
                                                       

Can Colored Noise Improve Stochastic Resonance?

Peter H~inggi, 1 Peter Jung, 1 Christine Zerhe,1 and Frank Moss  2

The phenomenon of stochastic resonance is studied in the presence of colored
noise. Several sources of colored noise are introduced and the consequences for
the asymptotic time-periodic probability and the (phase-averaged) power spec-
trum are discussed. Based on space-time symmetry considerations, selection
rules for the occurrence of g-spikes in the power spectrum are derived. The effect
of colored noise on the amplification of small periodic signals is studied in terms
of effective, time-periodic Fokker-Planck equations: In overdamped systems
driven by colored noise, we find that SR is suppressed with increasing noise
color. In contrast, for colored noise induced by inertia (as well as for asym-
metric dichotomic noise), one obtains an enhancement of SR. This latter result
is obtained by studying the Kramers equation perturbed by a small periodic
force.

                                                                        
                                                        

1. I N T R O D U C T I O N  A N D  C O N C L U S I O N S

The study of t ime-dependent  stochastic systems recently underwent  a
renaissance in the context of phenomena  like "stochastic resonance" (SR)
(see refs. 1 and  2 for recent reviews) and "resonance activation. ''~3t SR is a
cooperative effect of noise and  periodic forcing in a bistable system. It is
characterized by a noise- induced large response to a weak periodic signal.
Thus, the SR effect can be used to amplify a weak (trial) signal by sub-
jecting it to noise of external or internal  character. Roughly speaking, the
signal-to-noise ratio exhibits as a funct ion of noise intensi ty a bell-shaped
curve, i.e., increasing noise c a n - - i n  a counter intui t ive  m a n n e r - - e n h a n c e  the
signal amplification. In  order for SR to occur in modera te- to-overdamped
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systems it is essential that the unperturbed system possesses a frequency scale
(lowest eigenvalue 21) which is decreasing exponentially with decreasing
noise intensity. This in turn implies that the system is required to exhibit
some sort of metastability which is usually introduced by a multi- or
bistable potential field. Likewise, such a bistability can also be induced
differently either by a nonlinear friction mechanism which implies two
basins of attraction, such as, e.g., two-stable limit cycles 3 (see also ref. 4),
or can be induced dynamically via the well-known effect of "resonance
hysteresis "(5~ in periodically driven nonlinear oscillatory systems. SR might
not necessarily occur with noise-induced bistability, due to the possible
absence of a softening of the first nonvanishing eigenvalue.

The application of the periodic force of period Te alternately raises
and lowers each potential well with respect to the barrier separating the
metastable states. Now with the forward and backward hopping times
denoted by T + and T- ,  the system optimally follows the external modula-
tion when Te "~ T + + T - .  With T + and T-  related to the lowest frequency
scale J~min in the unperturbed system, i.e., }~min = I / T + +  l / T - ,  the condi-
tion for SR thus reads for symmetric escape times T + = T-

7E
12 "~ 2 )"min (1 .1)

Here, 12 = 2rC/Te denotes the (angular) frequency of the coherent external
small signal.

In this work our focus will be on the role of realistic noise for SR. In
many situations the time scale of random perturbations is very much shor-
ter than that of the characteristic time scale of the system. It is then a good
working assumption to use uncorrelated (i.e., a-correlated) random forces.
This assumption considerably simplifies the problem, because it allows one
to treat the dynamics within the notion of Markov processes. In the physi-
cal world, however, this idealization is never exactly realized. In order to
understand the importance of corrections to white noise, and more
generally, in order to investigate the role of noise correlations of arbitrary
strength, it is thus necessary to study also nonwhite noise, i.e., "noisecolor"
of small to moderate-to-large correlation strength. Strong noise color is not
unrealistic for many physical applications. Usually a strongly correlated
noise emerges as the result of a coarse graining over a hidden set of slow
variables, or it simply is applied by the experimenter externally. Histori-
cally, colored noise of arbitrary long correlation times was introduced by

3A nonconservative flow processing two stable limit cycles (and one intermediate unstable
limit cycle) is given by 2 + a sin(2) + x = 0.
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Kubo in his cornerstone papers on the theory of the transition of
Gaussian-like line shapes toward Lorentzian-like ones in nuclear magnetic
resonance (6) ("motional narrowing"), or for paramagnetic resonance (7)
("exchange narrowing").

