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We consider activation processes in multistable systems exposed to external fluctuations and periodic

modulation. The concept of defining escape rates out of a basin of attraction as the ratio of total flux

over the basin boundary and the population inside the basin of attraction is generalized for periodically

driven systems. Thereby, the escape rate is connected with the Floquet-spectrum of the time inhomo-

gencous Fokker-Planck operator. Our formalism is demonstrated for the particular case of a multistable

washboard potential. Numerical results are compared with theoretical results in the limits of small and
large driving frequencies, respectively.
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1. Introduction

Activation processes in bi- and multistable systems play
an important role in many fields of physics and chemistry
such as optical bistability [1], tunnel junctions [2] and
chemical reaction kinetics [3] to quote but a few. The com-
mon situation is a dynamical system with at least two basins
of attraction. Fluctuations provide the possibility of crossing
a basin boundary and thus give rise to escape events. The
statistics of barrier crossings has been discussed in terms of
escape rates in the celebrated paper by Kramers [4], and
subsequently in a large number of publications [5]. More
recently, the role of additional periodic driving, modeling
the influence of periodic external fields, has been considered
in a number of experimental and theoretical investigations
[6]. In the low friction regime, the dynamical system has
been transformed to action angle variables, yielding under
the assumption of regular deterministic motion a time ho-
mogeneous Fokker-Planck equation in action or equiva-
lently in energy space [6a,f]. The overdamped limit has been
considered recently by one of us for a quartic double well
potential [7]. In the regime of small and large driving fre-
quencies, approximation schemes have been derived [7]
while, thus far. in the intermediate regime only numerical
results are yet available.

In section 2 of this paper a general concept for escape
rates in periodically driven systems is presented. In section
3 the particular model, Brownian motion in a washboard
potential, is introduced and the equations of motion are
discussed. The connections between escape rates, mobility
and the diffusion coefficient in the overdamped limit are
derived within a jump model in section 4. In section 5, the
enhancement of the escape rate due to periodic forcing is
computed as a function of the driving amplitude and fre-
quency in the overdamped limit.

The static current voltage characteristics, i.e. the averaged
velocity as a function of the bias, is known to exhibit Shapiro
steps. In section 6, the dynamical current voltage charac-
teristic, Le. the averaged velocity as a function of the driving
.amplitude, is evaluated. The observed dynamical behavior
Is surprisingly rich and includes besides steps, which are
closely related to Shapiro steps, also oscillatory behavior.
Qne main difference to the static current-voltage character-
istic is that the averaged velocity can also decrease with
increasing driving amplitude.

2. Basic Concept

In th_is section a general concept for escape rates in sys-
tems W}th periodic forcing is presented. For the following
discussion we assume that our problem is stated in terms of
a set of Langevin equations

%= h(x;,%...%) + &) i=12,...n, | 21

where the set {x,} denotes macrovariables, k (x;....,x,) are
the force fields acting on x; and £, are Gaussian white noise
forces, ie.

&My =0

22)
EWEE) = 2D3,5(~1).

The dynamical system without noise is assumed to have two
coexisting basins of attraction, 4; and A4,. Under the influ-
ence of noise, the systems can cross the basin boundary and
can thus escape from one basin of attraction to the other.
Injecting particles in 4, and absorbing them in the neigh-
boring attractor A4, (by appropriate use of reflecting and
absorbing boundary conditions [3]) a stationary flux §;,(x)
over the basin boundary 8(A,,A,) between 4, and A, builds
up. The escape rate from A, to A, is then given by the ratio
of the total flux over the basin boundary and the total pop-
ulation in 4,, i.e. (8]

M= dx""n(x)S,z(x)/Af dx" p(x). (23)

Ay, A7)

In the weak noise limit, i.e. D~—0, the rates are connected
to the smallest non-vanishing eigenvalue A, of the Fokker-
Planck equation, corresponding to (2.1, 2.2), by

e = P24 (24)
In periodically driven systems, e.g
X = h(x).X2,...,%,) + 0 A sinQt + E.(1), 2.5)

i=12..,nand ke[1,n],

there is no stationary structure of attractors in the phase
space, spanned up by the variables x;. Thus, the flux-over-
population method cannot immediately be applied. Time
dependent escape rates, defined as momentary rates have
been discussed in the literature [9]. As a consequence, the
decay of the population is non-exponential [10]. The latter
conception is therefore questionable. In the following we
introduce a concept which results in time independent es-
cape rates and in exponentially decaying populations.

