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In ferromagnet/normal-metal bilayers, the sensitivity of the spin Hall
magnetoresistance and the spin Nernst magnetothermopower to the
boundary conditions at the interface is of central importance. In general, such
boundary conditions can be substantially affected by current-induced spin
polarizations. In order to quantify the role of the latter, we consider a Rashba
two-dimensional electron gas with a ferromagnet attached to one side of the
system. The geometry of such a system maximizes the effect of
current-induced spin polarization on the boundary conditions, and the spin
Hall magnetoresistance is shown to acquire a non-trivial and asymmetric
dependence on the magnetization direction of the ferromagnet.

1. Introduction

In recent years, the fields of spintronics and spin-caloritronics
have gained considerable attention.’ In nonmagnetic mate-
rials the most prominent spintronic phenomena are the spin
Hall effect, i.e., a transversal spin current due to an applied elec-
trical field,*> and the current-induced spin polarization.* In
the literature, the latter is also referred to as inverse spin gal-
vanic, Rashba-Edelstein, or simply Edelstein effect. The spin-
caloritronic counterparts of these electrical effects, exchanging
the electrical field with a thermal gradient, are the spin Nernst
effect!!™'? and the thermally induced spin polarization,'*!
respectively.

For a long time only theoretically predicted, the spin Nernst ef-
fect was finally observed independently by Sheng et al. and Meyer
et al. in 2016 through the measurement of a spin Nernst signa-
ture in the thermopower.'>18 This was accomplished by manip-
ulating the thermally induced spin current in a Pt film by means
of the spin transfer torquel’’~'* induced by attaching an insulat-
ing ferromagnet to the metallic film. The resulting thermopower
is the thermal analog of the spin Hall magnetoresistance, %'l
and is thus called spin Nernst magnetothermopower.!!®

S. Télle, Dr. M. Dzierzawa, Prof. U. Eckern
Universitat Augsburg

Institut fir Physik

86135 Augsburg, Germany

E-mail: sebastian.toelle@physik.uni-augsburg.de
Dr. C. Gorini

Universitat Regensburg

Institut fir Theoretische Physik

93040 Regensburg, Germany

DOI: 10.1002/andp.201700303

Experimental investigations of the spin
Hall magnetoresistance have so far con-
centrated on heavy-metal/ferromagnetic-
insulator bilayers,?%22-2] since thin films
of heavy metals like Pt or W exhibit a
large spin Hall conductivity.?-*% Theo-
retical studies based on phenomenologi-
cal spin diffusion equations qualitatively
agree with experimental findings.*!

In this article we theoretically investi-
gate the spin Hall magnetoresistance and
the spin Nernst magnetothermopower
in the framework of a two-dimensional
electron gas (2DEG) with Rashba spin-
orbit coupling. Our approach is based
on the generalized Boltzmann equation derived in Ref. [31].
Since spin-electric (e.g., spin Hall) and spin-thermoelectric (e.g.,
spin Nernst) effects in metallic systems are connected by Mott-
like formulas,'>37 we shall consider both in the following. For
Rashba spin-orbit coupling, the inverse spin galvanic effect and
the spin Hall effect are related to each other®*=¢; and, in the
presence of a ferromagnetic insulator/2DEG interface, it is ap-
parent that the spin polarization due to the inverse spin galvanic
effect influences strongly the spin currents across the interface.
Therefore it is to be expected that both the spin Hall magnetore-
sistance and the spin Nernst magnetothermopower in a Rashba
2DEG are more subtle and complex than the results obtained for
heavy-metal/ferromagnet bilayers using a purely phenomenolog-
ical approach. The goal of this work is to provide a more rigorous
derivation of these effects for a well-defined microscopic model
within the framework of the quasiclassical kinetic theory.

The paper is organized as follows. In Sec. 2 we introduce the
system under study and discuss the role of the boundary condi-
tions. The generalized Boltzmann equation for the Rashba 2DEG
is established in Sec. 3. Section 4 focuses on the electrical aspects,
i.e., the spin Hall effect and the inverse spin galvanic effect in the
presence of a ferromagnetic interface. In Sec. 5, we present our
results for the spin Hall magnetoresistance and the spin Nernst
magnetothermopower. We briefly conclude in Sec. 6.