In practice, one wishes to monitor only a few, and preferably just one
physical variable. With the objective to obtain a tractable description, the
theorist, too, prefers a low, preferably a one-dimensional description. There
is a price to be paid, however, for such a simplification. This is so because
a low-dimensional flow implies a loss of the Markov property of the
original higher-dimensional system. In recent years, a lot of sweat has been
invested by a large number of theoretical practitioners in developing such
efficient (non-Markovian) colored noise approaches (note the various
review articles--and references therein--in ref. 8). Our principal objective
is to use and to expand upon this colored noise work for the study of
nonstationary processes such as the phenomenon of SR.

The paper is organized as follows: The next section introduces several
classes of Gaussian colored noise sources characterized by several time
scales. In particular, we consider oscillatorlike noise, which assumes
correlation forms other than the commonly used simple exponential decay
typical for Gaussian Ornstein-Uhlenbeck noise. In Section 3 we elaborate
on general properties, such as the selection rules for g-function peaks in the
power spectra of periodically driven stochastic processes. In Section 4 we
lay the groundwork for colored noise and SR by setting up the relevant
approximation schemes. Section 5 is devoted to the study of noise color for
SR in overdamped systems at small and moderate-to-large noise correla-
tion times. The last section treats SR for the bistable Kramers equation.

The main conclusions are here summarized:

(i) The phase-averaged power spectrum of periodically driven
stochastic systems subjected to colored noise sources exhibits 6-peaks at
multiples of the external driving frequency. With a symmetric bistable flow,
Gaussian stationary colored noise sources composed of one to many time
scales yield selection rules for the weights of corresponding 6-peaks. For
example, for additive noise and additive driving only 6-peaks at odd-
numbered multiples of the driving frequency occur.

(ii) The asymptotic long-time probability pt(x; ~o) for SR in the
presence of colored noise is time-periodic.

(iii) The effect of noise color for SR can be dealt with by an effective
time-periodic Fokker-Planck operator, both in the limit r--, 0 (small-z SR
approximation) and also for v~> 1 (unified colored-noise SR approxi-
mation).
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(iv) SR in overdamped systems driven by additive exponentially
correlated colored Gaussian noise ~(t) is always reduced as compared to
the case with white noise (~ = 0) of the same strength D. The amplification
t/(f2, A) is well approximatea by use of linear response theory. The peak for
SR is shifted to larger noise intensities due to the fact that colored noise
suppresses (exponentially) the hopping rate with increasing noise color.

(v) The result of SR for the driven Kramers equation predicts an
enhancement of SR within the regime of moderate to large friction 7 for
increasing noise color as measured by the time scale y 1.

(vi) With overdamped SR being characterized mainly by the
behavior of the hopping rate, we conclude that SR (within the linear
response approximation) is reduced also for symmetric (additive as well as
multiplicative) non-Gaussian, dichotomic noise ~oM(t). (36 38) This is so
because symmetric dichotomic noise always leads to an exponential
decrease for the rate with increasing noise color. (36)

(vii) For asymmetric dichotomic noise, however, an increase of the
noise color generally does not yield a lower rate./39) In this case, therefore,
SR can be enhanced or suppressed, depending on the specific structure of
the asymmetric dichotomic noise. (39)

2. CLASSIFICATION OF COLORED NOISE SOURCES

We next discuss various classes of Gaussian c010red noise sources.

2.1. Exponentially Correlated Gaussian Noise
(Ornstein-Uhlenbeck Noise)

The archetypal source for colored noise consists of an exponentially
correlated process given by a Gauss-Markov process ~(t),

= _ 1  +  w(t)  (2.1)

where ~w(t) denotes Gaussian white noise of vanishing mean and with
correlation ( ~ ( t ) ~ w ( s ) ) = 2 6 ( t - s ) .  It then follows from (2.1) that the
stationary correlation of ~(t) is given by

( ~(t) ~(s) ) = (D/z)  exp(I t - sl/~) - S( t  -- s) (2.2)



                                               

Its spectrum thus assumes a Lorentzian form, i.e.,

S(0)) = S(t) exp(i0)t) dt = S ( -0 ) )  = - -

such that S(0) = 0) = 2D.

