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INTRODUCTION 

There are a great variety of phenomena in physical, chemical, and biological 
sciences that are caused by transitions between locally stable states. In the absence of 
thermal and quanta1 fluctuations, no such transitions would occur; that is, the states 
would remain stable. Over the last few years, the common theme underlying the 
description of escape processes has been based on Brownian motion theory. In adapting 
this theme, the motion of the principal degrees of freedom is treated explicitly, while 
the interactions with the other degrees of freedom, including those of the environment 
(heat baths) coupled to the system of interest, are represented by frictional forces and 
random noise. The noise represents the key input, thus allowing the system to get away 
from preferred states of local stability. At  high temperatures, thermal activation is the 
dominant process wherein a particle hops over the intervening potential barrier. This 
process has been studied in its various complexities in great detail over the last two 
decades.'*2 When the temperature is lowered, thermally activated hopping processes 
become rarer and the effect of quantum tunneling becomes increasingly important. 

Mainly inspired by ideas of Anthony Leggett,3.4 there has been renewed interest in 
the quantum dynamics of a system where dissipation is important. In particular, there 
is the problem of low temperature tunneling and coherence of macroscopic quantum 
variables. These processes are necessarily also subject to dissipative forces. Ideal 
experimental systems where the predicted phenomena might be observable are the 
decay of the zero-voltage state in a current biased Josephson junction, or the fluxoid 
quantum transitions in a single junction superconducting quantum interference device 
(SQUID) ring. In the first case, the macroscopic quantum variable is given by the 
phase difference across the junction, while in the latter case, the appropriate 
macroscopic variable is the magnetic flux trapped through the ring. Encouraged by a 
set of recent experiments'-' that are  in qualitative agreement with theory, this field has 
seen many rapid new  development^.**^^^ Caldeira and Leggett3 have shown that the 
tunneling probability a t  zero temperature is strongly affected by the dissipation that 
results in a strong suppression of the decay rate. Furthermore, a t  finite temperatures, 
Grabert, Weiss, and Hanggi" found a drastic change of the temperature dependence 
of the tunneling probability in the presence of dissipation. Apart from the phenomenon 
of macroscopic quantum tunneling, other macroscopic quantum effects have recently 
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been predicted. In particular, they are:

(i) the phenomenon of coherent oscillations in a s y m m e t r i ~ ~ * ~ * ’ ’  or in a weakly

(ii) macroscopic energy q~ant izat ion;’~
(iii) Bloch oscillations in Josephson junctions that are driven by a weak external

asymmetric double ~ e 1 1 ’ ~ ~ ’ ~  in the presence of Ohmic-like dissipation;

~ u r r e n t . ’ ~

The decay of a metastable quantum state is usually referred to as  “macroscopic
quantum tunneling” (MQT), whereas the phenomenon of damped, coherent oscilla-
tions of a macroscopic quantum variable between two almost degenerate, distinct
macroscopic states is known as “macroscopic quantum coherence”(MQC).” Interest-
ingly enough, the very recent, appealing experiments by Washburn et al.16*’7 on MQT
in the regime of moderate Ohmic-like friction, and by Schwartz et d.’* in the strongly
overdamped friction regime, have confirmed quantitatively many of the predicted
universal temperature effe~ts~.~*’’  of Ohmic-like dissipation. As of yet, MQC experi-
m e n t ~ ~ . ’ ~  have not been carried out.

In the following, we restrict the discussion to dissipative MQT only, elaborating on
the historic background, the method, the results, and a discussion of the regime of
validity.

HISTORIC BACKGROUND AND STATEMENT OF THE PROBLEM

The quantum description of metastable and unstable states has been a subject of
many investigations since the early days of quantum mechanics. As is well known, the
description of such states gives rise to several conceptual problems that arise from the
difficulty of finding a satisfactory characterization of these states. There are several
methods available in the literature2’ that characterize the decay of a metastable state
a t  zero temperature. Some of the more familiar ones are:

(a) The axiomatic S-matrix wherein one associates decay rates in a
one-to-one correspondence with poles of the S-matrix close to the real axis on
the unphysical sheet of the energy Riemann surface, provided that the
S-matrix can be analytically continued there.

