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Switching in the presence of colored noise: The decay of an unstable state
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Switching events are studied by means of a parametrically operated, fast transition from a
monostable to a bistable potential in the continuous presence of colored noise. The problem is thus
the decay of an unstable state with random initial conditions. We calculate, using contemporary
colored-noise theory, and measure by analog simulation, the relaxation time to cross a reference
boundary, and we contrast this with the strictly defined mean first passage time.

I. INTRODUCTION

In this paper we study a switching process under the
influence of noise which is common to a class of parame-
trically activated bistable systems. The system exhibits a
single, or monomodal, state xo while inactive, but devel-
ops a bimodal potential upon receipt of a parametric
switching signal. The bimodal potential is developed in a
time which is short compared to the characteristic
dynamical response time of the system. The initial state
xo thus becomes an unstable state at the instant when the
switching signal is received. This state is, however, per-
turbed by noise which drives the decay. After a relaxa-
tion time ( T )1, which we analyze and measure herein, the
system settles into one of the bistable states.

Such generic switching processes were first proposed
by Landauer' as possible zero- or low-energy switches.
They have been used for quite some time as examples in
discussions on the minimum energy dissipation necessary
for measurement and for information transmission and
computation. In view of this interest and of the funda-
mental importance of the switching process itself, it is
relevant to study the dynamics of switching in the pres-
ence of noise, which is inescapable in macroscopic sys-
tems.

The first theory and measurements on such noisy
switching events induced by linearly swept parameters
and their remarkable noise-averaging properties were
carried out by Kondepudi et al. Noisy switching events
in lasers have been studied experimentally by Zhu et
al. "and analytically by Broggi et al. ' ' and later simu-
lated with analog circuits. However, all of these studies
were of switching events induced by variations of the pa-
rameters on time scales comparable to the characteristic
dynamical response time of the system. By contrast in
the present study the switch parameter is operated by a
step function at time t =0, thus preparing an initial state

which later decays into the induced bistable states.
The problem of the decay of an unstable state in the

presence of white noise has been well studied by a variety
of techniques. ' Among the more familiar and useful
methods for describing the onset of macroscopic order
are the time evolution of the variance (x ) (t ), the mean
first passage time (MFPT), and the onset of bimodality in
the probability density. The MFPT in recent years has
become a widely used tool for analyzing such stochastic
processes.

Non-numerical colored noise theories are, however,
necessarily approximate. This arises because of the extra
variable necessary to describe noise with nonzero correla-
tion time. The Langevin equation and its analogous
Fokker-Planck (FP) equation are, consequently, at least
two dimensional. Since the latter equation can be solved
exactly only in one dimension, recent years have
witnessed a veritable explosion of approximative
schemes, ' ' all of which seek to reduce the FP equation
to an "equivalent" one-dimensional form, and an increas-
ingly vigorous debate regarding their accuracy and appli-
cability. ' ' ' With the exception of Refs. 12 and 14 all
of these are adaptations of, or improvements on, an ap-
proximation origina11y put forth by Stratonovich
based on expansions valid for small correlation times.
How accurate they are for a given correlation time de-
pends on the application and often the noise intensity as
well. Here we present measurements for ~ as large as
v.=5 for which both one- and two-dimensional stationary
probability densities have been studied. '

In this work the nonsmall noise color introduces
difficulties at two levels. In order to calculate the station-
ary mean-square fluctuation intensity in the initial state,
we will use a simple linearization which is expected to be
accurate for small noise intensities. More detailed
theories such as those cited above could be used instead,
but the linear theory is sufficiently accurate for the
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II. THEORY

First we consider the stationary dynamics in a single-
well potential, i.e., before the control-parameter-induced
switching event. The potential is given by

U(x)= —,'[x —A ln(1+x )],
and the forcing is

f(x ) =x [—1+A (t )/(1+x )],

(la)

(lb)

where A (t ) is the control parameter. As shown in Fig. 1,
the potential is monostable for A &1 and bistable for
A g 1. Moreover, the width of the monostable potential
depends upon

~

A ~. Our model is determined by the
Langevin equation

initial-state calculations. We then analyze the transient
relaxation toward the stable state using colored-noise
modified Suzuki scaling following a recent theory.
These results are then compared to measurements made
on an analog simulator of an example switch.

We find that the relaxation time is a decreasing loga-
rithmic function of the noise intensity, results that, for
white noise, were anticipated much earlier. ' ' In-
creasing the noise correlation time increases the relaxa-
tion time but does not have a large eS'ect.

