Suppression of tunneling in periodically driven bistable systems
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The phenomenon of tunneling is investigated for a symmetric double-well potential perturbed by a monochromatic
driving force. The analysis is based on a numerical treatment of the quantum map that propagates the system over one
period of the external force, and of the spectrum of its eigenphases (quasi-energies). At driving frequencies between the
bare tunneling frequency and the harmonic well frequency, we find for specific parameter values of the driving force a
localization of the wave packet in one of the wells (coherent destruction of tunneling).

The tunnel effect was recognized long ago
during the heydays of quantum mechanics [1].
As we will show in this article, the influence of
external periodic forces on the tunneling
dynamics leads to unexpected phenomena and
therefore deserves special attention. We report
on analytical and numerical investigations of an
archetype model, a particle moving in a symmet-
ric double well, and driven by a monochromatic
classical force. The Hamiltonian defining this
model reads
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Here, we use dimensionless units. In particular,
D = Ez/hw, denotes the barrier height Ey in
units of fw,, with w, the angular frequency of
harmonic oscillations on the bottom of each well,
and ¢ is measured in units of the corresponding
period 27/w,. This model Hamiltonian charac-
terizes the physics of a wide class of systems,
such as the intramolecular rearragements in
pyramidal molecules [1] and macroscopic quan-
tum coherence phenomena in SQUIDs (2].

In the present work, we attempt to gain insight
into the deep quantum regime of this system.
That is, we focus on the parameter range of low
barriers, such that D is of order unity and, in the
corresponding unperturbed problem, there are
only a few levels below the barrier. In addition,

we do not restrict ourselves to small amplitudes
§ of the driving force. Consequently, we refrain
from the use of semiclassical or perturbative
methods. Our approach is based on the Floquet
formalism and the concept of quasi-energies, as
pioneered for the physics of atoms in intense
laser fields [3-7]. To provide an adequate lan-
guage, we adopt the concepts of the temporal
autocorrelation function (probability to stay) and
the local spectrum, well-known, e.g., in solid
state physics [8] and quantum chaos [9, 10].

Consider the propagator for the operator in
(1) over a single period T = 27/w of the external
periodic force. This unitary operator U is the
generator of a quantum map, i.e. applied itera-
tively to some initial state |y,), it provides a
stroboscopic, discrete-time evolution of the wave
function. In view of the Floquet theorem, the
eigenstates of the unitary operator U take the
form |4, (nT)) = exp(—ine, T)| P, (0)), where n
denotes the number of time steps, and |®, (¢ +
T)) =|®,(¢)). The quantities ¢,, defined modulo
w, are refered to as quasi-energies [6—10]. They
are functions both of the driving amplitude S and
the driving frequency w. The generalized parity
transformation P:x— —x, t—t + T/2, leaves the
Hamiltonian # = H —1id, invariant. Thus, the
Floquet functions, being eigenfunctions of ¥,
can be classified into states of even and odd
parity, respectively.

Given an initial wave packet |¢,) and its time
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evolution under U, the temporal autocorrelation
function is defined by

Pn:l<l'[/n‘dl()>l2‘ (2)
Expanding both |,) and |,) in the Floquet

basis, and using the role of the Floquet states as
eigenfunctions of U, one finds

P = &N+ E exp(in(e, — sB)T)
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where ¢ '=lim, ., N 'EZY_ P, denotes the

long time average of P,. The spectral counter-
part of the autocorrelation function P, is the
two-point correlation function PY(n) of the
local Floquet spectrum [10]. It is related to P, by
Fourier transformation and thus contains all the
frequencies involved in the time evolution of P,,
weighted according to their relative significance
for this dynamics.

In the following, we will consider time evolu-
tions starting from one particular type of initial
state |y, ): a Gaussian centered, say, in the left
well, equivalent to the ground state of the har-
monic approximation of that well. This initial
state is defined independently of the Floquet
basis, and can readily be realized both in
numerics and experiments. Moreover, with this
initial state, the deviation of P, from unity pro-
vides a first clue of the probability flow into the
opposite well. A quantity serving the same pur-
pose, but more specifically tailored to the sym-
metric double-well problem is the occupation
probability in the left well,

0

pi = f dx|y(x, nT)|* . (4)

The concepts introduced in eqs. (3)-(7) can be
used to discuss the varieties of the Floquet spec-
trum, as they show up in the (S, w)-parameter
space, and their consequences for the tunneling
behavior.

