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The phenomenon of tunneling is investigated for a symmetric double-well potential perturbed by a

monochromatic driving force. The analysis is based on a numerical treatment of the quantum map that
propagates the system over one period of the external force, and of the spectrum of its eigenphases
(quasienergies). The variety in the quasienergy spectrum, such as exact and avoided crossings, leads to
novel forms of coherent tunneling. In particular, for specific parameter values of the driving force, we
find almost complete localization of the wave packet in one of the wells.

PACS numbers: 82.90.+j, 03.65.Ge, 33.80.Be, 74.50.+r

The tunnel efrect was recognized long ago during the
heyday of quantum mechanics. In 1927, Hund [1] dem-
onstrated that quantum tunneling is of importance for in-
tramolecular rearrangements in pyramidal molecules
such as ammonia, as manifested by the tunnel splitting of
vibrational spectra. Our objective here is to study the
influence of periodic driving on such tunnel systems,
which may well lead to an enrichment of the dynamics.
In the present Letter, we report on analytical and numeri-
cal investigations of an archetypical model, a particle
moving in a symmetric double well, and driven by a
monochromatic (not kick-type) classical force. The
Hamiltonian defining this model reads

p' 1, x4
H(x,p) = ——x + +xS sincot .

2 4 64D
Here, we use dimensionless units. In particular, D
=Ett/htoo denotes the barrier height Ett in units of Atoo,
with coo denoting the angular frequency of harmonic os-
cillations on the bottom of each well, and t is measured in
units of the corresponding period 2tr/too. This model
Hamiltonian is of general interest: It characterizes the
physics of a wide class of systems, such as the transfer of
hydrogen in atoms and molecules along chemical bonds
[2], the transport of hydrogen isotopes or muons between
interstitial sites in metals [3,4] and macroscopic quantum
coherence phenomena in SQUIDs [5].

In the present work, we attempt to gain insight into the
deep quantum regime of this system. That is, we focus on
the parameter range of low barriers, such that D is of or-
der unity and, in the corresponding unperturbed problem,
there are only a few levels below the barrier. In addition,
we do not restrict ourselves to small amplitudes S of the
driving force. Consequently, we refrain from the use of
semiclassical or perturbative methods. Our approach is
based on the Floquet formalism and the concept of
quasienergies, as pioneered for the physics of atoms in in-
tense laser fields [6-10].Moreover, as our results show, a
two-level approximation would be insufFicient to analyze
driven tunneling: In general, the flow of probability be-
tween the two wells exhibits an intricate structure both in
space and time, and can no longer be described in terms

of the traditional concept of the tunnel splitting 3,. To
provide an adequate language, we adopt the concepts of
the temporal autocorrelation function (probability to
stay) and the local spectrum, well known, e.g. , in solid-
state physics [11]and quantum chaos [12,13].

Consider the propagator for the operator in (1) over a
single period T=2 /tcro of the external periodic force.
This unitary operator U is the generator of a quantum
map, i.e., applied iteratively to some initial state

I tiro), it
provides a stroboscopic, discrete-time evolution of the
wave function. In view of the Floquet theorem, the eigen-
states of the unitary operator U take the form Iyt, (nT))
=exp( —inst, T) I@k (0)), where n denotes the number of
time steps, and I@i,(t+T)) =I@k(t)). The quantities et„
defined modulo co, are referred to as quasienergies
[6-10]. They are functions both of the driving amplitude
S and the driving frequency co. The generalized parity
transformation P, x —x, t t+T/2, leaves the Ham-
iltonian (1) invariant. Thus, the Floquet functions can be
classified into states of even and odd parity, respectively
[14].

Given an initial wave packet I yto) and its time evolution
under U, the temporal autocorrelation function is defined
by

P. = I(v. I v o& I

' (2)

(3)
where g

' =lim~ N 'g„=oP„denotes the long-time
average of P„. The spectral counterpart of the autocorre-
lation function P„ is the two-point correlation function
P2"(g) of the local Floquet spectrum [13]. It is related
to P„by Fourier transformation and thus contains all the
frequencies involved in the time evolution of P„, weighted
according to their relative significance for this dynamics.

