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Quantum-mechanical resonance energies and their corresponding decay rates (inverse lifetimes)
for the metastable system of a cubic potential coupled to a harmonic oscillator are computed nu-
merically via the complex scaling method. This system, which mimics tunneling in dissipative
media, is investigated for different barrier heights and a variety of coupling strengths. The large
number of computed resonances allows one to calculate thermally averaged decay rates for temper-
atures up to the crossover temperature. The numerical results are compared to the sudden theory
of dissipative tunneling, and rather good agreement is found. The suppression of the rate with in-
creasing dissipation and the thermal enhancement of the rate, as predicted by the instanton method
for dissipative tunneling, are also confirmed. When the time scale of the bath oscillator exceeds the
time scale of the system, an interesting, counterintuitive observation is that the temperature for the
crossover between tunneling and thermally activated escape increases with increasing coupling
strength. This is in contrast to the usual behavior for ohmiclike dissipative systems. The numerical
results in this work can be used as a benchmark to test other theories of dissipative tunneling.

I. INTRODUCTION

The development of the theory of tunneling in dissipa-
tive systems in the past decade has been rapid. The early
studies' concentrated on symmetry breaking at very low
temperatures in double-well potentials. The problem it-
self became well defined through the work of Caldeira
and Leggett, who utilized the fact that classical dissipa-
tive equations of motion such as generalized Langevin
equations (GLE's) may be derived from a Hamiltonian. '

Given a Hamiltonian, one can investigate quantum tun-
neling rates or any other quantum effect in a dissipative
medium. Caldeira and Leggett were mainly interested in
the tunneling rate at 0 K. They solved the infinite-
dimensional problem by extending the imaginary free en-
ergy (ImP method of Callan and Coleman. The essence
of their solution is a semiclassical steepest-descent evalua-
tion of the free energy, which leads to the instanton as
the primary object in the theory. Basically, the instanton
is a classical trajectory with infinite period on the upside-
down infinite-dimensional potential energy surface. The
important qualitative result of their theory was the obser-
vation that at 0 K, dissipation will exponentially decrease
the tunneling rate relative to the gas-phase rate defined as
the tunneling rate without dissipation.

The ImF approach was extended to finite temperatures
T by Cxrabert, Hanggi, and co-workers. ' Again the
centra1 object in their theory is the instanton, which now
has a finite period of R/k Tt(tkit is Boltzmann's con-
stant). The main result of their study was the observation
that heating the bath will cause an exponential power-law
enhancement of the rate. "

Numerous other papers have been published on the ex-

tension of the semiclassical ImF method to a variety of
problems. Other approximate approaches have also been
used. Examples are the variational approach to dissipa-
tive tunneling in double-well potentials developed by
Harris and Silbey' and the harmonic tunneling transi-
tion state theory approach of Pollak. ' ' Only recently it
has been pointed out that the ImF method is an extension
of semiclassical multidimensional transition state theory
to dissipative systems. '

The major predictions of the theory have been success-
fully compared with experiment. ' However, more
stringent tests such as a comparison with numerically ex
act solutions of metastable model problems is surprisingly
lacking. This does not mean that semiclassical tunneling
theories in multidimensional systems have not been tested
previously. There is a large body of literature dealing
with extensions of the Wentzel-Kramers-Brillouin (WKB)
method to multidimensional systems which includes
many numerical tests. ' However, none of the published
numerical results can be applied for a direct test of the
dissipative tunneling problem as formulated by Caldeira
and Leggett. The major purpose of this study is to pro-
vide a large body of numerical data which will serve as a
benchmark for the testing of approximate solutions.

The model system we will study is that of a cubic oscil-
lator coupled to a single harmonic bath oscillator. Com-
plex numerical eigenvalues of the Hamiltonian are ob-
tained by stabilization of eigenvalues obtained from the
complex coordinate method. ' In Sec. II we define the
model system and present numerical results for a range of
coupling parameters. Perhaps the most interesting result
in this section is the observation that thermal bath excita-
tions can cause an increase of the rate beyond the gas-
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phase limit for excited resonance states in the cubic well.
The results obtained in Sec. II are compared with pre-

dictions of a sudden theory of tunneling' in Sec. III. A
detailed analysis of the crossover between tunneling and
thermal activation is presented in Sec. IV. We find that
the generally accepted definition of a crossover tempera-
ture "between tunneling and activated barrier crossing
may not be valid for all memory friction kernels. We end
with a discussion of the results, paying special attention
to the anomalous behavior of the crossover temperature.

y c2
y(&)= g ', cos(co, t) .