This paper is organized as follows. In Sec. II the
theory is developed following Refs. 12 and 23. In Sec. III
the simulator, its operation, and the measurement tech-
niques are described. The results are presented in Sec. IV
and compared to the calculations. Conclusions and a dis-
cussion are presented in Sec. V.
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FIG. 2. The circuit diagram of the electronic simulator. The
multipliers and the divider are standard chips available from
Analog Devices, Norwood, Mass.
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long to establish stationary statistical conditions, the sys-
tem is switched at t=0 so that A(t)= A &1 for all t &0.
The control parameter is thus a step function.

We first consider the initial state for which stationary
conditions are assumed. In order to proceed it is neces-
sary to obtain the stationary probability density. In fact,
we will only need the second moment &x &„=&xo(r)&

of the stationary initial distribution. Since both the ex-
periment and the theory to be used later are restricted to
small values of D, linearized theory will be sufficient for
calculating &xo(r)&. We begin with the following FP
equation, valid for small D:

x =f(x )+g(t ), (2a)

where g(t ) is an exponentially correlated, Gaussian noise
source with zero mean:

D 8+— 2P(x, g, t) .
ag' (3)

&g(t)g(s) &=(D/r)exp( —
~

t —s
~
/r),

(
~
Ao ~+1)&xo'(r) & —&xg&=0,

(~ A. i+I+.-')& g& —&g'&=0,
where D is the noise intensity and ~ is the noise correla-
tion time. The system is prepared in the monostable ini-
tial state by setting A (t ) = Ao & 1, for which the deter-
ministic solution xo =0, is globally stable. After having
been prepared in this initial state for a time sufficiently

—
& g'&+ —=0,

In the steady state, the equations for the moments read
(2b)

(4)
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FIG. 1 ~ The potential, showing a monostable initial state for
Ao ———1.38 and the switched bistable states at the values of A
indicated.

FIG. 3. Example trajectories measured for Ao ———1.38 and
A =2 for D =0. 1 and ~= 1.0. The bistable potential is switched
at t =0. The vertical scale is in volts with the potential minima
at +1.0 V. The horizontal scale is in ms.



4692 JAMES, MOSS, HANGGI, AND VAN den BROECK 38

FIG. 4. Examples of the probability density of the relaxation
time from which the (T) were obtained for r=1.0, A =2.0,
Ao ———1.38, and, reading from left to right, D& ——11.7&10 '
V, (T)=2.4 ms; Di ——0.20X 10 ' V, (T)=4.4 ms; and
D, =2.56 X 10 V', ( T ) =6.6. The horizontal scale is in ms.

10 1010 6 10 10 10 10

D(V )

FIG. 6. (T) in ms vs D in V~ for Ao ———1.38 and A =3.0.
The values of r are 0.1, ~; 0.5, X; 1.0, o; and 4.9, (). The solid
lines are fits to the data.

from which we conclude that
(xo(r)) =DI(I+

I A,
I
)ll+r(I+

I A, I
)l-'+O(D ) .

(7)

This describes the stationary dynamics before the switch-
ing event takes place.

For t =0+, the system is switched to a bistable state as
shown in Fig. 1 for A ~0, and the state at x =0 is ren-
dered locally unstable. Since the switching event takes
place in a time very short compared to all other time
scales in the problem, the decay is driven by the noise dy-
namics described by Eqs. (6) and (7) toward the two local-
ly stable states x, =+&A —1 created at t =0.

The simulation, described in Sec. III, measures the
residence time T, for a random walker x(t) necessary to
cross a reference value xR ——x, /2 for the first time after
the switch function is activated at t =0. The mean of this
quantity ( T ) is a measure of the time scale on which the
system assumes macroscopic order and is closely related
to (but not identical with) the MFPT on the same inter-
val. The residence time is like a weighted MFPT wherein
the distribution of initial conditions is a Gaussian whose
second moment is given by Eq. (7). By contrast, our
switch is more physically realistic in supposing that the

noise is continuously present, as it is in all real switches.
In fact it is possible that the instant the unstable state is
born, the trajectory xo(t =0) could already exceed the
reference boundry x&. For small D, however, in the
range where both the theory and the simulation are accu-
rate, such events are extremely rare.

The time for decay from an unstable state has been
studied by many authors. ' ' As shown first by Kubo
et al., the relaxation time exhibits a logarithmic depen-
dence on the noise intensity. Very recently, Suzuki's scal-
ing theory ' ' has been generalized to include colored
noise, with the result

( T)=—( I/2a)ln(C j (xo) +D[a( I+ax)] 'I ), (8)

where a =f'(x =0+ )= A —1, and where C is a constant
that depends only on the parameters of the deterministic
nonlinear flow f(x ), i.e., on Ao and A, but not on D or 7.
The theoretical value of C depends also on the detailed
definition of the residence time, for example, as the time
for the second moment (x )(t) to relax to some refer-
ence value xa, or the time required for P(x, t ) to become
bimodal, or the strictly defined MFPT, etc. But certainly
C is of order unity so that lnC is of order zero.
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FIG. 5. ( T) in ms vs D in V' for Ao= —1.38 and A =2.0.
The values of r are 0.1, ~; 0.5, X; 1.0, O; and 4.9, (). The solid
lines are fits to the data and the dashed line is a predicted result
for ~=0.5.