In the following, we will consider time evolutions start-
ing from one particular type of initial state: A Gaussian

Expanding both Itito) and Iy„) in the Floquet basis, and
using the role of the Floquet states as eigenfunctions of
U, one finds

P„=& '+ g exp [in (s.—cp) T] I (@.I tito) I
'I (@pI yp) I

',
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centered, say, in the left well, equivalent to the ground
state of the harmonic approximation of that well. This
initial state is defined independently of the Floquet basis,
and can readily be realized both in numerics and experi-
ments. Moreover, with this initial state, the deviation of
P„ from unity provides a first clue of the probability flow
into the opposite well. A quantity serving the same pur-
pose, but more specifically tailored to the symmetric
double-well problem, is the occupation probabilIty in the
left well,
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f 0
p„""'=„dx!y(x, nT)! '. (4)

The concepts introduced in Eqs. (2)-(4) will now be
used to discuss the variety in the Floquet spectrum, as
shows up in the (S,ru)-parameter space, and the conse-
quences for the tunneling behavior. Only in the opposite
limits of very slow (adiabatic) and very fast driving, re-
spectively, are the time scales of the unperturbed double
well and of the driving force completely separated, and
does the structure of the Floquet spectrum resemble that
of the unperturbed energy spectrum. In these two re-
gimes, tunneling can still be described in terms of an
effective tunnel splitting A, a.(S,ro). For finite S and co, it
turns out to be always enhanced, as compared to the un-
perturbed case, i.e., A,a )A [15]. The main focus of our
work, however, is the range of intermediate frequencies
between h, , the lowest characteristic frequency scale of
the unperturbed system, and coo. Here, the Floquet spec-
trum may lose any similarity to the energy spectrum in
the unperturbed case. Features of particular significance
are close encounters of levels, as a function of the param-
eters, since they lead to exceptionally long time scales in
the tunneling dynamics. If two quasienergies, approach-
ing each other, belong to different parity classes, they
form an exact crossing, whereas in the opposite case, a
crossing will be avoided.

A special class of avoided crossings is generated by res-
onances of the driving force with differences of unper-
turbed levels. Such resonances occur whenever a p-fold
multiple of the field quantum 6m coincides with a
difference !E„E!of unpert—urbed levels, and the pari-
ties of p and of !n —m! agree. These resonances are ex-
act for S 0, but evolve into avoided crossings for finite
S. As a specific member of this class, we consider the
resonance hco„=E3 E2, referred to as th—e fundamental
resonance. The other parameter values used are a=2
(this value renders the double well quite similar to the po-
tential that governs nitrogen tunneling in ammonia) and
S=10 . The time evolution of the autocorrelation P„,
Fig. 1(a), shows conspicuous quantum beats, quite
different from the familiar picture of tunneling in a dou-
ble well. Taking the Fourier spectrum of this time evolu-
tion to obtain the two-point correlation function of the lo-
cal spectrum, Fig. 1(b), reveals these beats as the result
of the superposition of mainly three frequencies, with
some minor contributions from other discrete lines.
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FIG. 1. Driven tunneling at an avoided crossing: (a) time
evolution, over the first 2X10 time steps, of the autocorrelation
function P„; (b) corresponding local quasienergy correlation
function (abscissa in arbitrary units); and (c) quasienergies in-
volved in the dynamics shown in (a) and (b), as a function of
the driving amplitude S, at the driving frequency m used in (a)
and (b). The parameter values are co=co, =0.876, the funda-
mental resonance (see text), and S=10, as indicated by the
vertical line in (c).

These three frequencies, in turn, can be identified by
analyzing the Floquet spectrum at the parameter values
chosen. Figure 1(c) represents a section, at ru =c0„,
through the a(S, ru) space. It shows how an avoided
crossing evolves out of the fundamental resonance, and
suggests associating the three frequencies dominating the
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local spectrum with the separations of the quasienergies
emerging from E 1, E2, and E3—Ace„respectively.