M~=i m co
(2.5)

8=co, /co, . (2.6)

One also finds that g(t) is a function of initial conditions
which are themselves Gaussian distributed so that Eq.
(2.3) holds.

In this paper we limit ourselves to a single bath oscilla-
tor with coordinate x and frequency co, . This frequency
determines a (reduced) memory time

II. MODEL COMPUTATIONS

A. The model system

In order to somewhat mimic a continuous ohmic bath
with a cutoff frequency co„we define a dimensionless cou-
pling parameter e with the relation

The purpose of this study is to understand the quan-
tum dynamics underlying the classical mechanical GLE
of the form

C2 4
ac@0 .2

Mmico,
(2.7)

Mq+ +M J dr y(t r)q(~)—=g(t) .dV
Gfq 0

(2.1)

Here q is the system coordinate, M the mass of the sys-
tem particle, and V(q) the system potential chosen as cu-
bic in q,

V(q)= —,'Mco q —
—,'M i kq' . (2.2)

(g(t)g(0))=ksTMy(r) . (2.3)

As demonstrated by Zwanzig, the GLE, Eq. (2.1), may
be derived from the Hamiltonian

S'q

y(t) is a time-dependent friction related to the Gaussian
random force g(t) through the fluctuation dissipation re-
lation

In anticipation of the sudden theory that is tested in the
next section, we note here that around the well (q =0)
and the barrier (q =coo/&Mk) one can easily find the
normal modes by diagonalizing the corresponding force
constant matrix. The normal-mode frequencies are
designated (AO, A,, ) around the well, and (AD, A,, ) at the
barrier. Here A,o denotes the (positive-valued) frequency
along the unstable barrier mode. The normal-mode coor-
dinates are rotated with respect to q and x. The orthogo-
nal transformation matrix is denoted by U such that

v'Mq =uoop+u, oy, (2.8)

where p and y are the normal-mode coordinates. In
Table I we summarize the numerical values for all
relevant normal-mode parameters and potential and cou-
pling parameters used in this paper.

B. Numerical methods

with the identification

(2.4) Resonance energies and lifetimes are computed numer-
ically, using the complex coordinate method. (For some
recent reviews and refinements of this method see Ref.

TABLE I. Some relevant normal-mode parameters for the coupled cubic plus harmonic-oscillator
system for various values of the dimensionless coupling constant a. cop and cu, (A,p and A,, ) are the sys-
tern and bath (normal-mode) frequencies at the well bottom, respectively, where 8=cop/N 10 and upp
is the transformation matrix element according to Eq. (2.8). The corresponding quantities at the barrier
top are indexed with W.

0.005
0.050
0.100
0.150
0.200
0.300
0.400
0.500
0.600
0.700
0.800

A,p /Cgp

1.003 21
1.031 63
1.062 99
1.092 06
1.121 02
1.17675
1.229 91
1.280 83
1.329 77
1.376 95
1.422 55

/COp

0.099 68
0.096 93
0.094 14
0.091 57
0.089 20
0.084 98
0.081 31
0.078 07
0.075 20
0.072 62
0.070 30

A.p /cop

0.996 84
0.967 99
0.934 94
0.900 74
0.865 28
0.789 97
0.707 59
0.61621
0.513 75
0.401 11
0.29448

/Ct)p

0.10032
0.103 31
0.10696
0.11102
0.11557
0.126 59
0.141 33
0.162 28
0.19465
0.249 31
0.339 58

2Q pp

0.99994
0.99943
0.99898
0.99864
0.998 36
0.997 98
0.997 75
0.997 61
0.997 54
0.997 50
0.99749

%2
Qpp

0.99994
0.99929
0.998 37
0.997 18
0.995 60
0.990 59
0.980 85
0.959 77
0.907 61
0.766 16
0.478 74
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18.) The procedure is based on the analytic continuation
of the Hamiltonian via the transformation
x~x exp(iy„), q ~q exp(iraq), where in general, y, and

may be complex. The theory, relating a complex ei-
genvalue of this Hamiltonian, E—i%i /2, to the reso-
nance energy E and (inverse) lifetime I in a metastable
potential, is well understood.