2. Statement of the Problem

A schematic realization of the system under consideration is
given in Figure 1. It consists of a 2DEG in the x — y plane with
finite width L in y direction, and an interface to an insulating fer-
romagnet at y = 0. By varying the magnetization direction n of
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Figure 1. Schematic view of a 2DEG, here visualized in grey in a In-
AlAs/InGaAs heterostructure, in contact with a ferromagnetic insulator
(FM). The InAlAs/InGaAs heterostructure is used as an example only: for
an experimental realization the materials need to be chosen so as to mini-
mize upward band bending at the interface with the FM, which could oth-
erwise deplete the 2DEG in the FM contact region. Alternatively, single-
crystalline Pt thin filmsB7) could be used instead of the semiconductor
heterostructure.

the ferromagnet it is possible to control the spin current across
the interface due to the spin transfer torque. More explicitly, the
boundary condition for j, (the spin current in y direction), reads

N

jp(y =0) = 27_{;’LNOnx (nxs(y:O)), (1)

where s is the spin density, Ny = m/27 h? is the density of states
per spin and area, and gt is the real part of the spin mix-
ing conductance.’ It is estimated that the imaginary part of
the spin mixing conductance is one to two orders of magnitude
smaller compared to the real part for three-dimensional ferro-
magnet/metal interfaces.*®3% Therefore, and for the sake of sim-
plicity, we neglect the imaginary part of the spin mixing conduc-
tance and its influence on the spin transfer torque in our model.!
In the literaturel2! the following simple estimate of the resulting
spin Hall magnetoresistance (SMR) due to the boundary condi-
tion (1) is given: assuming that an electrical field E = E e, gener-
ates a spin polarization s ~ e,, one obtains j, ~ n x (n x e;), ac-
cording to the boundary condition. Due to the inverse spin Hall
effect, an additional electrical field E ~ e, x j, is generated with
a magnetization dependence E, ~ 1 — n?. For a magnetization
within the y — z plane, n = (0, cos ¢, sin ¢), the resulting SMR
signal as function of ¢ should therefore be symmetric around
¢ = n/2. The above argumentation is the standard explanation
of the SMR observed in thin heavy-metal films deposited on fer-
romagnetic insulators.?*?>2¢l However, when in addition an in-
plane spin polarization s due to the inverse spin galvanic effect
is taken into account, it is obvious from Eq. (1) that the resulting
SMR signal does not necessarily have this symmetry property.

The model Hamiltonian for the 2DEG with Rashba spin-orbit
interaction reads
H= p—z -2 oxz)-p+ H 2

= 2= 20} 2) P+ Huup, @
where « is the Rashba coefficient, 6 = (0%, ¥, '®) is the vector
of Pauli matrices, and Hy,, describes a random potential due to
nonmagnetic impurities.” Spin phenomena related to the pres-
ence of impurities are denoted as extrinsic effects, in particular,
side-jump, skew-scattering, and Elliott-Yafet relaxation. We fo-
cus on the limit where the spin Hall effect is dominated by the
Rashba spin-orbit coupling, thus we neglect side-jump and skew-
scattering. Nevertheless, we still consider Elliott-Yafet relaxation
since the bulk spin Hall effect vanishes when only intrinsic con-
tributions are considered in the Rashba system with disorder, see
Ref. [35].

3. Generalized Boltzmann Equation

We use the kinetic theory employed in Ref. [31], with a gener-
alized Boltzmann equation for the 2 x 2 distribution function
f = f"+o0 -f, where f°is the charge and f the spin distribu-
tion function. In the static case the Boltzmann equation reads

P - 1
n—1.vf+5{F~v.,,f}=Io+IEY, (3)

where {-, -} represents the anticommutator. The covariant spatial
derivative and the SU(2) Lorentz force with an electrical field E, &
are defined by

Vova4t|aZ 4
Al 27 ] “
. P ot
F=—¢EXx—— xB*—, 5
X 5 ()
a 1 abc Ab pc
Bi = —Eéijké Aj Ak’ (6)
where [, ] is the commutator, and the nonzero components of

the SU(2) vector potential are A} = — A} = 2ma/h for Rashba
spin-orbit coupling, such that the only nonzero component of the
spin-dependent magnetic field B? is B = —4m?a?/h’. A sum-
mation over repeated indices is implied.

The Boltzmann equation, Eq. (3), exhibits three relaxation
mechanisms: (i) momentum relaxation, (i) Elliott-Yafet spin
relaxation, and (iii) Dyakonov-Perel spin relaxation. The colli-
sion operators on the rh.s. of Eq. (3) describe momentum re-
laxation due to impurity scattering (I)) with the momentum
relaxation rate 1/7, and Elliott-Yafet spin relaxation (Iy) with re-
laxation rate 1/7, = (Ap/2h)* /T, where A is the effective Compton
wavelength.*!] We refer to Refs. [36,42], and [43] for a more de-
tailed discussion of Iry. The Dyakonov-Perel relaxation rate due
to Rashba spin-orbit coupling is given by 1/tpp = (2ma/h?)? D

1 Hence, strictly speaking, it is an assumption that we neglect the imagi-
nary part of the spin mixing conductance for the present case. Further
quantitative work will be required for its justification.