The focus of this work is the range of inter-
mediate driving frequencies between A, the

lower characteristic frequency scale of the un-
perturbed system, and w,, its upper characteris-
tic frequency scale. Other regimes of the exter-
nal frequency such as the adiabatic or the ex-
treme high frequency case are discussed in ref.
[11]. For intermediate frequencies the Floquet
spectrum may lose any similarity to the energy
spectrum in the unperturbed case. Features of
particular significance are close encounters of
levels, as functions of the parameters, since they
lead to exceptionally long time scales in the
tunneling dynamics. If two quasi-energies, ap-
proaching each other, belong to different parity
classes, they form an exact crossing, whereas in
the opposite case, a crossing will be avoided.

Here, we restrict ourselves to the case of exact
crossings of quasi-energies, bearing surprising
consequences, as we will discuss now. Consider
the two lowest eigenstates of the unperturbed
case: they form the well-known doublet of a
symmetric and an antisymmetric state which is
responsible for the familiar tunneling phenom-
enon. With the driving force § switched on, they
evolve into two Floquet eigenstates @, @,, re-
spectively, with similar shape and, in particular,
with the same parity as their unperturbed coun-
terparts. These two “lowest” Floquet states,
therefore, allow for exact crossings of their re-
spective quasi-energies, as functions of S and w.
In fact, we find a one-dimensional manifold in
the (S, w)-plane where they cross. The con-
sequences of such crossings are intriguing: the
time scale for a wave packet prepared as a
superposition (@, = @,)/V2 to cross the barrier
diverges, and so it will remain localized in the
initially populated well! In contrast, for the case
of an asymmetric unperturbed potential, general-
ized parity is lost, and consequently no exact
crossings between quasi-energies occur,

The results of a numerical investigation of the
localization phenomenon are presented in fig. 1.
The parameter values chosen here are §=
3.17x107°, @ =0.01, and D =2. Figure 1(a)
shows the time evolution of P, over the first 10
time steps. The fact that P, remains near unity,
within 9%, is a first indication of a coherent
suppression of tunneling. A more reliable mea-
sure of the transfer of probability to the opposite
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Fig. 1. Driven tunneling at an exact crossing of the two
“lowest” quasi-energies (see text): (a) time evolution (quan-
tum map), over the first 10° time steps, T =2w/w, of the
autocorrelation function P, and (b) the occupation probabili-

ty pi" in the initially populated well; resolution of the first

period of P, (c) and p" (d) into 1000 time steps. The
parameter values are w =0.01 and § =3.17 X 10"

well is p!<", plotted in fig. 1(b) over the same
time window. Its deviation from unity does not
even exceed 2.5%. Finally, we also generated a
finely resolved time evolution, over one period
of the driving force, of the two diagnostic quan-
tities mentioned (figs. 1(c, d)). It clearly excludes
the possibility of fast tunneling with the fre-
quency of the driving force, which could have
escaped the stroboscopic description used in all
the other simulations. The beats in fig. 1{c) and
the corresponding oscillation in fig. 1(d) occur at
a frequency which corresponds to the difference
between the quasi-energies e, and &,. This re-
veals that the initial wave packet is not complete-
ly exhausted by the two “lowest” Floquet func-
tions but has also some very minor contributions
from such “‘higher” states.
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At the end, some remarks are in order, con-
cerning the experimental realization of the locali-
zation phenomenon. For ammonia, the ar-
chetype bistable system from molecular physics,
one deals with D =~2. Using the dipole moment
u =1.47Db, we can directly estimate the re-
quired wavelength of the external maser signal,
A =2mm, and intensity P=~10" W/m? to local-
ize the nitrogen atom. In solid state physics,
dealing with RF-SQUIDs, one can generate a
symmetric bistable potential by applying an ex-
ternal flux ¢, = ¢y/2, with ¢, = h/2e. For this
system, characterized by a capacitance of C=
10" F, a self-inductance of L =10""° H, and a
critical current of I, =10 ° A, the plasma fre-
quency equals o, =10""Hz. To suppress flux
tunneling (see fig. 1) in this device one has to
inject an external AC-current of frequency w =
10" Hz with an amplitude of I=10""" A. Like-
wise coherent flux tunneling is suppressed if one
applies a time-varying external flux ¢, = ¢,/
2+ 3¢, sin wt, where 3¢, =107 Wb.

The results reported in this paper show that
external driving of a bistable quantum system
gives rise to unexpected modifications of the
notion of tunneling. Periodic driving may slow
down tunneling by any desired degree or even
suppress it altogether, in a perfectly coherent
way. This surprising effect enables to localize an
otherwise bistable quantum system in one of its
metastable states. Since it occurs along a one-
dimensional manifold in the parameter space
spanned by frequency and amplitude of the driv-
ing force, it should be readily observable ex-
perimentally.
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