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Abstract. - We study the quantum decay out of the metastable state of a Josephson junction, via
tunnelling, in the presence of an external sinusoidal force. We show that the Floquet picture, to-
gether with the complex scaling method, provides an adequate nonperturbative method to de-
scribe this process. The enhancement of the decay rate near the fundamental resonance assumes
a Lorentzian line shape in agreement with recent experiments in the deep quantum regime.
Moreover, our results exhibit novel features such as secondary resonances: at higher frequen-
cies, corresponding roughly to a second harmonic induced by the nonlinear potential shape, and
at a lower frequency, exactly at half the frequency of the first resonance, revealing a two-photon
transition.

In this work we focus on the problem of the quantum decay out of a metastable state in the
presence of external periodic driving. In recent years the decay theory of unstable states[1]
has been extended to quantum systems interacting with an environment which includes dissi-
pation [2,3]. Our study has been motivated by recent experiments on r.f.-stimulated biased
Josephson junctions both in the classical and the quantum regime [4]. In contrast to the clas-
sical regime where the effect is generally known as resonance activation [5], there exist no
previous theoretical studies which address the deep quantum regime at zero temperature in a
nonperturbative manner.

Here we present a full account of the decay rate enhancement of the ground state induced
by an external sinusoidal force. In doing so, we shall cover the whole frequency regime ex-
tending from zero frequency to very high frequencies. The two limiting cases can both be
solved analytically whereas the intermediate regime, except at resonances between the ex-
ternal frequency and internal level spacings, can be treated on a numerical basis only.

To obtain a detailed description of the decay process in the presence of an external
periodic force, we refrain from the use of time-dependent perturbative or semi-classical
methods alone. In these approaches [6], the periodicity of the Hamiltonian is not fully exploit-
ed. Moreover at strong forcing the perturbative approach no longer suffices. The concept
which seems most appropriate for a rigorous treatment is the Floquet picture of quantum
mechanies [7]. The starting point of our investigations is the driven Hamiltonian of a particle
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in a cubic metastable landscape
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Here we use dimensionless units. Time is measured in units of 1/, with w, denoting the an-
gular frequency of small oscillations at the bottom of the well. The external frequency w and
energies are thus measured in units of w, and #w,. The dimensionless barrier height D is re-

lated to the exit point of the potential by x, = \/(27/2) D, see fig. 1 (the coordinate is meas-
ured in units of \/#/mwy, with m being the mass of the particle). Furthermore the force

strength is measured in units of \/Amwj. The model in (1) is also used to approximately de-
scribe the decay of the phase in a current-biased Josephson junction. We will henceforth deal
with systems containing only one or two unperturbed resonance states under the barrier,
which corresponds to the standard experimental set-up {4]. Moreover we note that this situa-
tion clearly cannot be solved accurately within a semi-classical approximation.
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Fig. 1. - Unperturbed (S = 0) metastable potential V;(x) of the Hamiltonian in eq. (1) with D = 2, sup-
porting two quasi-stationary states under the barrier. The horizontal lines indicate the positions of the
real parts of the resonance energies Ky, E;, E,.

Given (1), solutions of the time-dependent Schrédinger equation can be cast in the
form

¥, (2, 0) = @, (x,t) expl[ — iet], @
P, (@,1) = @, (x,t +T), 3

i.e. the Floquet function @, (x,t) is periodic with period 7 = 2r /w of the external force and
the quasi-energies ¢ determine the long-time behaviour of the wave function.

Generally the decay of unstable states can be associated with complex-valued poles of the
S-matrix. These correspond to simple poles on the unphysical sheet of the complex-
valued energy Riemann surface and constitute the well-known resonance states. By use of
the complex-scaling approach [8], i.e. if one rotates the coordinate x — x exp [i$], one uncov-
ers the resonance poles in the complex plane and ends up with square integrable eigenfunc-
tions [9]. Here we apply this concept generalized to the quasi-energy formalism [7c, 10]. The
decay rate I"in the periodically driven case is thus given by the imaginary part of the Floquet
resonances (complex-valued quasi-energies) as

I,=—-2Ime )
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and is measured in units of w,. Treating the zero-temperature limit only, we restrict our-
selves to the rate enhancement y of the lowest unperturbed state, i.e.

wWw,S) = ﬁ(i’rslj ®)
0
Here ¢ denotes the lowest (n=0) class of quasi-energies, i.e &= & + khw;
k=0,+1,+2, ..., which smoothly passes into the lowest resonance E,, with imaginary part
Iy=—-2ImE,, as the amplitude of the external force approaches zero.

Before focusing on the most interesting regime of resonant driving, w = 1, we deal with
the two limiting cases of adiabatic (w << I') and fast (w >> 1) driving. Following the reasoning
put forward recently for an adiabatically driven symmetric double-well configuration [11], we
obtain, by averaging over the slowly varying phase, for the adiabatic rate enhancement
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In fig. 2a) we compare the semi-classical approximation (6) (dashed line) with the numerical
exact results (circles). The excellent agreement for the absolute rate is due to the fact that in
(6) we used the numerical value for I'y, and not its semi-classical estimate (which exceeds the
numerical result by 36% for D = 1[9]). The line shape of the enhancement is thus well de-
scribed by its renormalized semi-classical estimate.

In the other limit of very high frequencies, the decay rate can be obtained again within a
semi-classical approximation after a corresponding rotating-wave approximation [11]. In this
way one finds the result
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In fig. 2b) we depict the rate enhancement defined in eq. (5). The semi-classical result
(dashed line) is compared with the precise numerical values (solid line). Note that, for
w — o, the high-frequency limit approaches the unperturbed (zero force) value proportional
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Fig. 2. - a) Adiabatic (dimensionless) decay rate I, of the driven metastable potential for the parame-
ters D = 1, w = 1078 vs. the external field strength S. Dashed line: semi-classical result from eq. (6),
circles: numerical result. ) Double-logarithmic plot of the high-frequency resonance enhancement y,
eq. (5), as a function of frequency for the parameters D = 1, § = 2-107!. Dashed line: semi-classical re-
sult from eq. (7), full line: numerical result.



