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Possibility of quantum effects reducing the rate of escape from a metastable well
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The quantum corrections to the Kramers rate of escape from a metastable well are considered.
Quantum fluctuations inside the well and quantum transmission and reflection in the barrier re-
gion are treated in the limit of weak friction. Contrary to common knowledge, the authors find a
region where quantum effects suppress the full rate below the corresponding classical escape rate.

Dynamic processes hindered by a potential barrier are
ubiquitous in physical and chemical sciences. Presently,
we can almost celebrate the fiftieth birthday of Kramers’
seminal paper! on the rate I'y for thermally activated bar-
rier crossings in the presence of frictional forces. This
classical theory predicts a vanishing rate as the tempera-
ture T approaches absolute zero. Now, quantum mechan-
ics allows for tunneling through the barrier and leads to a
finite rate I'qm at zero temperature. A crude but useful
formula for the temperature-dependent rate I" frequently
employed? is obtained by adding the classical rate and the
zero-temperature tunneling rate, i.e.,

F=Ig+Tgm. (1)

The basic philosophy behind this formula is that quan-
tum effects open a new channel for barrier crossings thus
enhancing the rate above the classical rate I'. For sys-
tems with moderate-to-large friction a detailed theory for
the temperature-dependent rate describing the crossover
from thermally activated to tunneling processes is avail-
able.> While this theory has made us aware of a more
subtle interplay between quantum mechanical and ther-
mal fluctuations than described by (1), the rate T is al-
ways larger than the classical rate I';. In fact, the
theoretical predictions for the quantum enhancement of
thermally activated barrier crossings® could recently be
verified in experiments on Josephson systems. 4

In this paper we shall show that contrary to common
knowledge quantum effects may in fact suppress the full
rate below the classical rate. The case of interest here are
very weakly damped systems where thermally activated
barrier crossing is governed by the energy diffusion mech-
anism.! Specifically, we shall discuss the escape from a
metastable potential U(g) with a minimum located at
g =qo and a barrier at ¢ =¢g; with the barrier energy be-
ing denoted by E;,. We shall address only the quantum
corrections to the classical Kramers rate at weak damp-
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ing.> Thus, we consider only temperatures T > T, at
which thermal activation dominates over tunneling-in-
duced escape, i.e., T> To=hwy/27k where (with a unit
mass) wp = |U"(gs) |"/? denotes the angular frequency at
the barrier top, and k is the Boltzmann constant. The
generalization of Kramers’ low damping result to include
quantum effects was the subject of previous papers.® ™%
These authors took into account the quantum transmis-
sion T(E) of the potential barrier. However, a thorough
investigation of quantum corrections to the classical
theory must also consider the quantum reflection R(E)
=] —T(E) and the quantum fluctuations within the well.
We here consistently take all corrections into account and
we find a region of parameters where the headline must be
answered in the affirmative.

We assume that a particle of unit mass moves in the
metastable potential U(q) and obeys the classical, deter-
ministic equation of motion with memory damping y(z),
ie.,

a+ g0+ f s vt =)a () =2, @
where the thermal noise £(¢) obeys the Einstein relation
CE@EGEH="y(|t—s]) 3)

and B =1/kT denotes the inverse temperature. The classi-
cal energy diffusion equation [here we measure energy
from the well bottom, i.e., U(gs) =E}] reads’®

I 10 | 0&)

P,(E) 3E AE) 1+ 3E ] o P(E). (4
A(E) denotes the energy-loss coefficient

AE) = [ ds ()T (E.5) (5)

and J(E,s) is the delayed action of the undamped trajec-
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tory, i.e.,

2n/o(E)
JE= [ dtqEDE ~5), ©

where 27/0(E) =93J(E,0)/3E is the period of the oscilla-
tion with energy E. Now, let fo(E,t) =lw(E)/27]1P,(E)
denote the (classical) probability density per unit time to
find the system in the barrier region near a classical turn-
ing point with energy E. Injecting particles into the well,
and removing them at the barrier top, i.e., fo(E =E}) =0,
we find from (4) for the steady-state distribution f(E)

9 1.0 -
aEA(E)[1+ﬂ 3E ]fq(E) 0. @)

With the classical partition function Z .= (% Bwo) ~1land
a normalization which accounts for one particle inside the
well, we obtain for f4(E) the boundary condition

fa(E)=QrhZy) 'exp(—BE), for E/Ey<1. €))

Next we turn to the quantum case. To determine the
leading quantum corrections, we may restrict ourselves to
the semiclassical approximation with the energy levels be-
ing distributed quasicontinuously. Following a method
outlined by Larkin and Ovchinnikov, '° one derives for the
steady-state quantum probability f(E) the integral equa-
tion