(b) A time-dependent wave function approach, whereby one considers the outgo-
ing scattering wave near a resonance In this case, there occurs a
typical time delay, t ,  = 2/r, in the arrival of the scattered wave of the order of
the inverse decay rate, r, with respect to the case in which no resonance
occurs.

(c)  A dynamical semigroup approach for the evolution of the density ~pera tor .~’

The approaches in (a) and (b) are not readily extended to finite temperatures and
to situations where the interactions with the environment become important. For the
following, we should also remind ourselves that a pure exponential decay a t  all times
can only occur if a rescattering from the decay products (backscattering) were to be
absent. However, the rescattering phenomenon cannot be forbidden unless one chooses
a Hamiltonian that is not bounded from below. Kha1fit-1~~ has pointed out, by use of a
fundamental theorem of Paley and Wiener,25 that the quantum nondecay probability,
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P ( t ) ,  cannot be purely exponential for very large times if the minimum of the energy
spectrum of the Hamiltonian is bounded from below a t  Emin # - m. Moreover, the
quantum nondecay probability then also possesses a vanishing derivative a t  the origin
of time evolution; that is, P ( t )  is also not of exponential form for very short times.
Throughout the rest of the paper, therefore, we will focus our attention only on the
decay law at  intermediate times for which the decay law has approximately exponen-
tial form. In practice, this intermediate time regime is very large;” it usually extends
over a time scale a t  which 99% of the reduction in P ( t )  has occurred already.

Over the last two decades, probably the most developed theory to describe
dissipative quantum mechanics26 at  finite temperatures has been the semigroup
approach.23 This type of method has been very popular in describing damping
phenomena in nonlinear o p t i ~ s ~ ’ - ~ ~  and in spin relaxation theory.29 However, these
dissipative semigroup methods treat the coupling to the environment perturbatively.
This restricts the treatment only to the weak damping regime, where the largest
damping coefficient, y, typically obeysz9

y << wo, tiy << kT.  (1)

Here, wo is the smallest frequency typical for reversible motion. In a tunneling system,
wo may difYer from zero just by the tunnel splitting. Thus, the first inequality is violated
already for very weak damping. Furthermore, macroscopic tunneling phenomena
occur a t  extreme low temperatures; that is, the second inequality is then also vioiated
for an appreciable amount of dissipation. Hence, for tunneling systems, a more
accurate description of dissipation is needed.

THE FUNCTIONAL INTEGRAL APPROACH

As is well known, tunneling problems are advantageously treated in terms of
complex-time path  integral^.^.^" A detailed description of all aspects of this method is
certainly beyond the scope of this article. Here, therefore, I will confine myself to a
brief outline only, wherein I will present the main ingredients of the method. First, let
us consider the partition function,

Z = t r  exp (-pH), p = l / ( k T ) .  (2)

Following Feynman,” this quantity can be expressed (without having to refer to any
dubious analytic continuation tricks) in the form of a (Euclidian) functional path
integral,

The integral in equation 3 runs over all paths that are periodic with period 0 = t i p .
Each path is weighted by the Euclidian action, SE. For our applications, we also must
account for the dissipation being induced by the coupling of the tunneling coordinate to
the heat bath. In doing so, we start out from the functional integral expression in full
phase-space of particle plus environment. Furthermore, we assume that the environ-
mental degrees of freedom couple bilinearly to the tunneling coordinate. If we present
the environmental degrees (bath modes) by a set of harmonic oscillator modes, one

                    
  

            
                                 

        
                                            

                  
          

      
                                           

                                         
        

     
                      

      
                                 

 
                                                     

 
           



54                                    

succeeds in integrating out the bath modes e ~ a c t l y . ~ ’ ~ ’  This procedure leaves one with
an effective action that models the influence of dissipation by a nonlocal term. For
Ohmic dissipation,

I avq == - -- - yq,
M a4

so the result obtained for the effective (Euclidian) action is9.’’

(4)

The first term describes the reversible motion of the particle in the absence of an
environmental coupling. The second nonlocal term, given here in the form used by
Grabert et a/.,’’ describes the influence of dissipation. For the Ohmic dissipation in
equation 4, it has the explicit form?’’

with

and vn = n27r/8 being the Matsubara frequency. In addition, the dissipative, nonlocal
part can alternatively be recast in the form used by Bray and Moore,’’

which reveals explicitly the translational invariance of the dissipative part of the
effective action.