FIG. 7. ( T ) in ms vs D in V2 for Ao =—2.40 and A =4.0.
The values of r are 0.1,~; 0.5, X; 1.0, o; and 5.0, (). The solid
lines are fits to the data. The dot-dashed and dashed lines are
theoretical predictions for v = 1.0 and 0.1, respectively.
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TABLE I. Calculated and measured parameters for Ao ———1.38, A =2, and 80———0.03.

4.9
1.0
0.5
0.1

m theor

1.15
1.15
1.15
1.15

m expt

1.11
1.14
1.13
1.12

b theor(

0.80
0.23
0.08

—0.11

b theof( ~)+g
0.77
0.20
0.05

—0.14

b expt

0.77
0.20
0.10
0.02

In our experiment, the noise color enters Eq. (8) in two
places: First, there is a colored-noise effect on the initial
state Po(x, r) which leads to (xo(r) ) as given by Eq. (7).
Second, the dynamics of the decay is dependent on ~ as
shown explicitly in Eq. (8). Both effects move ( T ) in the
same direction, i.e., increasing ~ results in increasing
(T)t.

Observing that lnx =in(10)log, ox, we can recast these
results in the convenient form

(T)=—m log, oD+b(r)+Bo,
where

ln10
2( A —1)

and

Bo=—m logioC-0

(9)

(loa)

(lob)

III. ANALOG SIMULATION

We have constructed a circuit model of Eqs. (1) and (2)
using by now quite standard techniques. The schematic
diagram of this simulator is shown on Fig. 2.

The noise voltage V„(t), is obtained from a Wandell

so that b(r} describes the combined dependence of ( T )
on the noise correlation time:

b(r)= —~iog|o[(i ~ol+» '[1+r(I ~ol+»] '

+(A —1) '[1+r(A —1)] 'I . (11)

These results can be accurate only in the range of small
D. Indeed, we used linear theory to calculate (xo).
Furthermore, Suzuki scaling is expected to be accurate
only for small D, but here the quantitative limit is not
known.

In the following sections we describe an analog simula-
tion of Eqs. (1) and (2) for the range 0.1&r&5 and for
10 6 &D & 10 '. Since D =r(g ), as shown by Eq. (2b),
the range of D corresponds to a range of noise voltage
V„—=g of somewhat less than three orders of magnitude,
or about 10 mV to a few volts, which corresponds to the
usable dynamic range of our analog simulators.

and Goltermann wide band ( &100 kHz), Gaussian
noise generator. In order to create colored noise, V„(t ) is
passed through a linear, single pole filter with a transfer
function H(to)=[1+(cur„} ] ', where to is the radian
frequency and r„ the noise correlation time. The charac-
teristic response time of the simulator is established by
the integrator time constant ~;, as shown on Fig. 2. The
dimensionless noise correlation time, as it appears in the
theory and in Eq. (2), is the ratio r=r„ /r;. When r« 1,
the simulator perceives the noise as quasiwhite, whereas
r & 1 marks the colored-noise regime. With V„(t ) =g(t ), —
Eq. (2b) defines the noise intensity D=r( V2) for t =s.
The mean-square noise voltage ( V„) is the measured
quantity in our simulation which defines D. In this ex-
periment we always maintained D &0.30, and the corre-
lation time varied over the range 0. 1 & r & 5.

In the absence of noise, the discrepancies between the
deterministic steady states measured on the simulator are
smaller than +2.5% when compared to the steady-state
(x =0) solutions of Eqs. (1) and (2a). Measurements in
the presence of noise are, of course, subject to statistical
errors which can be reduced by increasing the number of
samples in a given average. In this experiment the sta-
tistical errors are estimated (from the repeatability) to be
=+5%. The largest error, and the most difficult to
quantify, is systematic and shows up in the quasiwhite
noise end of the range of ~. This results from the limited
dynamic range and bandwidth of the simulator. For w

small, V„(t) is large, and an increasing number of its
large-amplitude excursions in the wings of the Gaussian
are clipped as ~ is decreased. At ~=0.1, this results in
discrepancies between our measured probability densities
and white-noise solutions of the FP equation which, in
places, are as large as -20%. In this experiment, relaxa-
tion times are measured for which it is difficult to esti-
mate the systematic errors at the small-~ end.