In principle, the complex eigenvalues are independent
of the rotating angle. In practice, due to finite basis set
limitations, one determines the eigenvalues via the stabili-
zation method. ' If the basis set is sufficiently large, then
there exists a range of angles over which the eigenvalues
remain practically constant.

In practice we used two different harmonic-oscillator
basis sets with frequencies set either to the normal-mode
frequencies at the well (A,O, A,, ) or to the "bare" frequen-
cies (coo, co, ). A typical basis set used was n~ =40
(n =40) states for the system, whereas the number of
states in the oscillator mode (y or x) was variable; this is
inherent to the method of matrix continued fractions '

used to compute the resonances. Typical stabilization
graphs for the imaginary parts of the eigenvalues are
shown in Figs. 1(a) and 1(b), the real parts stabilized (to
more than 10 digits) over an even wider range of the scal-
ing angle. It turned out to be sufficient to scale via the
angle y keeping the angle y constant at y„=0. Gen-
erally, stabilization, with our choice of a harmonic basis
set, was easy to achieve, provided that the reduced tun-
neling rates (I'/coo) did not become smaller than -10
and that, in particular in view of convergence of higher
excited states, the coupling a was not too strong. For
very small tunneling rates, the harmonic-oscillator basis
used does not extend far enough out into the tunneling
region. This fact and the unavoidable numerical finite
precision arithmetic limited our study to a barrier whose
maximal reduced height V /Scop=3 and a maximal cou-
pling strength of a=0.2 or V /Scop = 1 at a=0.8. Even
with these limitations, the numerical effort is extensive.

C. Numerical results

Ap = (60Bp)
Ct)p

(2 )1/2
56 o8

(2.9)

The WKB rate I „ from the nth excited state is deter-
mined as

As a check, we first compared our results for the un-
coupled cubic oscillator with the results obtained in Ref.
22, and in addition, to the instanton results of Refs. 23
and 24. This comparison is summarized in Table II. It is
interesting to point out that even for a one-dimensional
system the standard instanton approximation can be less
precise than the standard WKB expression. The instan-
ton (INS) rate I" is given by the expression '

I' = Aoexp( Bo), —
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-1.78

-180-

-2.82-

V = 3.0 1)ro, nq = 40
a =0. 1

TABLE III. Some complex resonance energies for the cou-
pled cubic plus harmonic oscillator system at coupling strength
a=0.5 and a reduced barrier height V /%coo=1. n (k) denotes
the excitation level in the system (oscillator) mode. The ratio of
system and bath frequency is 0—:coo/co, = 10.

P
-1.84-

ReE„ /A~o

0.661 541 373(7)
0.735 502 771(5)
0.808 765 908(7)

—ImF.„/%coo

3.008(5)X 10
3.866(9)X 10
2.780(2)X 10

-1.N I ) I ) ) I ) I 1 ) I I ) I ) I I f I

5 1D 15 2D

)der)

1.848 339 17(0)
1.915 565 83(8)
1.985 280 17(1)

4.450 33(8)X 10
6.623 01(9)X 10-'
8.672 39(9)X 10-'

-6.0D

-6.05
V=1.01)rd, n =40
a =O.B

2.806 469(6)
2.890 673(1)
2.974 188(8)

2.479 70(8)X 10- '

2.747 31(1)X 10
3.004 86(7)X 10

-6.10
~Ay

-6.15

5 10 25 2D

'Pq )deg)

FIG. 1. Typical stabilization graphs for the imaginary part of
the lowest resonance state vs the scaling angle qq (y, =0) in the
cubic well coupled to a harmonic oscillator. The reduced bar-
rier heights and coupling strengths are V /%coo=3. 0, a=0. 1

[part (a)] and V /Re)o= 1, a=0.8 [part (b)], respectively. The
number of basis states in the system coordinate was n, =40.

where q'(E„) is the period for one oscillation in the well at
the semiclassical energy E„determined by the Bohr-
Sommerfeld quantization rule and W„ is the abbreviated
action through the barrier at the same energy.