2 Electron-phonon interaction in the high-temperature limit can be
treated analogously since then electron-phonon scattering is essentially
elastic. See Refs. [32] and [40].
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with the diffusion constant D = vit/2, where vy is the Fermi
velocity.? The length scales associated with tpp and 7, are the
Dyakonov-Perel and Elliott-Yafet spin diffusion lengths Ipp =
«/Dtpp andl; = /Dt respectively. In the following we consider
the experimentally relevant situation 7, > tpp > 7.4

In order to set the stage we define the relevant physical quan-
tities as follows:

, ’p pe 0

b= | Gt )
w [ P P

Ji —/ (znny%f* @)
_ [ ¥p

S—/Wf, (9)

where j, is the charge current in x direction with e = le|, j is
the a-polarized spin current flowing in i direction, and s is the
spin density.

4. Linear Response in the Spin Sector

In this section we shall discuss the spin Hall effect and the in-
verse spin galvanic effect due to an electrical field applied along
the x direction. We assume the system to be homogeneous in x
direction but inhomogeneous in y direction due to the presence
of boundaries. We consider the spin sector of the (static) Boltz-
mann equation and derive coupled diffusion equations for the
spin polarization and the spin current as presented in detail in
App. A. For a magnetization n = (0, cos ¢, sin ¢) the boundary
condition (1) for the ¥ component of s and j, is decoupled from
the y and z components. Therefore, it is possible to restrict our-
selves to the y and z components of the spin current for which
we obtain

s T DPy jZ (10)

Ts . lZ +lZ . hO’D
1 —12. V2] jF=—2 DRy iy E., 11
( + Top DP y).]y lDP Y.]y + ZCGF'CDP x ( )

where ¢ is the Fermi energy and o, = 2¢? Ny D the Drude con-
ductivity. The spin densities s? and s* can be expressed in terms
of the spin currents,

Ts . hO'D
V= —gV,jl — 2 ji4+ —2E, 12
s K YJY lD[JJY+4e€FlDP ( )
, Tpp .
s¥ = —tmpVyj; + _lDPJyys (13)
DP

such that it is straightforward to obtain the spin densities once
Egs. (10) and (11) are solved. In the homogeneous case the solu-
tions of the spin diffusion equations are j) = s* = 0, and

_ hO’D
- 2eer(tpp + T)

4

Jy=1Js E,, (14)

3 Here, we consider the dirty limit. For a more general discussion of tpp
see Refs. [32] and [33].

Ts — Tpp .,

y — oY
st =5 = — .
0 2pp °

(15)

The corresponding transport coefficients o§"! and Pf are defined
through j& = of" E, and s} = P} E., respectively. From Egs. (14)
and (15) it follows that in the limit 7, — oo there is no spin Hall
effect, while in the case t, = tpp the inverse spin galvanic effect
vanishes. The latter is no longer the case when side-jump or skew
scattering are included.*’!

Next, we shall discuss the influence of the boundary condi-
tions. First, we analyze the spatial profile of the spin polarization
and the spin currents, and second we determine spatial averages
of j; and s as function of the magnetization direction.

4.1. Spatial Profile

The coupled differential equations (10)—(13) supplemented by ap-
propriate boundary conditions can be solved both analytically, see
App. A, and numerically. First, we consider symmetric boundary
conditions with j, (0) = j,(L) = 0, corresponding to an isolated
stripe of width L. The vanishing of the normal component of the
spin current can be justified from the Boltzmann equation when
assuming spin-conserving scattering.*’! Second, we consider an
asymmetric set-up, with j, (L) = 0 andj, (0) given in Eq. (1), corre-
sponding to a ferromagnetic insulator with magnetization direc-
tion n attached to the “left” side (y = 0) of the stripe. Obviously,
symmetric boundary conditions are recovered by setting g+ = 0.
In two dimensions, g,* has the dimension of an inverse length.