In a first step we extend the phase space to n + 1 dimen-
sions by introducing the additional variable 8=Q: + ¢.
Escape rates are now defined in the same way just as in the
stationary case, but now in the extended phase space. Par-
ticles have to be injected into and absorbed out of the rel-
evant attractors in the extended phase space. The resulting
stationary flux has to be integrated along the basin bound-
ary of the extended phase space. Since the integration of the
flux along the basin boundary involves also an integration
over the additional variable 6, the total flux and thus also
the rate is time-independent [7,11]. The smallest non-van-
ishing eigenvalue 12, of the Fokker-Planck equation in the
extended phase space is connected in the limit of weak noise
to the escape rates /'? and 7 evaluated via flux over pop-
ulation method in the extended phase space by
A =M (2.6)
The eigenvalues of the Fokker-Planck equation in the ex-
tended phase space are indentical with the Floquet-coeffi-
cients of the non-stationary stochastic process in n dimen-
sions [7,11,12] (described by the Fokker-Planck equation’
corresponding to (2.1) without extending the phase space).



Thus. the escape rate of the periodically driven stochastic
process (2.9) is also given by the smallest non-vanishing Flo-
quet-coefficient of the corresponding time inhomogencous
Fokker-Planck equation.

In one dimensional bistable systems, i.c. n=1, the ex-
tended phase space is the two-dimensional x — @-space. The
basin boundary is the unstable periodic orbit. i.e. 3(Ay, A1)
is a one-dimensional object in x—§-space. In two-dimen-
sional problems, such as the Kramers’ problem with periodic
driving, X =0, 0 =-yo + f{x) + AsinQt + &(t), the extended
phase space becomes three-dimensional and the basin
boundary is an object which is two dimensional below hom-
oclinic threshoid (reguiar motion), and a fractal above hom-
oclinic threshold (irregular motion). The escape in the latter
case is connected with the flux through a fractal basin
boundary. While the reguiar regime has been treated in the
weak damping limit within an energy diffusion equation as
mentioned in the introduction, the irregular regime is not
yet solved.

3. The Model: Equations of Motion

The (tilted) one dimensional washboard potenual
V(x) = —dcosx — Fx (3.1

is a multistable potential for £ < d with minima and maxima
given by

x,"=arcsin7+2rcn n=0+1,+2 (3.2
X =g—arcsin— +2xn na=0+1,+2 (3.3)

The variable x is dimensionless and can thus be interpreted
as an angle variable (but not necessarily modulo 2n). The
Newtonian equation of motion supplemented by a noise
term, i.e. the Langevin equation, reads:

R +i% -V (x) = Asin(wi) + (D), (34)

where dots indicate differentiation with respect to the time
¢ The (luctuation-dissipation-theorem of the second kind
[13] is fulfilled without periodic driving, i.e.
GEE@) = 25kT8(E~7). (3.5
[n dimensionless variabies, ie

r=yar
7 =7/\/d
A=AV
Q=w/d

D =kT/d
F=F4d
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the Langevin equation {3.4) reads

£+yx +sinx = F+ Asin(Qt) + &(7) (3.6)
with
G@OE&D) = 25D 3 -1). 3.7

Here, the dots denote differentiation with respect to & For
large damping, i.e. y > |/ d, the first term on the Lh.s. of (3.6)
or equivalently (3.4) can be neglected, and we obtain

%J-:- = —sinx+F+.~lsith+|/3§(t),

(3.8)
with the scaled time ¢ = (d/$)¢ = 7' and the scaled fre-
quency Q = 74 = (j/d)w.

4. Escape Rates, Mobility and Diffusion Constant in the
Overdamped Limit

The stochastic dynamics in the multiwell potential (3.1)

may be modelled by a hopping dynamics berween the wells.
In the overdamped case there is only hopping between
neighboring wells. i.e.
B,=r P _+r P, —~r-+r-)P,, (4.1)
where P, denotes the probability that the system is in the
p-th well and r* are the escape rates from the n-th to the
(n + 1)~th well. The rates »~ and r~ are assumed to be in-
dependent of the site n. In periodically modulated systems
the rates and populations above are understood as those
defined in the extended phase space. The stationary solution
for k-fold periodic boundary conditions, ie.