Note that with increasing barrier height the instanton
expression becomes more accurate than the WKB result,
but for a low barrier ( V /fir))o= 1) the WKB method is
superior (see Table II). Presumably this is a reflection of
the fact that for a low barrier the ground state has sub-
stantial anharmonic contributions. The harmonic ap-
proximation for motion in the mell is an essential part of
the instanton method. It mill be of interest to understand
whether this difference will remain when the cubic oscil-
lator is coupled to a bath. This consideration motivated
a detailed numerical study of the coupled oscillator mod-
el at the same reduced barrier heights.

All results presented for the coupled oscillator model
[cf. Eq. (2.6}] are with reduced memory time 0=10, in
anticipation of the sudden approximation to be tested in
the next section and in view of the fact, that for ohmic-
like dissipation, the low-frequency bath modes are the
"source" of the interesting physics. In Table III, we ta-
bulate the converged complex eigenvalues for reduced

exp( PE„")I"„—
r(T)—= "

exp( PE„")—
n, k =0

g exp( PE„)Z„(T)I „(T)—
n=0

g exp( PE„)Z„(T)—
n=0

(2.13)

barrier height of unity and a=0.5. Comparison with
Table II shows that the ground-state rates have de-
creased, as a result of the coupling, by four orders of
magnitude. At @=0.5 one can still assign each one of
the resonance states according to HO —the uncoupled
normal-mode harmonic-oscillator Hamiltonian. Thus F.„
and I „are the energies and rates, respectively, for n exci-
tations in the system mode (p) and k excitations in the
bath mode (y). It is interesting to note that bath excita-
tions cause a strong enhancement of the rate. This is
shown graphically for the V /Aco0=—3 case in Figs.
2(a)—2(c}. Evidently, bath excitations reduce the effective
barrier height for tunneling, enhancing the rate, in quali-
tative agreement with the instanton-based predictions of
the thermal enhancement of the rate.

Since assignment of each state is still possible, one may
define thermal tunneling rates I „(T) for each system res-
onance state separately:

I „(t)= g exp( PE„")I„"/g e—xp( PE„"), (2.1—1)
k=0 k=0

where p= 1/k)) T. In Table IV we tabulate these thermal
rates for a variety of parameters. Also given in the table
are the thermally averaged rates. Denoting the nth sys-
tern state partition function as

x
Z„(T)= g exp[ P(E„" E„)], — — (2.12)

k =-0

one finds that the thermally averaged canonical rate may
be expressed as
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FIG. 2. (a)-(c) Decay widths I „vs their corresponding resonance energies E„" for the ground (n =0), first (n =1), and second
(n =2) excited state, respectively, in the cubic oscillator mode. Note the strong enhancement of the decay rates due to the excitation
of the bath oscillator (superscript k). The reduced barrier height V /Acoo=3, the ratio of the well frequency coo to the harmonic-
oscillator frequency co, is 0=—coo/co, =10, and the coupling strength 0.=0.1.

Convergence of the numerical eigenvalues (F.„",I „") is
good only for states whose (reduced) tunneling rates
(I "„/coo) are -0.4 or less. This implies that the thermal
rates in (2.11}—(2.13) will be converged numerically as
long as the decay is solely governed by tunneling. There-
fore, we computed thermal decay rates only for tempera-
tures below To, defined as

kg To =Ra)o /2m' (2.14)

(for a cubic potential ~o = coo).
When a=O, To is the crossover temperature between

tunneling and thermal activation (see also Sec. IV). It is

interesting to note from Table IV that for all tempera-
tures reported, the thermally averaged canonical rate
[Eq. (2.13}] for a) 0 is always less than the analogous
thermally averaged (a=0) gas-phase rate. This is in full
agreement with the instanton-based prediction that for
temperatures below crossover, dissipation always de-
creases the tunneling rate. The results are also in agree-
ment with the prediction based on a sudden theory, ' that
for excited resonance states, the thermally averaged rate
with dissipation [Eq. (2.13)] may exceed the gas-phase
rate even below crossover. A detailed comparison with
the sudden approximation is presented in the next sec-
tion.
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III. THE SUDDEN APPROXIMATION

2+ 1( I 4ui)1/2 r2 1 i3
2 u P 3P (3.1)

where p' and u' are the reduced coordinates and p is the
momentum conjugate to p'. The effect of the bath enters
through the variance of the variable u', which is a Gauss-
ian random variable stemming from the harmonic nature
of the bath mode.