2D
1 -}- "/720) 2
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(2.3)

2.2. Har mon i c  Noise

For colored noise possessing structural features, such as, e.g., resonan-
celike spectral shapes, a noisy damped oscillator presents an ideal
archetype. It is represented by a two-dimensional Gauss-Markov process
of the form (9' lo)

= v (2.4a)

~" = ~ = - 7v - 0 ) ~  + ~ ~w(t) (2.4b)

The stationary correlation is then given by (y2< 40)02):

S(I) = yoo2 oD~ exp ( - ~  y jtl )Icos(col t) + Z--sin(0)l t)  (2.5)

with 0)2 = co02 _ 72/4. This yields for the spectrum

2D
S(( .o)  = 0)2])2 -1- (0)2 _ 0)2)2  (2.6)

This very harmonic noise has recently been studied in the context of
colored-noise-driven bistability by Schimansky-Geier and Zfilicke. (1~

2.3. Mu l t i sca l e  Co lored  Noise

The harmonic noise in Section 2.2 can be generalized to include
memory damping composed of many time scales. Following the generalized
Langevin treatment in refs. 11-13, we set

= v (2.7a)

~.'= 1) = - 0 ) ~ -  O( t - s )~ ( s )ds+t l ( t  ) (2.7b)

with r/(t) a non-Markovian stationary Gaussian noise of zero mean and
correlation

< r/(t) r/(s) > = D~)(t - s) (2.7c)
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The colored noise ~(t) can be recast as an
Gauss-Markov process by writing (13~

~ l l  = - -  C l U  - -  ~1~]1 "q- ~2 -~" ~ (wl)(/)

02  ~-- - - C z ~ I  - -  ~2/~2 -}- ~3  -]- ~w(2)(t)

//, = _ G~/~_ _ 7~t/~ + 0 + ~(~3w (t)

where

(n + 2)-dimensional

(2.8)

and

Vi >~ 0, ci > 0, i = 1,..., n; Yn > 0

( ~ w ( t ) ~ w  (s))=2cS~D7, cm • ( t - s )  (2.9)
1

The Laplace transform ~b(z) of the memory damping assumes the
continued-fraction expansion

c l  c2 . . .  c,, (2.10)
~ ( Z )  = Z -.~ ~)1 ,- ~- Z -~- ~)2 .- ~- Z - ' ~ )  n

Clearly, this form allows both rot ~scillatory decaying and multi-exponen-
tially-decaying memory damping functions ~b(t). In the following section we
shall investigate some general properties of these various colored noise
sources for stochastic resonance in a symmetric bistable potential.

3. SELECTION RULES FOR STOCHASTIC RESONANCE

In the context of stochastic resonance we consider a symmetric
double-well system driven by a deterministic periodic modulation and noise
~(t). Using the bistable nonequilibrium Ginzburg-Landau flow dynamics,
we set

2 = a x  - b x  3 + g ( x ) d  sin(t'2t + p) + ~(t) (3.1)

where ~(t) is either white Gaussian noise or one of the colored Gaussian
noise sources introduced in the previous section. With r white noise the
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process x(t) in (3.1) constitutes a nonstationary Markov process with a
time-periodic Fokker-Planck operator. For colored noise ~(t) of Gaussian
character the previous three noise sources all can be represented as
Gauss-Markov processes of rank 1, 2, and n + 2, respectively. Following
the general theory in ref. 14, it then follows that the composed process
made up by the Gauss-Markov process and the state variable x(t) con-
stitutes a nonlinear nonstationary Markov process of rank 2, 3, and
n + 3, respectively, with a (multidimensional) time-periodic Fokker-Planck
operator. Integrating over the components of the Gauss-Markov noise
process then yields at large times a periodic asymptotic probability solution
for the periodically driven (non-Markovian) process x(t), i.e.,

P~s(X, t; ~p) = P~(x, t + 2~/s ~p) (3.2)

Likewise, the periodicity of the multidimensional Fokker-Planck operator
implies periodic, phase-averaged asymptotic correlations. In particular, the
non-Markovian asymptotic correlation becomes, with t - t ' -  = ~, t > t' (see
refs. 15, 16), after phase averaging,