Pn+:xk =P, (4'2)
is the uniform distribution
P® = 1/k. 4.3)

The mean velocity is given by the product of the stationary
flux (r* —r~) P*™ and the length 2nk, ie
{v) =2n(r* -r7). (4.4a)

The mobility, defined by the ratio of the mean veiocity {o)
and force £ then reads

o L
p= = =F (r*—=r-7). (4.4b)

The diffusion coefficient can be obtained from the first and
second-order moments {n(t)> and {n()) of the master
equation (4.1)

MPO) =t +ro)t+(rt =rT)e

@) =@FT-r)t. (43)
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The second term on the r.h.s. of the first equation of (4.5) is
a transport term and vanishes for zero bias, while the first
term on the r.bus. of (4.3) is a diffusive term. The diffusion
coeflicient D4, defined by

1 d ;
Da = 5 = ((xt0) = Cxte)))) (4.6)
is given by

1 , d . L Moy =
Dg=—=(2m -Et—((n'(t)) =min))7) = 2m=(r* +r7).

- 4N

In the weak noise limit. the escape rate is connected with
the smallest non-vanishing cigenvalue of the Fokker-Planck
operator corresponding to (3.8) in the extended phase space.
A delicate probiem, however. is the choice of the boundary
conditions for the Fokker-Planck equation. Using simple
" periodic boundary coaditions. i.e. P(x.0.f) = P{x + 2x=0.1),
the potential is not bistable in the interval {02 x]. The out-
going flux at one boundary is identical with the incoming
lux at the other boundary. Thus. the population in the weil
is not decaying and the smallest non-vanishing eigenvalue
has not the meaning of an escape rate. Using two-fold pe-
riodic boundary conditions, i.e. P(x.0.t} = P(x+4x0.1),
the potential is bistable in [0.4x]. Thus, the populaton in
~ one of the weils may decay, and the smallest non-vanishing
eigenvalue A, is connected with the escape rates r= by
Foma = 2rT +r7). (4.8)
Using n-fold periodic boundary conditions. i.e. P{x.0.1) =
P{x + 2xn.0.1), additional branches of eigenvalues emerge,
being connected with relaxation processes between not-ad-
jacent potential wells. The situation can be understood in
terms of a Bloch theory. A periodic force field in space x
provides eigen-solutions of the Bloch-type,

v2(x.0) = exp(ikx) u*(x.8) (4.9a)
with |
ub(x +2m0) = u¥(x.9), 4.9b)

where the quasi continuous index & may be restricted to the
first Brillouin zone (Bz), i.e. —1/2 < k < 1/2 (in the sym-
metric choice). In Fig. 1 a typical band structure is sketched
for illustration. The other index ¢ numbers the eigenvalues
for a given value of k, i.e. is the analogue to the band index
in solid state theory. Simple periodic boundary conditions
restrict the possible values for k to k=0, while two-fold
periodic boundary conditions allow for k =0, +1/2 n-fold
pperiodic boundary conditions select as possible values
k.=0,+1/n, +2/n,... with |k,] < 1/2 The relevant cigen-
value for the rate, however, is only the smallest aon-vanish-

ing eigenvalue at ope of the boundaries of the first Bz, al- -

though there are smaller cigenvalues within the first Bz

Note. that for (2n + 1)-iold periodic boundary conditions,
the Bz Soundaries £ = +1/2 are not allowed values. There-
fore. for this choice of boundary conditions the rates are not
connected via (4.8) to cigenvalues!

XK
o=-2 g=2
\ 0=1 1
172 0 k 12
Fig t

A typial reduced band structure for the cigenvalues of a Fokker-
Planck 2quation with a periodic potential is shown. Two bands
g=1 and 7= +2 are piotted within the first Brillouin zone
ke[-1.212]

The individual rates = may be obtained by using (4.4b)
and (4.8, i.e

:=__;"4..££ 4.10
" 4 ~drn’ (410

For symmetric potentials (F = 0) the rates r= are obtained
from the cigenvalue iy, only, while for dlited potentials
(F # Q) it is necessary to compute also the mobility.

