of discrete states (see Fig. 1). Ex-
changes between adjacent cells take place with birth and
death rates I +„+& to go from (n, + ) to (n+1, + ), and
I'„.„+& to go from (n, —} to (n+1,—), respectively.
Transitions between the two layers occur for n & 0 with a
rate p. At the boundary itself the transition rate from
(0,+)~(0,—) will be denoted by v, and that for
(0,—)~(0,+) by v+. Our goal is to take the limit in
which the random walk on the layers approaches a
continuous-time Fokker-Planck process, while the
boundary states (0, + ) and (0,—) will be kept separately
to facilitate the precise implementation of various bound-
ary conditions. A variety of cases corresponding to
different types of boundary conditions can thus be inves-
tigated. The procedure can be applied to both the for-
ward and the backward Kolmogorov equations. The de-
tailed limiting procedure to go from a discrete random
walk to a diffusion process is already known' and will
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(0,+) (1,+) (2,+) (n, +)

y

(O.-) (i -) (n, -)

n=O n=2

FIG. 1. Discrete dichotomic Fokker-Planck process. A ran-
dom walker hops between two sets of states (n, + ), (n, —) with
rates p =p+ =p, at the boundary, the corresponding rates are
v+ and v

FIG. 2. Discrete dichotomic Fokker-Planck process. The
case of immediate reflection at the boundary.

not be repeated here explicitly. For the sojourn probabil-
ity F,(y;+) introduced in Sec. II, one finds the backward
equations (3.4a) and (3.4b), respectively. The most gen-
eral boundary conditions emerge as

t)F, (y, —)[g+(y)]'
y=0=I,b,[ F, (b—, + )+F,(y =0,+ )] (Al)

and

BF,(y,—)

By
y=0=I,b,[ F, (b, —)+—F, (y =0,—)] . (A2)

These equations connect the flux at y =0 to the value of
the function F,(y, +) at the boundary of the continuum
states (Fig. 1); the latter quantity is denoted by F, (b, +).
These boundary states obey

&F,(y, + )
[g+(y)]' =0. (A5)

Here I d+ =I o;i d =I o;& and I,+—b, ——lim& oI i.oA. (A,

denotes the length of a cell) is the rate constant in a given
layer describing the in-flow and outflow of probability
from the continuum to the boundary (Fig. 2).

The general boundary conditions in (Al) and (A2) can
be simplified if we consider special situations. The
correct choice for the boundary condition obviously de-
pends on the physical absorption and desorption mecha-
nisms at the boundary itself. Here, we shall consider only
the case of "immediate reinjection" from the ( —) state to
the (+ ) state; i.e., particles that touch the boundary at
y =0 in the ( —) state are immediately reinserted at y =0
in the (+ ) state. As is physically clear, this can be
achieved as follows. We set I +b,——0, i.e., no particles
enter the boundary from (y =0,+ ). From (Al) one then
finds the usual condition for a reflecting boundary for the
(+ ) layer, i.e.,

F, (b, +)=+r,+„[F,(y =0,+) F,(b,+)]—
+v [F,(b,—) F, (b,+)]— (A3)

y=0
Immediate reinjection can be realized by letting I b„v
and I d„go to infinity (see Fig. 2). Upon elimination of
the boundary states, one finds from (A2)—(A4) the result

and
F,(y=0, +)=F,(y=0,—) . (A6)

F, (b,—)=+I „[F,(y=0, —) F, (b, —)]—
+v+ [F,(b, + ) F,(b,—)] . — (A4)

This condition is also intuitively clear on inspecting Fig.
2 with I, ,=v =I +,=
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