Figure 2 shows the spatial profile of the spin currents and
the spin polarizations for symmetric boundary conditions. From
panel (a) it is apparent that the spin currents exhibit the sym-
metry j)(y) = —j)(L —y) and j(y) = j;(L — y), which is con-
sistent with Egs. (10) and (11). Similarly, according to Egs. (12)
and (13),s?(y) = s¥(L — y)and s*(y) = —s*(L — y), see panel (b).
The influence of the boundaries is restricted to a range of ~ 3 Ipp,
and thus for larger system sizes it is justified to solve the diffu-
sion equations for a semi-infinite system, see App. B. We obtain:

. & loelql? T\ .
Wy = ngqlz D; 1+ ) € -Ysin(q.y). (16)
vz o iz J(;Z —q—
U e T -
x [(2 +l§|q|2)cos(q+y)+2—‘(2 - lflqlz)sin(qm], (17)
+

where

Sy P T o1 (18)
1= 2lDP T T

and |q|> = q® + gq2. The symmetrized analytical result deviates
by less than 107> from the numerical data shown in Figure 2,
and even for L ~ 5lpp analytical and numerical results are still
in fair agreement.
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Figure 2. Spatial profile ofthe spin currents, a), and the spin polarizations,
b), for symmetric boundary conditions (g,N =0); L/lpp =15, 75 /top =
10.

In the case of asymmetric boundary conditions, see Eq. (1), we
assume that n lies within the y — z plane and is parametrized by
n = (0, cos ¢, sin ¢). Figure 3 shows the spatial profile of the spin
current j7 and the spin polarization s for two orientations of the
ferromagnetic polarization, ¢ = 0 and ¢ = /2. A remarkable
feature is the hump of j; close to the left boundary for ¢ = 7/2.
Although the spin current vanishes at the interface, the spin cur-
rent averaged over the whole system can thus be enhanced due
to this hump compared to the average spin current in the ¢ = 0
case. The implications of this observation will be discussed in the
subsequent section.

4.2. Spatial Averages

In this subsection, we consider spatial averages of the spin po-
larization s” and the spin current j;, which allows to define an
averaged spin Hall conductivity and polarization coefficient, re-
spectively; and we focus on their dependence on the polarization
angle ¢ of the attached ferromagnet. For a stripe of width L, the
spatial averages of s¥ and j7, and the corresponding averaged
transport coefficients P and o, are defined as

1 L
(s?¥) = f/o dys? = PgE, (19)

9 L :’ | — =0 |
g - p=m/2
NO 15 _l' \\ .
‘;: '1' ‘\
’__:? 1 =‘L-—— \\
0.5 k
0
0
1.5 T T T T T
1 AAEL -
20 ,' \/
= ' :
A '
0.5 B r"’ —_— G) = 0 7
- p=m/2
0 1 1 L 1 1
0 5 10 15
y/lop
(b)

Figure3. Spatial profile of the spin current j7, a), and the spin polarization

s, b), for asymmetric boundary conditions with g,NatDp/h =10and¢ =
0, /2. The parameters L //pp and 7, /tpp are the same as in Figure 2.

i 1t i
(5)== [ dyj;=owE. (20)
LJo

The subscript “sE” indicates the linear response of the spin (cur-
rent or polarization) to an applied electrical field (in contrast to
the linear spin response to a temperature gradient labeled by “sT”
that will be discussed in Sec. 5).

Figure 4 shows the averaged spin Hall conductivity, panel (a),
and the averaged polarization coefficient, panel (b), normalized to
their respective bulk values versus the magnetization angle ¢ for
L/Ipp = 10 and various values of the spin mixing conductance
g!*. While the averaged spin Hall conductivity, (a), increases with
increasing g;'¥ for nearly all angles ¢, with the strongest response
in the range /2 < ¢ < 3m/4, the polarization coefficient, (b),
can be enhanced or reduced, depending on ¢.

In the limit L > Ipp it is straightforward to calculate analyti-
cally the ferromagnetic contribution of the spin current, defined
as

Ajy = ji = jjlel =0). (21)

see Eq. (71) in App. B. Performing the spatial average yields the
ferromagnetic contribution to the spin Hall conductivity:
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Figure 4. Averaged spin Hall conductivity, a), and polarization coefficient,
b), versus ¢, normalized by their respective bulk values, for 7, /tpp = 10,
L/Ipp = 10, and g,Naer/h =0,0.2,0.5, 2, 100 from black to blue.

AUSE _ 2 (1 =+ TS/TDP) J;(O) + 4leq,‘]5(0) (22)
USH Llpplq|? (2 + lsz|Q|2) Jo .

Obviously, Aoy is fully determined by the boundary values of
the spin current, j)(0) and j7(0), which can be controlled by the
magnetization angle ¢, see Eq. (1). For ¢ = 0 the spin current
J§(0) vanishes, and j(0) ~ s*(0), while for ¢ = /2 the spin cur-
rent j7(0) vanishes, and j)(0) ~ s7(0). This explains why in the
limit 7, /tpp > 1 the averaged spin Hall conductivity oy is en-
hanced for ¢ ~ /2 compared to ¢ ~ 0 as observed in Figure 4
(a). The above argumentation crucially depends on the existence
of anonvanishing in-plane spin polarization, i.e., the inverse spin
galvanic effect.