Finaily we note that the diffusion coefficient Dy in (4.6)
is connected to the eigenvalue iy, by

Dy = Timg. @.11)

4.1. Results for the Unperturbed System (4 = 0)

Here we briefly review on the results without periodic
driving. In Gaussian approximation the rates are given by

(14]

e =51;‘/T—_Fexp[-%($l’+ 2Fummr+sz-F)].
{4.12)

The total rate out of a potential well is then given by_

r =r*+ }‘ ' |

— 2
=%V1—F2cxp[——5-FminF 4.13)

2 _z] (ﬂ)
-DIF‘coshD.



In (4.12) and (4.13) the normalization of (3.8) has been used.
The mobility is obtained from (4.4b), i.e.

> 2
=—=)1-F - i
k= 1 chp[ DF:m:mF

(4.14)
2 Fx
-1=](5)
D 1 ]smh D)
while the diffusion coefficient Dy is given by
; 2
Dg=2x )1 -F‘cxp[——D—FammF
(.19

1 — Fr
——D—V1~F]Cosh(—b—).

5. Escape Rates for the Periodically Forced System in the
Overdamped Limit

The Langevin equation (3.8) in the extended phase space
reads

X = —sinx + F+ 4sind + (1)
d=Q.

(3.1

Without noise, the unstable periodic orbits for small 4;Q°

may be obtained by linearization around the unstabie fixed
points, i.e.

x3(6) = n(2n+1)—arcsin F

sin{@ —arctan (-l-/-lz‘i—_.;;)] . G-

where n = 0, +1, +2,... The stable periodic orbits for small
A/Q are obtained similarly and are given by

e
VI—F+Q?

x2(8) = 2nx + arcsin £

A . Q (5.3
+ —=————_sin{ §—arctan )
Vl—F‘ﬁ-Q‘sm( (I/I—F"))

In Fig 2, the x — 8 phase space (x € [—n,3x], 6 € [0,2x] is
shown with numericaily evaluated stable and unstabie pe-
riodic orbits without bias (F = 0) for 4 =0.5. The unstable
* periodic orbit divides the phase space into two basins of
a.maction. The basin boundary becomes for large frequen-
aes Q or small driving amplitudes 4 a straight line. The
escape rate is given in terms of the smallest non-vanishing
real cigenvalue Jiga(A.Q2.D) of the Fokker-Planck equation

9 0 .
. EP(X,B.I) = -é—x-(smx+Asin9) P(x.8.r)

- Q% P(x,0.t) + D -—a,— P(x,8.1)

A (54)

= Lep P(x.0.1)

s

for periodic boundary conditions in 8, Le. P(x.0.1)) =
P(x,9+ 2=x.7) and two-fold periodic boundary conditions in
x, Le. P(x.8.2) = P(x+4n.0.1). More generally, the full
band-scheme for the eigenvalues A, (k) is obtained from the
boundary value problem

Cio (k) + D] ué(x.0) = [Ln +ikisinx + A sinf) 55

+ 2iDk —9—} ub(x.9)
Ox

with simple periodic boundary conditions for ug (x,8) in §
and x and k& € [—~1/2.1/2]. As already mentioned earlier,
Amia is identical with 1,., {k = 1/2).
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\
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-3.14 0.00 3.14 6.28 9.42
X
Fig. 2

The stable ifull lines) and unstable (dashed lines) periodic orbits are
shown in the x ~¢ phase space. The unstable periodic orbit close
to x = x separates the phase space x € [ —x 3 x] into two basins of
attraction. The artractors are the stable periodic orbits {limit cycles)
in the x —§ phase space

The aumerically evaluated rate enhancement n{A.Q.D)
due to the periodic driving, Le.