Exact crossings of quasienergies can have even more
surprising consequences, as we will discuss now. Consid-
er the two lowest eigenstates of the unperturbed case:
They form the well-known doublet of a symmetric and an
antisymmetric state which is responsible for the familiar
tunneling phenomenon. With the driving force S
switched on (but still small), they evolve into two Floquet
eigenstates @„@„respectively, with similar shape and,
in particular, with the same parity as their unperturbed
counterparts. These two "lowest" Floquet states, there-
fore, allow for exact crossings of their respective quasien-
ergies, as functions of 5 and m. In fact, we find a one-
dimensional manifold in the (S,tu) plane where they
cross. The consequences of such crossings are intriguing:
The time scale for a wave packet prepared as a superposi-
tion (@,+ C, )/J2 to cross the barrier diverges, and so it
will remain localized in the initially populated well.

The results of a numerical investigation of this unex-
pected phenomenon are presented in Fig. 2. The parame-
ter values chosen here are 5 =3.17X10, co =0.01, and
again, D=2. Figure 2(a) shows the time evolution of P„
over the first 10 time steps. This time span corresponds
to about 20 times the period of the tunneling process in
the unperturbed system, i.e., h. =1.9x10 . The fact
that P„remains near unity, within 10%, is a first indica-
tion of a coherent suppression of tunneling. A more reli-
able measure of the transfer of probability to the opposite
well is p„"",plotted, in Fig. 2(b), over the same time win-
dow. Its deviation from unity does not even exceed 2.5%.
In Fig. 2(c), we compare the initial state with the state at
n =458, where P„reaches one of its minima. Even here,
both states approximately coincide. Finally, we also gen-
erated a finely resolved time evolution, over one period of
the driving force, of the two diagnostic quantities men-
tioned (not shown). It clearly excludes the possibility of
fast tunneling with the frequency of the driving force,
which could have escaped the stroboscopic description
used in all the other simulations.

We conclude this discussion of the coherent destruction
of tunneling at exact quasienergy crossings with some re-
marks on the role of the preparation of the initial state.
It is obvious, from Figs. 2(a)-2(c), that the localization
of the wave packet is not perfect. This is due to the fact
that we did not prepare the initial state as an exact super-
position (&, + &, )/v 2 of the two Floquet "ground
states, " but rather, as emphasized above, as a Gaussian
wave packet defined independently from the Floquet
basis. In the particular case studied here, it so happens
that the diAerence between these two states is not
significant: The true initial state is almost, but not com-
pletely, exhausted by the two Floquet states forming the
exact crossing, i.e., there is a very small but finite contri-
bution from "higher" Floquet states to the dynamics.
However, it is to be expected that this situation will be
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much less favorable at exact crossings formed by Floquet
states other than the two lowest ones.

The results reported in this Letter show that external
driving of a bistable quantum system gives rise to quite
complex and partially unexpected modifications of the fa-
miliar notion of tunneling. In particular, periodic driving
may slow down tunneling by any desired degree or even
suppress it altogether, in a perfectly coherent vvay. This
surprising effect is achieved by tuning the driving force to
a suitably chosen frequency in the vicinity of an exact
crossing of those two Floquet states that correspond to
the ground-state doublet of the unperturbed double well.
It enables localization of an otherwise bistable quantum
system in one of its metastable states. Since it occurs
along a one-dimensional manifold in the parameter space
spanned by frequency and amplitude of the driving force,
it should be readily observable in a variety of experimen-
tal situations: Possible applications range from quantum
chemistry (proton transfer, inversion motion of atoms in
pyramidal molecules such as NH3) to mesoscopic systems

FIG. 2. Driven tunneling at an exact crossing of the two
"lowest" quasienergies (see text): time evolution, over the first
10' time steps, of (a) the autocorrelation function P„and (b)
the occupation probability p,"" in the initially populated well;
(c) comparison of the initial state, the ground state of the har-
monic approximation of the left well (solid line), with the state
at n =458 (dashed line), in x representation. The dotted line in
(c) indicates the position of the double-well potential. The pa-
rameter values are m =0.01 and 5=3.171 x 10
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(ac-driven SQUIDs) [16].
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