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Abstract. - A periodically driven two-state dynamics, being analysed within the Floquet
formalism, exhibits localization of the amplitude dynamics in an infinite frequency range,
extending from the bare tunnel splitting up to infinity. In contrast, the suppression of tunnelling
in a driven symmetric double well is restricted to a limited frequency regime, extending from the
bare tunnel splitting up to the first resonance frequency with higher-lying states. With the
amplitude dynamics of a periodically driven two-level system not being restricted to describe
coherent tunnelling transport only, the localization phenomenon within the infinite frequency
range does allow for novel applications for systems in strong laser fields.

The intriguing phenomenon of suppression of coherent tunnelling in a symmetric bistable
potential induced by an external periodic force has recently been discovered in a study of
time-periodic Schrodinger equations by GroSmann et al. [ 11 (possible experimental
realizations are discussed inrlb]): for a restricted regime of parameter values of external
frequency o and forcing strength S the time-periodic quantum mechanics given by the
Hamilton operator (in dimensionless variables)

H(x, t )  = Ho (x) + HI (x) cos (Ut) (1)
with

1 1
2 4 640= - --a; - -22 + 1 x 4

and perturbation

exhibits novel coherent tunnelling phenomena. In particular, the time evolution of an initial
wave packet prepared in one of the wells essentially remains localized for all f i t u re  times t.
The parameter D = EB/Aoo denotes a dimensionless measure of the barrier height.

The physical mechanism underlying this novel localization phenomenon is presently not
well understood. If one neglects the spatial structure of coherent tunnelling it may be
feasible to ask if such a localization which is solely based on a two-level dynamics still occurs.
On naive grounds the perturbed two-level system is expected to possess finite-energy
splittings only, which would forbid localization features. The main objective of this study is

HI (x) = xs (3)
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' H ,  - 201 (1/2)H, 0 0 0
(1/2)Hl Ho - lwl (1/2)H1 0 0

0 (1/2)Hl HO (1/2) Hl 0
0 0 (1/2)H, Ho + 101 (1/2)HI
0 0 0 (1/2)H, Ho + 201

L

* (4)

(l) The set {dS, a)} can be arranged into two classes {eI(S,a)  + ko}, {c2(S,w) + ko} with
k = 0, 2 1, 2 2, ..., obeying + c2 = El + E2.



                                                                573

parity x + - 2, t 4 t + R / W ,  the system does-if at  all-exhibit isolated exact crossings
only.

The exact crossing of the f irst  two tunnelling-related quasi-energies yields a
necessary-but not suficient-criterion for suppression of coherent tunnelling: a crossing of
these tunnelling-related frst two quasi-energies e l ,  e2 does not imply a time-independent
behaviour for a wave packet made up of the two unperturbed eigenfunctions YL (2, t = 0) =
= (l/G)[(x I q l )  - (x 1 q2)1 (L: left well). This is so because of the Floquet theorem in (5),  i.e. the
presence of the explicit periodic time dependence of the Floquet functions (x, t). Thus, to
check whether a suppression of driven coherent tunnelling actually occurs at all times the
result of stroboscopic suppression monitored at multiples of the external period, i.e. t, =
= n(27c/o), is not sufficient to claim suppression at all times t. It is thus necessary to check
suppression also between multiple periods.

Next let us compare the one-dimensional manifold describing the exact crossings of the
first two quasi-energies of the full tunnelling problem in (1) gainst the one-dimensional
manifold generated by the driven two-level modelling in (4) (see fig. 1). With E2 - El 3 A
being the unperturbed tunnel splitting we note that both the exact manifold Ad.+.. (double
well) and the manifold dt,[. (two level) of the two-level dynamics start at S = 0 and external
driving frequency w = 4/2. Most importantly, we note that the symmetric double well yields
exact crossing only within a limited-frequency regime A / 2  S o S w ,  + A ,  where
w, E3 - E2 denotes the first fundamental resonance angular frequency between the 3rd
eigenvalue and the 2nd eigenvalue of H,,. In contrast, the periodically driven two-level
dynamics yields exact crossings for all frequencies A / 2  S w < ! As can be understood readily
any two-level modelling thus falls short in describing the influence generated by higher
quasi-energies eg , e4,  . . . of the full problem.