4(4.2.D)

HA=0D) ! G4

n{4.Q.D) =

is plotted in Fig 3 as a [unction of the amplitude 4 for
different values of the driving {requency in a double loga-
rithmic plot. The straight lines for small 4 with a slope of
2 clearly indicate the law
n(4.Q.D0) = x(2.D) A? (5.7
being valid for small driving amplitudes 4. In Fig. 4, the
rate enhancement factor «(Q2,0D) is shown as a function of
the driving frequency Q for various values of the noise
strength D in a double logarithmic plot. For small Q, the

factor x reaches a certain plateau, while for large Q the rate
enhancement factor exhibits a decrease Q™2



316

Fig 3
The rate enhancement n(A4,Q) is shown as a function of 4 in a

double logarithmic plot for @ = 0.1, @ = 1 and Q = 5. The power
law for small A is evident

102 1 1 1
D=0.2
10’ L
D=0.5
10°4 D=1.0 L
X
10.1 - d
1072 1 L
1073 . ' '
10 102 107" 10° 10’
Q
Fig. 4

The rate enhancement factor x is shown as a function of the driving
frequency Qfor D = 02D =05and D = 1

102 X » p
10' -
K
10°d
107 4
1072 . . .
1073 102 10”" 10° 10’
Q
Fig. 5

The rate enhancement factor  is compared with the theoretical

results (5.9) and (5.10) at D = 0.2 for small and large driving fre-
quencies.

Both limits, Q small and Q large, can be described ap-
proximately. For small frequencies < wyopping an adiabatic
approximation {7] yields
MA.Q.D) = L(An/D)-1, (5.8

where /y(x) is a modified Bessel function [15]. For A/D—0
one finds approximately . .

(5.9)

The crux with the adiabatic approximation is that with small
noise strength it is valid only for exponentially small driving
frequencies.

In the high frequency limit the averaging method of Ref.
7 yields for the rate enhancement

(5.10)

1
~ 2 N —
n(A.2.D) = At or x x 3D

1
2DQ?
Both limits (5.9) and (5.10) are compared with the numerical
results for D = 0.2 in Fig. 5.

We do not discuss individual rate r* or r~ in the presence
of bias (F # 0), since the effect of periodic driving is the same
as in the symmetric case (F=0). We want to point out,
however, that they can be obtained by computing the av-
eraged mobility x and the relevant eigenvalue i,;, and by
using (4.10). The effective diffusion coeflicient Dy (4.6) is
connected with the relevant eigenvalue iy, by Eq. (4.11) and
thus exhibits the same dependence on the driving frequency
and amplitude.

6. The Dynamical Current-Voitage Characteristic

The current-voltage characteristics of the model (3.8), i.e.
{x) (= voltage) as a function of the bias F (= current) has
been discussed in the context of Josephson junctions [16],
phase locking in electric circuits {17} and mode locking in
ring laser gyroscopes [18]. The periodic driving gives rise
to steps which have been observed first by Shapiro [19] in
Josephson junctions. In terms of the model (3.8) without
noise, these steps occur when the periodic output xit)
“locks™ into the phase of the periodic driving. The locking
condition is fulfilled when the period T = 27/Q of the driv-
ing is a multiple of the time T, the system needs for running
down the tilted potential one period L =2r, i.c. when
(¥) = nQ, (6.1)
where (x) is the averaged velocity along one spatial period
2x. The influence of noise consists in rounding the steps or
destroying them if the noise strength is sufficiently large.
Characteristic is the stepwise but monotonous increase of
the voitage with increasing current F.

The dynamical current-voltage characteristic will be de-
fined as the voltage (%) as a function of the driving am-
plitude 4. Without noise, such a dynamical current-voltage



characteristic is shown in Fig. 6a for F=08 and Q=1
(dashed line). The voltage vanishes for 4 < A", since the
system cannot overcome the barrier. At A = A" the system
jumps into a running state, and is locked into the phase of
the periodic driving in the locking regime n=1 (see Eq.
(6.1)). For A®"> A > A the locking conditions cannot be
fulfilled (for an explanation see below) and the voltage drops
down. The locking conditions are fulfilled only on discon-
nected intervals of the A-axis, and the width of the locked
regions decreases for increasing driving amplitudes A. For
very large values of A4, i.e. A— oo, the locking condition
cannot be fulfilled any more and the voltage relaxes oscil-
latory to its asymptotic value {x) = F. The influence of
noise (full line in Fig. 6a) results in rounding off the plateaus
in the phase locked regions and finally in destroying the
phase locking for large driving amplitudes.