Remarkably, for the magnetization angle ¢ ~ 0.294, both o
and Py are independent of g!*. This is due to the fact, that
for this particular angle the spin polarization at the interface,
s(g/* = 0,y = 0), is proportional to the magnetization direction
n, and thus, according to Eq. (1), the spin current j, (0) vanishes,
independently of g/*. In the limit L > Ipp, it is possible to calcu-
late ¢ explicitly, see App. B, with the result

4‘L’Dpleq_
T + (1 = 15p1q 1?)”

tan ¢y = (23)

which yields ¢y &~ 0.2934, very close to the numerical result for
L = 10lpp. In addition, o and Pg: are also independent of g+
for ¢ ~ 0.131 and ¢, ~ 2.37, respectively, as indicated by the
arrows in Figure 4. According to Eq. (22), Aoy vanishes if the
condition

__ ZTDPlDPq— (24)
Tpp + Ts

is fulfilled. On the other hand, due to the boundary condition, Eq.
(1), it follows that j, (0) ~ (0, — sin ¢, cos ¢) which yields

Zpoleq_

tan¢; = .
Tpp + T

(25)

A similar kind of reasoning for the g/*-dependent part of P
leads to

2q_

tan¢, = _leIqIZ’

(26)

Although Egs. (25) and (26) are strictly valid only in the limit L >
Ipp, the values for ¢, and ¢, obtained from Egs. (25) and (26) are
very close to the numerical results for a system of size L = 101pp.

The averaged spin Hall conductivity, (a), and polarization coef-
ficient, (b), are displayed in Figure 5 for fixed spin mixing con-
ductance g/*atpp/h = 10 and several values of L. Clearly, for
very narrow systems, og has to go to zero due to the vanish-
ing spin current at the right boundary. In contrast, for very wide
systems it has to approach the bulk value o§™ since the influ-
ence of the boundary conditions becomes negligible. In between,
oge depends nontrivially on the magnetization angle ¢. The aver-
aged polarization coefficient Py also approaches its bulk value
for L > Ipp. However, in contrast to o, it does not vanish for
very narrow systems, but converges to

Pse Tpp(Top + Ts)
S=- . @)
P, (s — Top)(TDP + T5 tan” @)

which is symmetric around ¢ = /2. Equation (27) is obtained
by assuming that spin densities and spin currents depend only
linearly on y, which is justified for L < Ipp.

5. Linear Response in the Charge Sector

In the previous section, we have considered the spin polarization
and spin currents in response to an applied electrical field, and
pointed out how they can be modulated by changing the magne-
tization angle of the attached ferromagnet. Since spin signatures
(polarization and currents) are notoriously difficult to detect di-
rectly in experiment, we consider now the associated signals in
the charge current. Furthermore, we extend our analysis by in-
cluding also thermal effects, i.e., contributions due to a temper-
ature gradient. In particular, we focus on the SMR and the spin
Nernst magnetothermopower (SNMTP), i.e., the fingerprint of
the magnetization dependent spin Hall and spin Nernst effect in
the conductivity and the thermopower, respectively.

The momentum integrated charge sector of the Boltzmann
equation yields the following expression for the width-averaged
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Figure 5. Averaged spin Hall conductivity, a), and polarization coefficient,
b), versus ¢, normalized by their respective bulk values, for 7, /7pp = 10,

g,”ottDp/h =10, and L/Ipp = 0.01,0.5, 1, 10, 100 from black to blue.

charge current in linear response to an electrical field E, and a
thermal gradient V, T (see also Ref. [36]):

1
(ju) = op Ey — 05 SV, T — Ze%é ((j;) - %j(sY>> . @8

Here, Sy = —n?k3T/(3eer) is the Seebeck coefficient of a free

electron gas, and op is the Drude conductivity. The corresponding
expressions for the spin current and the spin polarization are (32):

(j7) = owEx + 0 V. T, (29)
(s") =

si Ex + Per Vi T, (30)

respectively, where the direct spin Nernst and the direct thermal
polarization coefficients are given by 2

osr = —Ser0’ sk (€r), (31)
P = —SoerP si(€r). (32)

Obviously, the coefficients oz and Pgg, which have already been
investigated in detail in the previous section, are the only ingre-

dients necessary to fully determine the thermoelectric linear re-
sponse in the charge sector.