When the bath coordinate is in thermal equilibrium,
then ( u') =0 and the temperature-dependent variance is

k Qpp 0 ip
2 4 2

(u' ) =— coth(fiPA. , /2) .
2 g4p

(3.2)

For each frozen bath value u', the Hamiltonian is a one
degree of freedom cubic Hamiltonian for which the in-
stanton expression for tunneling from the ground state is
given by Eq. (2.9) with suitable scaling. Thus

I' (u')—:Ao(u')exp[ Bo(u')], —
and one finds

(3.3)

Arp
(1—4u')'"Ap(u') = Ap 9 ppCOp

' 7/2
1/2

Qpp ) (3.4)

5
XpBo(u') =Bo (1—4u')' /uoo,0 ppCOp

(3.5)

where A 0, and Bo are already defined in Eq. (2.9).
The thermal rate is obtained by averaging the frozen

bath rate over the u' distribution

It has been noted previously, ' "' that the enhance-
ment of the dissipative tunneling rate at low temperatures
comes as a result of the excitation of the low-frequency
modes. Since almost by definition these modes move
slowly relative to the system motion, it is natural to try to
understand their effect, using a frozen bath approxima-
tion, also known in the Chemical Physics literature as the
sudden approximation. A sudden approximation for tun-
neling in dissipative systems has been recently formulat-
ed here we test its accuracy on the numerical results
presented in the preceding section. The condition for va-
lidity of this approximation is that 8—:coo/co, ))1.
Therefore the model chosen was estimated at 8= 10.

The starting point is the Hamiltonian [Eq. (2.4)] but
written in the normal-mode coordinates at the well (p,y).
(In principle one can also derive a sudden approximation
using the normal-mode expansion around the barrier.
This gives an identical result in the weak-coupling limit.
In the strong-coupling limit though, one can show' that
the sudden limit is valid only if one uses the normal-mode
analysis around the well. ) Since the coordinate y is a con-
stant, the conjugate momentum p =0 and the Hamil-
tonian may be brought to a convenient form, by choosing
the following scaling: Time is scaled by 1/A, p, energy by
kp/k g, and the coordinates g~p, g]py by kg~/Xp.
This leaves us with the reduced cubic sudden Hamiltoni-
an"
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&2

X f du'exp —
z I ' (u') .2(u') (3.6)

The integral may be estimated using a steepest-descent
approximation (as long as T ( To); the details are given
in Ref. 19. The steepest-descent approximation was test-
ed against an exact numerical integration for all parame-
ters studied in this paper, and agreement between the two
was excellent.

In the weak-coupling limit a((1, one can obtain the
following explicit results for the normal-mode parame-
ters:

ture is also predicted within the sudden theory' for a
continuous distribution of mode frequencies with a cutoff
frequency co, . This is due to the fact that for tempera-
tures T ) T, the bath can be treated classical mechanical-
ly (quantum bath effects are no longer important). It is
also interesting to note that for all T ( Tp this result ex-
plicitly demonstrates that the "bath" decreases the
ground-state tunneling rate with respect to the gas phase.

The effect of coupling on the T=0 K rate is shown in
Figs. 3(a) and 3(b), togther with a comparison with the
sudden theory for a low and a high barrier. As noted in
the preceding section, for V /Sicko= 1, at zero coupling,
the instanton estimate is not very accurate. Here we see

1+—cz, k, =m, 1——a2 4 2 2 4 (3.7)

2 4 Q 2 4u =1—— 900 g2 JP (3.8) ]D-N

The fact that the coupling enhances the difference be-
tween the system and bath frequency is a general result
for any coupling and any number of bath modes as long
as the cutoff frequency ~, is less than cop. This implies,
that at least for the system studied in Sec. II, coupling
should enhance the range of validity of the sudden ap-
proximation.