Instead of the presented Euclidian (imaginary-time) formulation, a real-time
formulation, being necessary for the problem of MQC, can also be used. This objective
is advantageously treated by use of Feynman-Vernon t h e ~ r y . ~ ’ . ~ ’  Let P, (q )  be the
probability density of the tunneling particle in configuration space, q, a t  initial time, t
= 0. Then, the probability, P , ( q ) ,  at  time, t ,  may be recast in the form of a double path

p I ( q )  = f aq f 9 4 ’  exp {i(s,[ql - s,[q’l)/hI . exp ( id[q ,  q ’ l / h )  - P,(q,) ,  ( 7 4
where the integral is over all paths of q(s),  q’(s), and 0 5 s 5 t ,  with q(0) = q’(0) = qo;
q ( t )  = q’( t )  = q, and q, being integrated over. So denotes the unperturbed (Minkow-
skian) action,

S,[q] = $Ids {1/2 M02(s)  - v[q(~)l}. (7b)

For Ohmic dissipation, the influence functional, +[ q, q ’ ] ,  is given

d[q ,  q’] = s ‘ d s  1” ds’ [ q ( s )  - 4 ’ ( s ) ]

* [Q(s  - s’) 4 ( ~ ’ )  - Q*(s - s’) G’(s’)], ( 7 ~ )
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where

Q(s )  = -In {(h@ uo/a) sinh (sa/fi@)} + 1/2 iMy, (74
and u: = V"(q , , ) /M denotes the angular frequency a t  the well bottom. Both the
Euclidian-time formulation (equations 3 and 5 )  and the real-time representation
(equation 7) are suitable starting points to discuss tunneling phenomena in the
presence of dissipative interactions.

n-

FIGURE 1. The metastable potential field, V ( q )  = M [ y w i q 2  - ymq'], used in the text. The top
of the barrier is located at qb = w$u.

THE TUNNELING RATE

Now we are prepared enough to discuss the MQT decay in a metastable potential
field, V ( q ) ,  of the form depicted in FIGURE 1. Initially, the particle is located near q =
0. The free energy, F, of the particle is then given by (see equation 3)

F = - kT In Z = - kT In { f Bq exp ( - S E [ q J / h ) ) ,  (8)

with SE given as in equations 5 and 6 .  The state near q = 0 is metastable if its lifetime,
T~ = I?-', is long compared to all other characteristic time scales that describe the
relaxation towards the locally stable state at  q = 0. Keeping this situation in mind, it
turns out that the functional integral in equation 8 is not real, but possesses an
exponentially small imaginary part that is proportional to the decay rate, I?. This fact
should, of course, not come as too big of a surprise. After all, we are attempting to
compute a decay rate that is not part of the spectrum of a Hamiltonian that is bounded
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from below. This same difficulty has already been seen in Langer’s picture modeling
classical n~cleation.~’ For the problem of quantum decay a t  zero temperature and
vanishing dissipation, Callan and ColemanU beautifully popularized Langer’s tech-
nique. They explained that the free energy can still be defined if one uses an analytic
continuation from a stable to an unstable situation. An evaluation of the integral in
equation 8 can be obtained by summing the contributions of the paths that make the
Euclidian action (equation 5) stationary or almost stationary. As is evident from
equation 5, the Euclidian action is stationary for those paths that are solutions of the
classical equation of motion in an inverted potential, V ( q )-- V ( q ) ;  that is,

with qB(T) obeying the periodic boundary condition of

4 d T  = - %  e) - q8 (7 - ‘/2 el.
Because of equation 6b, we also observe that equation 9 possesses two trivial solutions:
q , ( s )  = 0, where the particle just sits on top of the inverted potential, - V ( q ) ,  and
q2(T) = q6 = W ; / U  (see FIGURE I), where the particle is located at  the minimum of the
well of - V ( q ) .  Equation 9 possesses a nontrivial solution a t  sufficiently low tempcra-
tures, T, below a certain crossover temperature,