4

to w™*. Clearly, as w — =, the system is no longer capable to respond to the external pertur-
bation. The constant shift between the two curves in fig. 2b) is due to the fact that the pre-
factor of S*/w* in eq. (7) originates from an instanton formula for the decay rate that always
overestimates the exact value [9].
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Fig. 3. - Resonance enhancement y, eq. (5), as a function of frequency for the driven decay with the pa-
rameters D = 2, S = 1072, The inset depicts the behaviour of the real parts (crosses) and imaginary
parts, I, = — 2 Ime, (circles) of the quasi-energies &y, & — w, in the vicinity of the first resonance fre-
quency and the Bloch-Siegert shift 8w.

Let us now consider the regime of frequencies near the resonance w = w; = Re (¥, — Ey) =
= 0.9057 (see fig. 1). For the numerical investigations we used a barrier height of D = 2 and
an external dimensionless force S = 1072, For these parameters, a perturbative treatment is
insufficient. The numerical values for the enhancement » of the decay rate are depicted in fig.
3 vs. the external driving frequency. At the resonance frequency w = w; we find a dramatic
enhancement of y = 245 because of the one-photon stimulated decay (see also (})). The line
shape of the enhancement curve is almost perfectly symmetric around the resonance fre-
quency. This driven-tunnelling—induced Lorentzian-like rate enhancement is clearly distin-
guished from the very asymmetric energy-diffusion-induced enhancement found in classical
resonance activation [5]. This symmetric shape is due to the frequency behaviour of the real
and imaginary parts of the corresponding complex-valued quasi-energies (see inset in fig. 3).
At resonance, the corresponding real parts Regy, Ree, —w of the quasi-energies exhibit an
avoided crossing, while the imaginary parts do cross each other; both processes occur sym-

(1) For an estimate of the rate enhancement in the vicinity of the resonance at & = w,, we treated
the driven two-level system with time-decaying expansion coefficients. Using the semi-classical esti-
mates for the decay rates out of two lowest states (see [9]) and employing the rotating-wave approxima-
tion, we arrive at the value y(w;) = 322, which is 31% higher than the exact one. Treating the two-level
system numerically within Shirley’s formalism [7a], and inserting the exact values for the decay rates,
the deviation from the numerical value, i.e. y(ew;) = 245 of the full problem, is reduced to 5%.
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metrically around o = w;. We emphasize that the particle decays out of the Floguet state
with quasi-energy &,. Far away from the resonance, this state has the same shape as the low-
est unperturbed wave function, which is approximately a Gaussian wave packet centred
around the minimum of the well. In the vicinity of the avoided crossing, however, the Flo-
quet state has admixtures from the first-excited resonance wave function. We mention that
increasing the external force S further will only slightly alter the height of the main reso-
nance peak but predominantly will broaden its width (see also [12] for a qualitative two-level
treatment of this problem).

In addition to the main one-photon stimulated decay at w = w, one observes several addi-
tional features:

i) We find a second-harmonic-like transition near w = w; = Re (&, — E) = 1.6459
(see fig. 3). This second transition is forbidden within the harmonic approximation, but the
anharmonicity of the cubic potential gives rise to a nonvanishing dipole matrix element
(2|x|0) which determines the strength of this higher-order transition.

ii) We also found a small enhancement at the frequency w;;; = w;/2 = 0.453 (see
fig. 8). This subharmonic transition can be viewed as a two-photon stimulated decay
process.

iti) Finally we note that the main resonance undergoes a shift of the resonance fre-
quency proportional to the square of the applied external amplitude frequency. This feature
is analogous to Bloch-Siegert shift [13] in magnetic resonance, described by a sinusoidally
driven two-level quantum dynamics. The shift is depicted in the inset in fig. 3 and amounts to
3w = 2:10~* for the parameters we chose.

At present, there exist no experimental data which allow for a detailed quantitative com-
parison with our results. The only existing data were obtained at low but finite temperatures
T > 0, and, in addition, the strength of the amplitude (respectively, the power) of the exter-
nal force has not been measured independently. Nevertheless, the data in ref. (4] (see fig. 18
and 20 in [4a]) typically exhibit the change of shape of the enhancement curve from a very
asymmetric shape, with more weight located below the resonance frequency w; than above,
in the classical diffusive regime, towards the tunnelling-induced symmetric shape at temper-
atures T < 30 mK, below the crossover temperature. Additionally, the existing data are tak-
en at a force strength (the rate enhancement is always smaller than e = 2.718...) that is much
too low to quantitatively read off a Bloch-Siegert shift. Moreover, the regimes of @ = w; and
@ = w; /2 have presently not been covered in the extreme quantal limit by the existing ex-
perimental data. We thus hope that our predictions will motivate and guide future experi-
mental efforts.

In conclusion, we have addressed the rate enhancement induced by an external periodic
force in the deep quantum regime and for values of the external force that are too high for
perturbative approaches to be valid. By use of the quasi-energy method, one finds a dramatic
enhancement around the main first resonance with a characteristic symmetric line shape. In
addition, we predict the existence of a resonance shift with increasing amplitude and charac-
teristic additional enhancements in the driven decay rate around the first superharmonic
® = wy and at the first subharmonic w = w, /2. Away from these characteristic regimes the
decay rate is still enhanced and can be described analytically by egs. (6), (7) in the asymptotic
regimes of low and high frequencies.
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