In the weak-coupling limit one can then obtain analytic
estimates for the rate. One finds that

10-10

3L
]0-11

6 80a(u' ) =— coth(iripru, /2) .
5 mO

(3.9) ]0-13
i i I i 'I I i I i i i i I I I I i I i

0.00 0.05 0.10 0.15 0.20
Defining a cutoff temperature T,

(3.10)

it is easy to see that for T ((T„(u' ) becomes essential-
ly temperature independent, while for higher tempera-
tures

10+

]0~ ~

]p 04

(u' )=-,Boa, T, «T~T, .6 T
Tp

(3.1 1)
]0-05

]0-%

As a result, for T =0 one finds in the weak-coupling limit

I' s(0)= Ao 1+—a7

Xexp Bo 1+ — 1 ——+O(a )
10m 3

0

(3.12)

For temperatures greater than T, the rate is

]0
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10-" ..
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0.0
~ I I 1 I I

0.2 0.4 O.B 0.8

r'Ns(T)-=W, 1+—a7

10m 3 TX exp —80 1+ 1——
7T 7T TQ
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The linear dependence of the exponential on the tempera-

FIG. 3. Dependence on the coupling constant e of the zero-
temperature decay rate I out of the coupled cubic plus harmon-
ic system for reduced barrier height V+/fuoo=3 [part (a)] and
V /ficoo= l [part (b)], respectively. The dashed curves interpo-
late the values computed by the method of complex scaling and
the full curves are the prediction of the sudden theory.
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TABLE V. We display the thermal decay rates from the ground state of a metastable potential with
reduced barrier height V /Acu0=3 coupled to a harmonic oscillator, as predicted by the sudden theory
in function of temperature for various coupling strengths.

ro( T) /coo

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

a=0.05
4.842 X 10
4.865X10-"
5.370X 10
6.611X10-"
8.576X 10
1.139X 10-'
1.528 X 10-'
2.060 X 10-'
2.779X 10-'
3.747 X 10
5.041 X 10

a=0. 10
3.291X10-"
3.330X10 "
4.184X10 "
6.642X10 "
1.168X 10
2.138X 10
3.961X10-"
7.328 X 10-"
1.344X10 '
2.436X10-'
4.348X10-'

a=0. 15
1.867X10-"
1.909X 10
2.825X10 "
6.064X 10-"
1.511X10-"
3.945 X 10-"
1.032X10-"
2.649X10-"
6.596X 10-"
1.583X10 '
3.651X10-'

a=0.20
8.807X 10-"
9.132X 10-"
1.651 X 10-"
5.034X 10-"
1.855 X 10
7.127X 10-"
2.680X 10-"
9.579X 10-"
3.206 X 10
9.972X 10
2.873X 10-'

that with coupling, the sudden theory based on the one-
dimensional instanton estimate is only semiquantitative.
On the other hand, for the higher barrier, where the in-
stanton estimate with zero coupling is more accurate, we
find that the sudden theory with damping is rather good.
Temperature eFects are shown in Figs. 4(a) and 4(b).
Here we find, that even when the T=0 K rate for the low
barrier (V /Sicko= 1) is not precisely predicted from the
sudden theory, the relative effect is qualitatively account-
ed for by the sudden approximation. For the high bar-
rier, the temperature enhancement of the rate is de-
scribed quite accurately by the sudden theory. Numeri-
cal values for the thermal rate predicted by sudden
theory for decay from the ground state of the metastable
potential with reduced barrier height V /ficoo=3 at vari-

ous coupling strengths are given in Table V, for the pur-
pose of eventual comparison with other theories for dissi-
pative tunneling.

IV. THE CROSSOVER TEMPERATURE

At very low temperatures it is clear that the rate of es-
cape is dominated by tunneling. At T=0 K, the classical
particle cannot escape, while quantum mechanically
there is always a finite tunneling rate. At high tempera-
tures, the particle gains enough energy to cross the bar-
rier and the rate becomes dominated by classical thermal
activation. Without disspiation one finds that the cross-
over temperature is given by Eq. (2.14). A simple way to
obtain this estimate is via a harmonic tunneling approxi-
mation. Assuming that the rate is

200 10000

100 ;

1000 -.

20
L

10-
100 -.