Given the two amplitudes
a1,2 6) = b l , 2  I YL (t))  9 (7)

the dynamics of {al( t ) ,%(t)}  is within the two-level approximation determined by

4

where b = S q 2  = S(ql I x I q2) denotes the dipole matrix element. Starting with an initial

1

Fig. 1. - Double-logarithmic plot depicting the onedimensional manifolds along which the fist two
quasi-energies cross for the fist time: &a.w. (double well) and (two level). The dashed line has
been evaluated from the fist zero of the Bessel function Jo(2b/o) ,  see (17). The D-parameter used is
D = 2, i.e. A = 1.896 6 lom4.
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localization we readily observe that (8), (9) cannot preserve mathematically such an exact
localization for all future times. The suppression of tunnelling has been monitored in [l] by

the probability to stay, i .e. P(t) 1 idx fl (x, t )  YL (x,O) I , where I YL (0)) is the wave

packet initially centred in the left well (see above). For the two-level dynamics this
becomes

(10)
where with al (0) = - (0) = l/@, P(t = 0) = 1. The dynamics of the probability to stay
over the first period of the driving force is depicted for the full double-well problem and the
two-state approximation in fig. 2. There, we have chosen parameter values (S,w) from the
one-dimensional manifolds Ad.w. and AL1., respectively. It can be seen that in the vicinity of
o 2 A/2 (see fig. 2 4 )  the behaviour resembles the one known from the undriven case, i.e. we
find a behaviour of the form

2

- - m

P(t) = (a?(t)a,(O) + a2*(t>az(O)l2 ,

1.0

P(t)- cos2 ( f t )  . (11)

Thus the probability to stay is zero for times t, = nT/4, n = 1,3,5 . . . . With increasing values
of frequency and force on the one-dimensional manifold A5 the oscillation behaviour within
the driving period T flattens out; i .e. its amplitude decreases, see fig. 2b)-d). At o = A ,  the
behaviour of the Floquet functions yields for P(t) the approximation[7]

Put differently, at o = A coherent tunnelling is not yet effectively suppressed, yielding P(t =
= nT/4) = 1/2, n = 1,3,5, ... . This behaviour is approximatively confirmed by our numerics

1.0
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Fig. 2. - The probability to stay P(t) over the first period of the external force for: a) w = 0.534, S =
= 1.03.10-6; b) w = A, S = 5.23.10-5; c) w = 2.646, S = 1.56.10-4; d )  w = 52.86, S = 3.17.10-'. Solid
line: double-well potential (D = 2, A = 1.895. dashed line: two-level system.
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depicted in fig. 2b). Note that in contrast to the undriven case, i.e. P(t) = cos2 ((A/2) t), the
amplitude of P(t) is already suppressed, however, by ca. 60%.

At values A << o << w, of the driving frequency and with S on Ad.w. we find numerically
that the Floquet functions are closely given by

(x, t )  = Qz (2) I sin (ut> I - iQl(2) cos (4 9 (13)
@& (x, t )  = (01 ($1 I sin (ut) I - iQ2 (2) cos (ut) . (14)

The wave packet initially centred in the left well thus yields by virtue of (13) and (14) for the
probability to stay

P(t )= I { %(x, t )  YL (x, 0) dx = cos2 (at) + sin2 (wt) = 1 ,  
- - m  l 2  (15)

indicating a localization of the particle (cf. fig, 24) .  For the frequency w = w, the Floquet
functions contributing to the dynamics of a wave packet centred in the left well will also have
dominant admixtures from the higher-lying Floquet states: even for very small values of the
forcing strength S one finds numerically that at least three Floquet functions will contribute
significantly to the dynamics of Y~(x,t) [l]. This implies that the suppression predicted by
the two-state approximation no longer takes place for the physical tunnelling system in
(1)-(3).