5.1. Spin Hall Magnetoresistance
The SMR is measured under the condition of a vanishing tem-

perature gradient, V, T = 0. The corresponding resistivity, p, is
defined by

Ee = p(je) (33)
Since we are interested in the dependence on the orientation of
the attached ferromagnet, we define the ferromagnetic contribu-
tion, in analogy to Eq. (21), by

Ap=p—plglr=0). (34)

Using Eq. (28) and assuming Ap < p(g!t = 0), we obtain

Ap=—Acp(glt =0), (35)
where
!
Ao =—2e2 " ( Aoy — 22A Py (36)
h lDP H

is the ferromagnetic contribution to the conductivity. Corre-
spondingly, Ao and A Py are the ferromagnetic contributions
to the spin Hall conductivity and the polarization coefficient, re-
spectively. Apparently, both Ao and A P contribute linearly to
Ap, and thus the notion “spin Hall” magnetoresistance might be
misleading in a Rashba system as the one we consider. Yet, since
it is extremely difficult to distinguish between the spin Hall and
the inverse spin galvanic contributions in an experiment, we stick
to this terminology.

Figure 6 shows Ap versus the magnetization angle ¢. For a
wide system, (a), the SMR is dominated by the spin Hall (o) con-
tribution, whereas for a narrow system, (b), both contributions
appear equally important. Interestingly, at the universal crossing
point ¢, that has already been discussed in the previous section,
the contributions ~ Aoy and ~ A Py cancel up to linear order
such that Ap has a local minimum at ¢y. In the limit L > Ipp
it is straightforward to verify this cancellation analytically. Since
the ratio 7, /tpp can be calculated once ¢, is known, see Eq. (23),
it is, in principle, possible to extract this ratio experimentally by
measuring ¢y.

In the special case 7, /tpp = 1 the inverse spin galvanic effect
is absent, see Eq. (15), and the spin Hall magnetoresistance in
the limit L > Ipp simplifies to

A
2P 462, cos? ¢, (37)
Pp

where pp = 1/0p, and O = eoy! /oy is the spin Hall angle. Up
to the numerical factor four, Eq. (37) agrees with the result given
in Ref. [21] which has been derived based on phenomenological
spin diffusion equations in three dimensions. Note that for 7, #
pp the angular dependence is more complex, cf. Figure 6.
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Figure 6. Ferromagnetic contribution to the SMR as function of ¢ with
t./top = 10, at/hlpp = 0.01, and g/ arpp/h = 10 for L = 10/pp, a),
and L =/pp, b). The dashed curves represent the contributions propor-
tional to os¢ (red) and Pse (blue), respectively. All data are normalized by
pp = 1/0p.

5.2. Spin Nernst Magnetothermopower

Now, we consider a thermal gradient in x direction and study
the SNMTP under an open circuit condition, i.e., (j;) = 0. The
thermopower, S, is defined by

E. = SV,T. (38)
Using Egs. (28)—(30) we obtain
S = pop [1+2:l—;)ﬁ<0ﬂ— l:;sp sT)] So (39)
where

1 at e Ipp -
p= E[l_zm_m,g(%‘s_? sE>:| (40)

is the resistivity corresponding to the SMR as discussed in Sec.
5.1. In analogy to Eq. (21), we define the ferromagnetic contribu-
tion to the thermopower by

5 i T T T
— SNMTP _aEE S
- sen Al
¢, [ === ABx T o]
x
2 0
~—
W
x —-2.5
_5 L 1 1 1 7
0 T T 3r -
4 2 4
@
(a)
20 F —— SNMTP i
-~ ASp ]
2 -+ ASir
S 10 B e d
X i J
) 0 F — e -
<] -’___ ‘\‘-.
-10 } " -
T T 3
0 — — — T
4 2 4
1)
(b)

Figure 7. Ferromagnetic contribution to the SNMTP as function of ¢ with
Ts/TDP = ]0, Ol'(/hl[)p = 0.0], and g,TiolIDp/ﬁ: 10 for L = ]OIDP, a),
and L = Ipp, b). The dashed curves represent the electrical part (red) and
the thermal part (blue), respectively.

AS=S-S(g =0). (41)

Keeping only terms linear in o and Py, respectively, it is possi-
ble and convenient to split A S into two parts, an electrical part,
associated with o and Py, and a thermal part, associated with
ogr and Pyr. We obtain

AS=ASs+ ASq (42)

with the electrical and thermal parts given by

AS = Apop Sy, (43)
I
ASq =22 (Ao — 22AP: ) (gt = 0). (44)
hlnp Ts

where Aogr and A Py are the corresponding ferromagnetic con-
tributions to the direct spin Nernst conductivity and the direct
thermal polarization coefficient, respectively.