To - ( h / 2 ~ k )  [(a: + ’14 y2)‘/’ - ‘12 71, = - v ( q b ) / M .  (11)
At temperatures, T < To, the solution, q8 (7) (see equation 9), describes an oscillating
motion in the classically forbidden regime. Coleman has coined the name “bounce” for
this particular tunneling trajectory. In FIGURE 2, we depict this bounce solution for the
potential field in FIGURE 1 at various temperatures. Below T < To, the trivial solution,
q2(T) = qb, can be disregarded. FIGURE 3 shows the “entrance” and the “exit” points of
the bounce solution. The difference in energy between these two reference points may
then be identified with the energy loss in quantum tunneling.” At zero temperature,
this energy loss is always negative, and it has the characteristic feature that it saturates
for increasing strength of dissipation.” At finite temperatures, however, the particle
may lose or gain energy in tunneling across the potential barrier.38

The detailed analysis shows that the solutions of qB(r ) ,  T < To (or q = qb for
T > To), are not minima of the action SE, but represent a saddle-point solution. This
simply means that there is one fluctuation mode in function space with respect to which
the bounce is a maximum of the action. This characteristic fluctuation mode thus has a
negative eigenvalue. This obviously plagues the evaluation of the partition function.
What is needed here is an analytical continuation, mentioned above, where the integral
of the unstable (negative eigenvalue) mode is distorted in the complex plane so that it
passes through the saddle point and then into the complex plane.33*u If we observe that
the canonical operator, exp ( - O H ) ,  is the evolution operator for imaginary times,
T - - ih& we find that with a decay rate of r, that is,

T H  -. r ( H  - ‘/2ihI’),

I‘ = - ( 2 / h )  Im F.

(12)
the exponentially small complex part of the free energy obeys the relat i~n, l””>~~

(13)
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For temperatures above To, a detailed evaluation of equations 8 and 13 then gives

where E, denotes the barrier height. For strict Ohmic dissipation (see equation 4), this
explicitly

where u = 2 ~ 1 0 ,  U: = V"(q = O ) / M ,  and C O ~  = - V"(qb) /M.  The above result can also

-

I I I I I

FIGURE 3. The variation of the extrema of the bounce trajectories as the temperature is
decreased. At the crossover temperature, To, the bounce remains at  the topof the potential barrier
at q8(7)  = qb.'*

be generalized to the case of memory friction, ~ ( 2 ) ; ~ '  that is,

1 av
M d q  0

q = - -- - y y ( l  - s) 4(s)ds.

Then, in equation 15, we only have to substitute y by 4 (nu), where + ( z )  denotes the
Laplace transform of the memory friction, y ( t ) .  For memory damping (equation 16),
the crossover temperature, To, will also be memory-renormahzed to givea

To = h p / ( 2 a k )  (17)
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with p being the largest positive root of

P2 + WT(P)  = d. (18)
Combining equations 16 and 17 with equation 15, we can recast the result for the decay
rate in the form of

The term in the braces just equals the classical, dissipation, and memory renormalized
thermal activation rate.42 The factor Q accounts for the quantum effects a t  T > To,
namely,

and approaches unity for T >> To. This quantum correction can be quite large, even a t
temperatures of the order of a few To. Thus, these deviations from the classical hopping
rate are essential in a precise analysis of parameters in MQT e ~ p e r i r n e n t s . ~ " ' ~ ~ ~ ~There
exists, then, a very useful, simple working approximation to the quantum enhancement
factor Q, which reads4'

+ O ( T - 4 ).1
This approximation is most accurate for weak-to-moderate zero-frequency friction,
denoted by yo, where

70 T ( z  = 0 )  0 (wb) ,  (22)

It also becomes even more accurate for a dissipative mechanism with a large memory
friction relaxation time:' The effect of quantum tunneling thus results essentially in a
T-dependent renormalization of the barrier (Arrhenius) factor towards smaller values.
In FIGURE 4, we depict this quantum correction Q (see equation 20) together with the
working approximation in equation 21. It should also be noted here that the
approximation of the order T - 2  does not depend on the detailed dissipative mechanism.
In contrast, the crossover temperature, To, depends via equation 18 on the amount and
form of dissipation: For fixed zero-frequency dissipation, yo, the crossover temperature
is monotonically increasing towards its undamped value, p = W b ,  with increasing
memory friction relaxation time.40