Most importantly, we thus observe that the periodically driven two-level dynamics
proceeds to describe essentially complete suppression of coherent tunnelling on &t.l, for all
frequencies w b o,-extending up to infinity-while the exact dynamics of coherent driven
tunnelling in (1)-(3) no longer exhibits <<coherent destruction. (because of a mixing with
higher-lying quasi-energy states).

The one-dimensional manifold At.l. can be determined approximatively from (4) following
the reasoning by Shirley. By use of the approximation derived in eq. (27) in[2], and
observing that the quasi-energies can be defined only modulo w, the crossing of c1 and e2 is
approximatively determined by the first zero of the Bessel function Jo (2b/w) = 0 (2). With the
first zero located at y1 = 2.40482 ... we thus find for the manifold At.1, the
approximation

o, o > 0; i.e.2.404 82.. . S =
2 b l  I x I v2)

S = 0.3172w, for D = 2 .  (17)
This result is depicted in fig. 1 with the dashed line. The approximation in (16) fits very well
the linear regime of the one-dimensional manifolds and at.,., respectively. The
approximation fails, however, for low frequencies, o 4 24. This approximation in (16) can also
be derived directly from an approximate treatment of the amplitude dynamics (8), (9) [8,9].
Of interest is also the behaviour as b (or S )  becomes very large: from (€9, (9) one readily finds
that lim P(t) = 1, for all fixed o-values, i.e. the driven two-level amplitude dynamics always
exhibits a localization(3) for very large driving strength (this result is consistent with:

In conclusion, the periodically driven two-level system in (8), (9) does predict almost
complete localization of the amplitude dynamics on an infinite frequency range in the linear

b - r  (0

e l ( m , 0 ) = ~ 2 ( m , ~ ) = E l  + (1/2)A).

(9 Higher-order roots of the Bessel function .To ( g )  correspond to additional crossings between el and

(3) Also note the role of initial preparation: a preparation in the ground state, i .e.  ~ ~ ( 0 )  = l ( ~ ( 0 )=
e2 at fixed w and higher S-values. These additional crossings are not considered herein.

= 0) yields instead 2im P(t)  = cos2 ((blw) sinwt), being rapidly oscillating.-*m
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regime of the exact manifold u ~ t . l . .  In clear contrast, coherent destruction of tunnelling is
limited to a restricted frequency interval within the linear regime on cgd.w. This latter
frequency range is very accurately modelled by the two-level dynamics, cf. fig. 1. The
different behaviour can be elucidated as follows: at o > ores the corresponding forcing
strength S increases according to (16) proportional to the driving frequency w. The large
amplitude S makes it increasingly more difficult to localize an initial wave packet in a
symmetric double well, due to the ever-present, with increasing S enhanced mixing with
higher-lying quasi-energy states. Likewise, for small barrier heights ( i .e.  decreasing
D-values, or increasing bare tunnel splittings A )  the amplitude needed to suppress tunnelling
necessarily increases. This fact, therefore, implies that the good agreement depicted in fig. 1
between the driven two-level approximation and the exact dynamics in (1)-(3) worsens also
with decreasing barrier height.

The result of an essentially complete localization for the periodically driven two-level
dynamics (see fig. 2) for frequencies o 3 A on u ~ t ,  carries further interesting consequences.
The complex-valued amplitude dynamics near suppression in (8, (9) could be utilized to the
effect of freezing the polarization modes of two coupled modes, propagating in an optical ring
resonator, see ref. [3g]. Generally, the exact crossing of two quasi-energies modifies any
interference behaviour of transition probabilities of two-level atoms in strong laser fields.
For example, within the approximation in (16) the first zero of the Bessel function leads to
drastic changes (i.e. infinite widths, see fig. 14 in[10]) for the absorption spectrum of the
Hanle effect in a transverse, oscillating magnetic field.
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