Figure 7 shows the SNMTP and its respective electrical and
thermal parts as function of the magnetization angle ¢. Inter-
estingly, electrical and thermal contributions nearly cancel each
other resulting in a rather small SNMTP fingerprint in the ther-
mopower for both a wide, (a), and a narrow, (b), system. For the
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parameters considered in Figure 7 this results in AS/ Sy being
of the order of 107%. Moreover, it can be shown that in the limit
of infinitely large spin mixing conductance g/ — oo, and for
pp/Ts — 0, this cancellation is exact such that the SNMTP is
completely absent in this case.

6. Conclusions

To summarize, we have investigated the spin and charge trans-
port properties of a two-dimensional electron gas with Rashba
spin-orbit coupling and Elliott-Yafet spin relaxation. In particu-
lar, we have focused on two recently discussed effects, namely
the spin Hall magnetoresistance and the spin Nernst magne-
tothermopower. Based on a generalized Boltzmann equation we
have derived a set of coupled spin diffusion equations and solved
them for boundary conditions that reflect the presence of a fer-
romagnetic insulator attached to the two-dimensional electron
gas. The two main effects associated with spin-orbit coupling,
the spin Hall effect and the inverse spin galvanic effect, are sig-
nificantly affected by the polarization direction of the ferromag-
net due to the spin transfer torque across the interface. Inter-
estingly, there is a particular polarization direction where both
effects are independent of the spin mixing conductance, which
in turn leads to a local minimum in the spin Hall magnetore-
sistance signature. The spin Nernst magnetothermopower turns
out to be very small due to a cancellation of electrical and ther-
mal contributions, and it vanishes completely in the limit of in-
finite spin mixing conductance if Elliott-Yafet spin relaxation is
neglected. Our findings deviate substantially from the results of
previous theoretical considerations based on phenomenological
drift-diffusion equations. However, quantitative comparison of
our results with published experimental investigations of heavy-
metal/magnetic-insulator bilayers, e.g., Pt/YIG, are hardly possi-
ble due to different geometries and the lack of an accepted micro-
scopic model of the spin-orbit coupling in these metals. It would
therefore be interesting to measure the spin Hall magnetoresis-
tance and the spin Nernst magnetothermopower in semiconduc-
tor heterostructures with pure Rashba spin-orbit coupling, such
as suggested in this paper.

Appendix A: Derivation and General Solution of
the Spin Diffusion Equations

The spin sector of the (static) Boltzmann equation is given by the
trace of the Boltzmann equation multiplied with o, and can be
written as

Mf = N(f) + S (45)
with
0 0 Dx
Tp 2ot
M=2-N+ yv v 0 0 p | (46)
—px —py O
(1 00
N=1—2— 01 0], (47)
“\o 0 0

Z

S=-—=(px2(Vf)2
T e

where L; = (p”* +p-p)pi — (p* + P - P) p|. An integration over
the momentum and using j, = op E, leads to the following equa-
tions for the y- and z-component:

. Ts ., hUD
Y o P R “9)
I
Yoy =1 (X +340), (50)

where Eq. (49) coincides with Eq. (12) in Sec. 4. Furthermore, we
rewrite Eq. (45) as

f =M1 (N({f)+S), (51)
where, in the diffusive limit and with 7, > T,
0 0 px
_ Tp 2t
—-px —py O

By multiplying Eq. (51) with p, ,/m and integrating over the mo-
mentum, we get

iy Ds*
.]x = l ’ (53)
DP

D z

jI==DV,s" — l:p , (54)
DsY hO’D

Jji=—DV,s*+ — T r—— (59)

Inserting Eq. (53) into Eq. (50) gives

2 iz 4 op ,

ST = —‘L'DPVY]Y l jy, (56)

as presented by Eq. (13) in the main text. We insert Egs. (49) and
(56) into Egs. (54) and (55), respectively, and obtain the following
coupled differential equations:

R T
(2= 1V3) j) = 29—V, (57)
l2 +l hUD
1 v jz= DPy E., 58
( ? Y) JY lDP YJY * 2e€rTpp ( )

cf. Egs. (10) and (11) in Sec. 4. The general solution of the latter
set of equations is given by*

J} =e""[(A_ + By)cos(q.y) — (A — B_)sin(q,y)]

—e7-7[(C_ = D.)cos(q, y) + (C, + D_)sin(q, y)]. (59)

* The solutions presented here are valid for 7, > tpp. More generally,
these solutions are still correct when the requirement v /tpp > 1/(5 +

4+/2) is fulfilled such that q, is real.
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Jy = Jo +e""[Acos(q,y) + Bsin(q.y)]
+e " ¥[Ccos(q,y) + Dsin(q, y)]. (60)

where g, is given in Eq. (18), and

Tpp 4+ 2
AL = 2+ 61
+ 'L'DP+T52( lq1%) A, (61)
with |q]> = g% 4+ q2; Bs, Cy, and D, are defined analogously to
Al

Appendix B: Large System Sizes

For L > Ipp itis sufficient to consider a semi-infinite system with
appropriate boundary conditions at y = 0, and construct the ap-
proximate solution for finite systems by applying the symmetry
relations discussed in the main text, see Sec. 4.1.