At temperatures below To, though, the relevant contribution to the decay rate is
made up by the bounce. This bounce trajectory, however, is not uniquely defined in the
sense that a translation, q g ( 7 ) -qB(7 + b) ,  also generates a solution that leaves the
Euclidian action invariant. This invariance of the action S, (equation 5 )  is revealed by
an eigenmode, y , ( ~ )  m &,(T), with zero eigenvalue, XI  = 0. This means that an
infinitesimal translation c in qB(7) does not change the action: The variation of

y ( 7 )  = q B ( 7  + t) - q B ( 7 )  = 9 B ( 7 ) c

gives 6S, = 0. The best medicine to take in order to avoid the difficulties generated by
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Q

10

1
0

FIGURE 4. The approximation
(dashed line) of equation 21 for
the quantum correction factor Q
compared with the exact expres-
sion of equation 20 (solid line)
for a memory damping y( t )  =

K  = 0.5, and r = 0.25. The inset
shows the same for an exponen-
tial memory damping y( t )  = KWb/

K W b J , ( K W b t / r ) / f ,  with Ob = Wo,

7, exp ( - f / T c ) ,  with W b  = Wo, K  =
0.5, and W b  * T ,  = 0.5."

this zero-mode is to perform a change of coordinates and to integrate directly over the
translation variable b,34 rather than over the zero-mode ~ ~ ( 7 ) .  Following the recipe of
Faddeev and Popova (gauge fixing condition; see also references 35 and 38), one finds
that this procedure induces a zero-mode normalization factor, A,  where

Thus, the final result for the decay rate at  T < To is given by2*9*'0*35938

Here, S,(@,f) is the bounce action, S,(@,f) = S,[~,(T)], and the prime indicates that
the eigenvalue zero is to be omitted. At temperature, T = To, the bounce action, S,/ h,
matches smoothly with the Arrhenius factor, Eb/kTo.'ov38 An analytical evaluation of
equation 24 is possible only for the cubic potential shown in FIGURE 1 a t  weak3*38.39 and
very strong Ohmic damping3.35.38 (see equation 4), and a t  one particular moderate
friction value." In practice, one must therefore resort to a numerical evaluation (see
reference 45 for T = 0 and reference 46 for 0 I T 5 To).

Just as in the case of T > To, where the prefactor is increasing with increasing
memory relaxation time,40 and with yo held fixed, we find that the decay rate is
exponentially enhanced with increasing memory friction relaxation time (decrease of
S, for fixed dissipation strength, yo, and fixed dimensionless temperature, 19/8,).~'

The low temperature behavior of equation 24, however, exhibits a universal
behavior. Grabert, Weiss, and Hanggi" have shown that the temperature enhance-
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ment follows a characteristic power law,”

n-
SB (T,?) = SB ( T  o,?) - Z Y o M d  (kTTB/h)’? (25a)

where in terms of the tunneling distance, qo, with V(q  = 0) = 0 = V(qo), the bounce
length, rB, is defined by

qo 78 = s,” q B (  T = o,? 7)  dT. (25b)

The law, In[ r / r (  T = O)] = T 2 ,  holds for all systems with Ohmic-like damping, namely,
where 4 (z = 0)  = yo > 0. The factor of proportionality depends via equation 25b on
potential form and dissipation strength only. For example, for a weakly asymmetric
double well potential with bias ha, (I < 0 (see FIGURE 9, the bounce length, T#, is
estimated to be37

7 B = M Y o q 2 / ( n - f i l u l )  2%/lal. (26)
In this case, the zero-temperature incoherent tunneling rate, r,, is a nonanalytic
function of the bias. It explicitly reads3’

where A’ denotes the friction renormalized tunneling matrix element. From equation
25a, we then find for the low temperature enhancement,

FIGURE 5. A slightly asymmetric
double well in which incoherent
Ohmic tunneling occurs with a rate
given by equations 27 and 28.
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For moderate-to-large friction, ac, this result coincides with the leading low tempera-
ture behavior of a more elaborate