AMARRE,

_l ' I 2 gz -

1.2 -

!
1.0 l Y l o F
0.8 r—hfwdr\Jr\/n\/ﬁ\iu-

0.4+ s
0.24 r-
0.0 T ™ Y
0 5 11 16 21
A
Fig. 6a:

The dynamical current-voltage characteristic ((v > = (%)) is shown
for F =08 and Q = 1 without noise (dashed line) and with the noise
strength D =0.01 (full line)
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Fig 6éb: _ '

The dynamical current-voltage characteristic ((v ) = (%)) is shown

for F=0.5 and Q2 = 1 without noise (dashed line) and with the noise

strength D = 0.01 (full line) )
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In Fig 6b the dynamical current voltage characteristics
is shown for the smaller bias F=05. Here are no phase
locked regions at all. The locked regions are estimated with-
out noise in the following [20]. For convenience we choose
a cos-driving in the equation of motion, i.e.

¢ = —sinx+ A cosQt+ F. (6.2)
Inserting the ansatz

A4 . .
x(t) = xo + Esmaz + (Dt 6.3)
into (6.2) we obtain
Gy =F- T J4/Qsin(0+k2+{D))  (64)

from which {x) follows self consistently. In (6.4) J, (x) are
Bessel functions {15], and x, is an arbitrary phase. In the
phase locked regions we find by using (6.1) and averaging
over one period the conditions for locking into the n-th
region, i.e.

F—nQ = J,(A/Q)(—1)" sinx, . (6.5)
For the O-th region ({xX) = 0) the condition F = J,(A/W)
sin x, has to be fulfilled. The solution is discussed graphically
in Fig. 7 for F=0.8. It follows from Fig. 7 that for A > A"
there is no x, which makes the locking condition for n =0
fulfilled. For 4 > A'", however, the condition (6.5) for n = 1
can be fulfilled and the system locks into the n =1 region.
At a certain value of 4 = A® the condition (6.5) for n =1
can not be fulfilled any more and the locked regime
(%) =2Q(n = 2) cannot be reached for Q = 1. Thus, the sys-
tem cannot lock to the external signal and the voltage (x)
shows oscillatory behavior as a function of the driving am-

1.20 A L 1 " - b

YO(A/ Q)

0.78

0.35+4

Al 72403

Fig. 7

The functions J,(A4/Q) (full line) and J, (4/Q) (dashed line) are plot-
ted together with the straight lines F, F—Q and Q@ — F. The light
regions of the stripe on top of the curves indicate phase locked

regions.
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plitude. Due to the oscillatory behavior of the Bessel func-
tions, the locking condition for n =1 can be fulfilled again
in a number of intervals of larger A. It is obvious from Fig. 7
that the width of the locked intervals decrease for increasing
values of the driving amplitude A until the Bessel functions,
which decay asymptotically proportional to 4~'7, are too
small for locking. Note, that the agreement of the numerical
values A® (Fig. 6a) with thosc obtained from the theory
becomes better for increasing driving amplitudes.

1.2 ' 2 A A ' 1 1
1.0« 5
0.8" =
A
™ 0.64 X
\)
0.4- o
0.2‘ -
0.0 .l T Y T T 4 T
0 1 2 3 4 5 6 7 8
A
Fig. 8

The dynamical current voitage characteristic with an inertia term
(model (3.4)) is shown for F=0.5,Q=1andy=1.

the dynamical current-voltage characteristics for systems
with inertia (the model 3.4)) is even more rich, since it allows
also for subharmonic phase locking, i.e.

(0)=%Q mneN.

(6.7

The numerical results for F=0.5, 3 =1 and y = 1 are shown
in Fig. 8 for vanishing noise. The voltage (%) as a function
of the driving amplitude shows besides the steps also regions
with wild oscillations. These oscillations occur with chaotic
solutions.

7. Conclusions

' In tlns paper we have presented a concept for escape rates
in penpdiwlly driven systems. For a periodic (multistable)
potential we have derived explicit results for the escape rate
asa 'function of the driving frequency and amplitude. The
relations between rates, mobilitiy and diffusion coefficients
have been discussed as well as the role of boundary condi-

tions. In addition we have presented dynamical current-volt-
age characteristics, i.e. (x) as a function of the driving am-
plitude A. The observed rich dynamical behavior has been
explained in terms of phase locking.

We are grateful for the financial support by the Stiftung Volks-
wagenwerk. We wish to thank Peter Talkner for helpful discussions
on rate theory. )
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