10-

0.0
~ 0 I I I

0.5
/'TI

1.0 0.0
I ~ I I f I y y ~

0.5
J TN

1.0

FIG. 4. Temperature enhancement of the decay rate from the ground state of the cubic oscillator mode I 0(T)/I o(0) for
V /%coo=3, a=0. 1 [part (a)] and V /%coo=1, a=0. 5 [part (b)], respectively. The dashed curves represent the behavior found from
complex scaling data and the solid curve is the enhancement predicted by the sudden theory.
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I (E)~ exp — ( V E—)
Ace

(4.1)
4

V*&ru,= 3.0
a = 0.005

and equating it with the Boltzmann factor e ~, one finds
that for T & To the weighted rate e ~ I (E) decreases as
F. increases (indicating the dominance of tunneling),
while for T ) To the weighted rate increases as E in-
creases, indicating the dominance of thermal activation.
The same estimate may be applied to tunneling in the
presence of dissipation; the only change is that now the
tunneling is dominated by the normal-mode barrier so
that co in Eq. (4.1) is replaced by A, —the normal-mode
barrier frequency. This leads to the estimate of an a-
dependent crossover temperature T,

ksT =iris', o /2m, (4.2)

f„(T)=exp( PE„)Z—„(T)I „(T) (4.3)

of the rate as a function of n. In Fig. 5 we show the nor-
malized weights

&„(T)=f„(T) If()(T) (4.4)

derived originally by Hanggi et al. using a more
rigorous instanton analysis.

One might question the validity of this estimate, since
seemingly it is dependent on a harmonic approximation.
In fact, around the crossover temperature, provided that
V~/%co~&&l, the escape rate is dominated by the dy-
namics whose energy is at the barrier height. As a result
the harmonic approximation is not only justified, but
arises naturally from the instanton-based estimates of the
rate.

As already mentioned, our numerical stabilization
computation yields converged rates only when tunneling
dominates the escape. This implies that a converged
thermal rate I „(T) [cf. Eq. (2.11)] from the nth reso-
nance state in the normal mode well can be obtained only
if E„V . It is, therefore, not possible to obtain the
converged canonical rate, Eq. (2.13), for high tempera-
tures. However, it is possible to study the crossover by
inspecting the weighted energy dependence

3-

n

FIG. 6. Normalized thermal weights P„(n =0, 1,2, 3 denotes
the excitation level in the system mode) for a coupled system of
a harmonic plus a cubic oscillator with reduced barrier height
V /%coo=3, but now the coupling strength a is varied and the
temperature is fixed at To, the bare crossover temperature.

for the uncoupled system ( V /A'coo=3) at three different
temperatures for four resonance states. Clearly at tern-
perature To the distribution reaches a maximum around
n =2, while lowering T shifts the maximum to lower n.

In Fig. 6 we show a similar plot; this time, though, the
temperature is fixed at To [Eq. (2.14)] but the coupling
parameter a is varied. It is evident that increasing the
coupling shifts the maximum to lower n such that the
rate at the temperature To will be dominated by tunneling
and not by thermal activation. Thus the numerical re-
sults indicate that for the present model (co, «coo), the
crossover temperature increases with increased dissipa-
tion, in contrast to Eq. (4.2).

This effect can be understood in terms of the sudden
approximation. As already demonstrated in the preced-
ing section, the sudden theory seems to provide a good
representation of the dynamics of the model. The sudden
dynamics are dominated by the normal-mode expansion
around the well. Thus the imaginary frequency of the
sudden barrier (at U'=0) is A,o (since the potential is cu-
bic) and not A,o [cf. Eq. (3.1); note that time has been
scaled as I /ko]. Therefore, the sudden theory estimate for
the crossover temperature T', i.e.,

kz T& =fiko/2m (4.5)
2- is largev than To, in qualitative agreement with the re-

sults presented in Fig. 6.

V. DISCUSSION

n
FIG. 5. Normalized thermal weights P„[see Eqs.

(2.11)—(2.13) and (4.3)—(4.4)], i.e., the relative contributions to
the thermal rate, of the ground, first-, second-, and third-excited
state (n =0, 1,2, 3) in a one-dimensional cubic potential of re-
duced height V /Acg0=3 for three different temperatures.