In operation, a rectangular wave 3 (t ), operating be-
tween the voltages Ao and A was applied to the divider
as shown in Fig. 2. The frequency of this wave was ad-
justed so that in the state Ao sufficient time was allowed
for the initial probability density of x to become station-
ary (several hundred times r; }. The wave switches from
A p to A at t =0 and at the same time the data-analysis

TABLE II. Calculated and measured parameters for Ao ———1.38, A =3, and 80——0.0'7.

4.9
1.0
0.5
0.1

m theor

0.58
0.58
0.58
0.58

expt

0.58
0.58
0.58
0.57

b theor(

0.63
0.31
0.20
0.07

b theor(&) +g
0.70
0.38
0.27
0.14

b expt

0.70
0.39
0.31
0.28
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TABLE III. Calculated and measured parameters for Ao ———2.4, A =4.0, and Bo=0.16.

5.0
1.0
0.5
0.1

theor

0.38
0.38
0.38
0.38

expt

0.39
0.39
0.39
0.38

b theor( )

0.55
0.32
0.24
0.12

y theor( )+g
0.71
0.48
0.40
0.28

bexpt

0.71
0.47
0.39
0.35

(T)=—m log,oo+b, (12)

and the values m'" ' and b'" ' were extracted. These
were compared to the results predicted by Eqs. (9)—(11).
As shown by Eq. (9) the entire colored-noise effect is
represented by the constant b(r) It is evid. ent, however,
that the non-color-dependent constant Bo is not negligi-
ble. We obtained a value for Bo by matching the experi-
mental and theoretical results at r=4.9 and 5 (where the
simulation is most accurate) and then compared the pre-
dicted and observed values in Table I, where the b'""'(r)
and m'""' are calculated directly from Eqs. (10a) and
(11), and b'""' is to be compared with b'""'(~)+Bo. The
results are shown on Table I. The largest discrepancies
are for v=0. 5 and 0.1 as expected. Even so, on the loga-
rithmic scale of Fig. 5 the difference between Eq. (9) using
the theoretical values and the data are small, as shown by
the dashed line which is to be compared to the crosses
v=0 5). The solid .lines through the data for x=0. 1 and
~=4.9 are example plots of the results of the least-
squares fits of the data to Eq. (12).

Figure 6 and Table II show the results for Ao= —1.38
and A =3.0. It is evident that while Bo has changed con-

system, a Nicolet-Lab 80 computer and digitizer connect-
ed to the circuit at x(t ), was triggered. A time series of
typically 2000K digitized points was then obtained, and
the time at which the trajectory first crossed the thresh-
old x„=x,/2 (x, =+&A —1 are the deterministic
steady states) was measured and stored. Ten example tra-
jectories are shown in Fig. 3, where the threshold is
marked by arrows, and an example crossing time at T; is
shown. After a large number of such measurements (typ-
ically 10 ) the computer tabulates the mean-relaxation
time ( T) and its density P(T). Three examples of the
densities are shown in Fig. 4 for three values of D. As ex-
pected ( T ) increases as D becomes smaller.

IV. RESULTS
The results of our simulation are summarized on three

graphs and compared to the theoretical predictions in
three tables. Figure 5 shows our ineasured values of ( T )
versus D for four values of ~ as indicated by the di6'erent
symbols for Ao =—l. 38 and A =2.0 V. Each set of data
were matched by least-squares fit to the equation

siderably, the discrepancy at ~=0. 1 is decreased. Figure
7 and Table III show the results for Ao= —2.4 and
A =4. On Fig. 7 we also show the theoretical result for
~=1.0 as the dot-dashed line to be compared with the
open circles. The dashed line is the prediction for ~=0. 1
and shows the largest disagreement with the measure-
ments (closed circles).

V. CONCLUSIONS AND DISCUSSION

The agreement between the calculated and the mea-
sured results in this work is satisfactory considering the
approximations necessary to achieve a colored-noise
theory. We emphasize further that the strictly colored-
noise contributions to the theory have two sources: the
decay theory of Dhara and Menon and the ansatz. '

The latter, which agrees with the hnearization result in
Eq. (7), can be used to calculate the second moment of
the initial, stationary (t &0) density, an application for
which it is known to be relatively accurate. The relative
importance of each of these contributions depends on Ao
and A as shown by the two terms in brackets in Eq. (11).
For small Ao and large A, (xo) dominates the decay
process and hence the ansatz is more important, while for
large Ao and small A the reverse is true, and the non-
linear decay process dominates. We conclude by pointing
out that colored-noise-driven decay of unstable states
should find applications in a variety of switching
scenarios most notably in laser dynamics and nonlinear
optical bistability.
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