SE) = [ dE' P(E/ENR(ENF(E, ©

where P(E/E') is the classical conditional probability that
the particle leaves the barrier region with energy E' and
returns after a round trip with energy £. Upon an expan-
sion of (9) to second order in (E —E') one finds

-—a_ —li
T(E)f(E) BEA(E) [1+ﬂ 3E ]R(E)f(E). (10

To derive (10) we made use of the detailed balance sym-
metry obeyed by P(E/E'). As opposed to previous ap-
proaches,®~® the right-hand side of (10) explicitly con-
tains the quantum reflection R(E). The boundary condi-
tions for f(E) are given as follows: For E— +oo, f(E)
approaches zero, whereas deep inside the well, f(E) ap-
proaches the equilibrium value. Using the harmonic
quantum partition function Z =[2sinh(% ABwe)] ~!, wé
={"(q0), we find

sinh(§ 2 Bwo)
nh

The full quantum rate of escape I' is given by the outgoing
flux, i.e.,

f(E) exp(—BE), E/Ex<1. (11)

r=["dETE)f(E). (12)

Together, Egs. (10)-(12) yield a solution of our problem
for any given quantum transmission T(E).

Here, we want to determine the quantum.corrections to
the classical Kramers rate formula. In this case f(E) will
deviate from a Boltzmann distribution only for energies
near the barrier energy. Hence, we may approximate the
transmission coefficient T(E) by the parabolic barrier re-
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sult, ie., T(E)=(1+expl—2n(E —E;)/hwp]) ~!. To
simplify the calculations, we now measure energy from
the barrier top and use the dimensionless variable ¢
=B(E —E}). Equation (10) then becomes

B(3/9e)A(e)(1+3/0¢)g(e) =exp2re/hPws)gle) ,
(13)

where g(e)=R(E—E,;)f(E—E;)/B. This equation
shows that quantum effects will modify the classical dis-
tribution in an energy band of width A, around the bar-
rier energy. Now, in the classical limit, nonequilibrium
effects of f;(E) only occur for energies of order kT below
E,. Hence, the energy dependence of A(e) only matters
for energies typically A w; or kT away from E;. Thus, for
systems with high barriers, we may replace A(E) by an
asymptotically constant energy loss

d=A(E) . (14)

Setting g(e) =h (e)exp(—¢/2), and using the transforma-
tion z =explre/hBws], (13) transforms into a differential
equation for modified Bessel functions. With v=hBws/
2x, the physically acceptable solution reads

g(e) = Aexp(—¢/2)K [hwy (B/8) 2exp(e/2v)/x] ,
(15)

where A is determined from (11), i.e.,
P 2sinh (7 hBwolexp(—BE;) | 2 v/2 16
ZhBT() B5 16

Next, combining (10) and (12), we find that the quantum
rate I" equals the plateau value

r= —ngf_llﬁa(l'i'a/af)g(é) R 17)

which the right-hand side of (17) approaches below the
barrier. Inserting (15), we thus obtain with vo=# Swo/27
the answer for the quantum rate

=20 sinh(zvg)  gnv vY ?
2 mvg sin(zv) [T +v)

x(88)! ~Vexp(—BE;) , (18)

which holds uniformly both for v2<« 1 and < 1. With
the appropriate substitution for §=A(E;), the rate for-
mula (18) holds both for Ohmic friction, 7(z) =2y5(t),
i.e., =yJ(E};), and memory friction. At very high tem-
peratures (v,v9<1), (18) approaches the Kramers result®
T = (wo/27)BSexp(— BEy).

The leading quantum corrections Q, with '=QTI', are

given by
hBws hlwfp

ool

V4
(19)

where C=0.5772... is Euler’s constant. Clearly, for
v2 < B6 <1, the logarithmic term in the exponent of (19)
gives a negative contribution that may compensate the
other positive terms. Hence, well within the range of va-
lidity of our formula, there is a region where the correc-
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tion factor Q is smaller than 1. In this region in parame-
ter space quantum reflection above the barrier dominates
over quantum transmission, thus leading to a net reduc-
tion of the rate below its classical value. We also remark
that the leading correction in (19) is proportional to %
pointing to nontrivial quantum corrections since the un-
derlying Hamiltonian contains only #2. In conclusion, the
answer to the headline is yes. Is the reduction measur-
able? For Josephson systems where the metastable poten-
tial has equal curvature at the barrier top and in the well
minimum the reduction is always small and not very likely
to be readily observable despite the fact that the weak-
damping regime is experimentally accessible.!! The

reduction is more pronounced, however, for systems with
very flat barriers as they occur, e.g., in absorption-
desorption problems on surfaces.
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