For g!¥ = 0 the spin currents must vanish at the interface, and
the boundary conditions read

Jy(0) =0, ji(y > o0) =0, (62)
Jy0) =0, jiy = o) = j§. (63)
Adjusting the general solution of Egs. (59) and (60) to these
boundary conditions yields the spin currents
Yo Jo Ioelq* <1 Ts ) —4-Y &

=—0 +— : 64
Jy 2+12q)2 g Top e sin(qy) (64)
rz iz .]5 —q_y
Jy Jo 2+152_|q|2e

x [(2 +171q IZ)COS(q+Y)+Z—_(2 - lflqlz)sin(q+y)]~ (65)

Using Egs. (49) and (56) we find the corresponding expressions
for the spin densities,

y
2s, T5

20 " gy
241219 o — T

sV =s}+

x [(2 —I3plq IZ)COS(q+Y)+Z—_(2 +18plq Iz)Sin(qw)} (66)

y
z So Le—q—y

24 121g1% top — T

Tpp — Ts lelq|2
Ts

x [4lépq-lq |* cos(q y)+ sin(qw)]- (67)

For g!* > 0 the boundary conditions for a semi-infinite system
read

J30) = jiu. Jjy > 00) =0, (68)
Jy0) = Jiv Jyy = 00) = Ji, (69)

where, for the time being, we assume that the boundary values
of the currents, jl\, and jZ,, are given. Matching the general so-

lution, Egs. (59) and (60), to the boundary conditions we obtain

e 4=y

AjY = 2+12| |2

{JFM[ (2+1191%) cos(q.y)

-5 - 11gP)sing. )]
q+

L) orlal sm(qm} 70

Tpp q+

Ar ST ) <1+ TS) 2
Iy = 241219017 Jem op ) lopqs

+ .]FZM[ (2 + lsz|q |2) cos(q-+y)

— <1+

sin(q.+y)

- (@=1ar) sin(q+y>]}. 71)

+

where Aj, =j,(g]*) —jy(g]* = 0) is the additional contribution
due to the coupling to the ferromagnet.

Let us now consider the boundary values j},, and j3, which,
according to Eq. (1), are given by

jem = 3, (0) = n x (n x s(0)). (72)
0

By inserting Eqgs. (70) and (71) into Eqgs. (49) and (56), we find the
ferromagnetic contribution to the spin density which depends
through jpy on the total spin density s(0). It is therefore possi-
ble to relate s(0) to the g/* = 0 contribution:

s (0) sY(0)> (SY(O)>
_ F . 73
(o) = o), = (0 "
where
F= — 2g/vatpp 21 /top — 12191
- h 2412q1?
— n n, -
—_— pplg1” My prlq (74)

. 2belgl’q-
Tw T o—iap T
ny oelql

23,lq1°q- ny
2-— l%plQIZ ny

captures the influence of the ferromagnetic boundary. Solving
Eq. (73) for s(0) yields

(o) =o=7 Gl 2
It is convenient to rewrite the inverse matrix in the form
(-F'=20+6), 76)
where
T

< [lorg- (202 +15,1am) + (2~ I3 laP?) myn (77)
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is the determinant of 1 — IF, and

_ 2gMVatop 275 /Top — 121912

h 2+12q/?
14 213,19 1%q- n,oon 4lppq_
2 —15plql? 1 ne o 2—Igplql?
X Nyh, BN (78)
ne | 2pelqlq- 4lopg- n-
ny o 2—lgplql? 213,117 n,
The matrix G has the remarkable property
y
G <52(0)> ~ <”Y>. (79)
N (0) ng=0 n,

Therefore, inserting Egs. (75) and (76) into the boundary condi-
tion, Eq. (72), we obtain

1

__ & Moy
_ZﬂthOnx(nxs(g 0,y =0)).

enm r (80)
which means that the spin polarization for g/* = 0 fixes the
boundary condition for the spin current in the case g/¥ > 0.
With this result it is straightforward to determine the magnetiza-
tion angle ¢, for which the ferromagnetic boundary condition is
equivalent to the g!¥ = 0 boundary condition. Fors(g,* =0,y =
0) ~ n the spin current at the interface vanishes. Therefore, the
tangent of ¢y is given by the ratio of s*(0) and s¥(0) for g!* = 0.
Using Egs. (66) and (67), we obtain the result given in Eq. (23).
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