The detailed behavior of the rate close to crossover, T = To, is again more
complicated because of the occurrence of a second quasi ~ e r o - m o d e . ~ ~  As can be seen in
FIGURE 2, the bounce solution, qg(T), approaches the trivial sohtion, q g ( T )  = qb, more
closely as T 7 T,. Thus, any linear combination of the two solutions is an almost
stationary solution of the Euclidian action. Each one of these two quasi-stationary
solutions separately induces a quasi zero-mode (an exact zero-mode and a quasi
~ e r o - m o d e ~ ~ . ~ ~ ) .  This problem is best dealt with by treating the two dangerous modes in
the effective action, S,, up to cubic and quartic order.35336338 Moreover, Grabert and
W e i ~ s ~ ~  have shown that near T = To, there exists a frequency scale A and a
temperature scale x, (which depend on the particular system under consideration)
such that in the region of I T - To/  5 x,, the rate exhibits a universal scaling behavior;
that

r / A  = Erfc (x) exp (x2), x = ( T  - T,)/x,, (29)

where Erfc (x) is the integral, 2r-'I2 lt dt exp ( - r z ) .

DISCUSSION

In this final section, we comment on the regime of validity of the dissipative MQT
rates derived in equation 19 for T > To and in equation 24 for T < To. As mentioned
previously, the rate expression for temperatures above crossover (see equation 19)
approaches the classical activation rate,'*2s42 which is valid for moderate-to-large
friction strength; that is:

?(P) -2 wb, T > To. (30)

For high barrier factors, BEb >> 1, the regime of friction values for which the thermal
equilibrium population is maintained in the initial well (yielding the formula for the
decay rate in equation 14) extends to even lower friction where the Kramers theory'*2342
approaches the result of standard transition-state-theory;2 that is, the regime extends
to weak-to-moderate-to-large friction, obeying

?(PL) Z kTWb/Eb, T > To. (31)

In other words, with a high potential barrier, the time scale for escape is so Iarge that
the thermalization in the initial well then occurs even for weak damping (equation 3 1);
that is, it occurs on such a sufficiently slow time scale that deviations from the thermal
equilibrium distribution inside the well can safely be neglected. For even weaker
damping, however, deviations from thermal equilibrium start to play a role. For such
small friction values, that is,
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with J(E , )  denoting the classical (Minkowskian) action at  energy E ; ,  the rate
dominating mechanism is energy diffusion.* For extreme weak friction, T ( j ~ )  <<
kTWb/Eb, the classical activation rate vanishes proportional to the dissipation
~trength.’.’,~’.~~ Clearly, the rate never vanishes completely in practice; it is bounded
from below by the tunneling rate a t  low temperatures. The quantum corrections for
T > To for weak-to-moderate-to-large friction, as specified by equations 30 and 31, are
given by the factor Q in equations 20 and 21. For extreme weak damping (equation
32), there occur above crossover, T > To, (apart from the ever-present quantum
correction in equations 20 and 21) additional small quantum corrections’ to the weak
damping classical hopping rate that are of the type discussed recently by Melnikov”
and Larkin and Ov~hinnikov.~’ For this small regime of very weak friction, the precise
form of these corrections (which originate from the quantum effects on the high
temperature deviations from the thermal equilibrium population inside the well) are
not known as of the present time; it is only known that the corrections derived in
references 50 and 5 1 do not approach the correct classical limiting weak friction results
obtained recently by Risken and V~igtlaender.~’

For temperatures below crossover, T < To, the quantum tunneling rate is so
sufficiently small that for all practical purposes, weak friction does not have any
impact on deviations from the thermal equilibrium population inside the well. This can
be readily understood if we note that the golden-rule calculation for the activation rate
to the first few excited energy levels is proportional to the dissipation strength, T ( j ~ ) ,

whereas the time scale for decay is set by the inverse of the low temperature tunneling
rate, I‘. Using as a guide the undamped, zero-temperature rate in equation 24 (which
always exponentially overestimates the zero-temperature dissipative decay rate in that
equation), we can expect that deviations from equation 24 occur possibly only for
exponentially small friction values; that is, for

9 ( j L ) / W o  5 r (T  = O ) / W O

For such exponentially small friction, the tunneling rate, r, and the activation rate into
an excited state start to compete with each other; that is, the decay rate then no longer
possesses a well-defined meaning. In conclusion, unless one starts out with an
externally imposed initial preparation far from thermal equilibrium, the low tempera-
ture tunneling rate in equation 24 is valid for the whole damping regime.
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can be shown that these do not exceed the classical, next higher-order correction in order of
magnitude because they are proportional to yi/2.2
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