The numerical results presented in Sec. II are a bench-
mark against which analytic theories of dissipative tun-
neling may be tested. Qualitatively we have already
verified two important predictions of the instanton-based
theory. We find an exponential decrease in the tunneling
rate as a result of coupling to the bath. Qn the other
hand, excitation of bath modes causes an enhancement of
the tunneling rate. The dissipative, thermally averaged
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canonical rate [cf. Eq. (2.13)] is, however, always smaller
than the thermally averaged canonical gas-phase rate (see
Table IV).

Within the range of parameters used in this study, we
find that individual resonance states may be assigned ac-
cording to the normal modes at the well. This enabled a
well-defined evaluation of thermally averaged (with
respect to the low-frequency bath mode) rates from indi-
vidual resonance states of the "system" high-frequency
mode. Here we found two important results:

(i) The ground-state rate with dissipation is at all tem-
peratures below To lower than the uncoupled (a=O)
gas-phase rate from the ground state. This is in agree-
ment with the Euclidean temperature-dependent action
of the instanton that is a positive definite function with
respect to arbitrary damping.

(ii) Dissipative rates I „(T) of excited states may be
enhanced by thermal activation over the corresponding
gas phase rates I „, in agreement with a previous predic-
tion from the sudden theory. '

We have used the numerical results to test the sudden
theory of dissipative tunneling. We find excellent agree-
ment for high barriers for which, in the gas-phase limit,
the instanton estimate is good. For low barriers, the in-
stanton result is not very precise, and the sudden theory
based on it is only semiquantitative at T=O K. Even
here though, the temperature effect is accurately account-
ed for by the sudden theory, verifiying the analysis of
Martinis and Grabert in which the sudden approach is
applied only to low-frequency bath excitations but not to
the ground state T =0 K rate.

Perhaps the most intersting result of the numerical
simulation is the analysis of crossover between tunneling
and thermal activation. It is common knowledge" that
macroscopic systems tend to be more classical mechani-
cal in nature than their microscopic counterparts. The
exponential decrease of tunneling rates with dissipation is
a manifestation of this trend. Similarly, the predicted de-
crease of the crossover temperature [cf. Eq. (4.2)] with
dissipation is consistent with this principle. In this work,
we have found the opposite trend —the crossover temper-
ature increases as a result of coupling. Here, dissipation
enhances quantum effects, counter to usual intuition.

Is this result limited in the sense that it wi11 disappear
when we couple the system to a true continuum? What is
"wrong" in the instanton-based prediction [Eq. (4.2)]?
We believe that the increase in crossover temperature is

intimately connected with the validity of the sudden
theory at the crossover temperature. Consider first ohm-
ic friction. At the crossover temperature we will find ex-
cited bath modes whose frequency is identical to the sys-
tem frequency and the sudden approximation is no longer
valid. Here, we expect the "normal" behavior, i.e., a
lower crossover temperature as a result of damping.

If the bath spectrum is such that the bath frequencies
are greater than the system frequency, then we know that
an adiabatic approximation is valid. In the adiabatic lim-
it, bath excitations decrease the tunneling rate, ' ' and so
we again expect the normal result. In other words, for
"generic baths" we expect the instanton-based prediction
[Eq. (4.2)] to be valid. However, if the spectral density of
the bath has a cutoff frequency co, which is lower than
the system frequency, we expect (and have shown in this
paper) that the sudden approximation will refiect the true
dynamics. Analysis of the numerical results in terms of
the sudden approach indicates that whenever the sudden
approach is valid we should expect an increased cross-
over temperature as a result of coupling irrespectiue of the
number of modes. With the sudden approximation, the
barrier frequency is the normal mode frequency A,o which
is shifted to the blue for all baths, obeying co, & coo.

Why does the instanton-based analysis not lead to the
same conclusion? Note that the instanton is an entity
that moves around the barrier. Around T- To, the in-
stanton is close to the top of the barrier and does not
have information on the dynamics of the classically al-
lowed region of the well. As is evident from Table I as
well as from an analysis, for intermediate to strong cou-
pling, the unstable normal mode at the barrier is virtually
perpendicular to the normal mode at the well. Thus tun-
neling along the instanton path demands strong curva-
ture in the classically allowed region. This curvature is
not accounted for in the instanton approach.
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