S,s (~) -  lira (x ( t )x ( t ' ) )~=2 ~ Im,,12cos(ns (3.3)
t > t ' - -*  o o  , v ~ o o  n = l

with the set {M,,} determined from the asymptotic, periodic mean value,
i.e.,

(x( t ) ;q~as  = ~ m,  exp[in(f2t+~o)], m o = 0  (3.4)
n ~  o o

After neglect of transients (i.e., ~ ~ oo), the phase-averaged correlation
is not strongly mixing; ~ls'x6) the weights ]M,I 2 give rise to fi-spikes at
multiples of the driving frequency s i.e.,

Sas(CO) = 27r ~ IM, j2 6(09- ns (3.5)
? l =  - -  or

With ~(t) being white noise and the bistable flow h ( x ) = a x - b x  3=
- h ( - x )  being antisymmetric, we previously found the following selection
rules(15, 16).

1. g(x) = g ( -  x) symmetric ~ r M2, 12 = 0
i.e., only 6-spikes at odd multiples of the driving frequency
occur (3.6)

2. g ( x ) =  - g ( - x )  asymmet r ie~  [M,] = 0  for all n
i.e., no 6-spikes at all occur (3.7)
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These selection rules for SR can now be generalized for colored noise
by observing the generalized parity symmetry obeyed by the corresponding
multidimensional Fokker-Planck operator.

First, let us discuss the case where g(x )=  - g ( - x )  is antisymmetric.
The corresponding multidimensional Fokker-Planck operator then implies
the parity symmetry ~:

Ornstein-Uhlenbeck noise:

Harmonic noise:

X ' ~  - - X
(3.8)~---, __~

X - - +  - - X

4-,  - 4  (3.9)

Memory damping:

.X7 -.-+ - - X

(3.1o)
/) ---. - - / )

qi ~ -- t/i, i = 1,..., n

These generalized parity symmetries thus imply that Pa~(x, t;q)) is
symmetric in x at all times t. Therefore, <x(t); ~0>as=0, which again
implies no 6-spikes at all for the asymptotic long-time spectrum, i.e.,

g (x )=  - g ( - x )  asymmetric=~ ]Mn] = 0  for all n (3.11)

With a symmetric modulation shape function g ( x ) = g ( - x ) ,  e.g., g(x)-= 1,
the multidimensional periodic Fokker-Planck operator still obeys a
generalized parity, but now it also involves the time variable. With the
period of the external driving given by Te = 2~/g2 the new generalized
parity ~ reads for the state variables the same as before, but the time
variable is transformed according to

! T (3.12a)t - ~ t + 2  e

Expanding the periodic multidimensional, asymptotic probability
pas(X, ~, v,..., rli,..., t; q~) into a Fourier series and integrating over the state
variables of the noise, one ends up with a periodic, non-Markovian
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asymptotic probability Pas(X, t;cp) composed of Fourier components
{cn(x)} obeying cn(x)--  ( - 1 ) "  c , ( - x ) .  The periodic, asymptotic mean
(x(t); ~o) thus involves only odd Fourier components. This in turn implies
the selection rule

g ( x ) = g ( - x )  symmetric ~ only M2,+1~0  (3.12b)

i.e., for white noise ~w(t), as well as for all stationary Gaussian colored
noise sources introduced in Section 2, the selection rules for the fi-spikes in
the asymptotic spectral density do not change!

Moreover, with a symmetric flow h ( x ) = h ( - x )  and antisymmetric
shape function g ( x ) =  - g ( - x )  a reasoning just as before would imply the
selection rule M2n + 1 = 0, M2n r 0; i.e., only even-numbered fi-spikes survive
the asymptotic spectrum S~s(co).

4. A P P R O X I MA T I O N  S C H E ME S  FOR N O N S T A T I O N A R Y
COLORED NOISE PROCESSES

In the previous section we dealt with colored noise by embedding
the correlated noise into a higher-dimensional Markov process. In the
presence of nonlinear flows, however, these many-dimensional Markovian
schemes do not prove to be very effective in obtaining analytical (or even
numerical) results. The exception is the linear flow driven by colored
noise, which can be solved in closed form in any finite dimension (see
Appendix A). As a consequence, a great many statistical physicists engaged
in research aimed at obtaining tractable approximation schemes which are
low-dimensional (mostly one-dimensional) in character. (8) Generally, the
approximation schemes become useful only if they reduce to an (effective)
Fokker-Planck form. Such a procedure, however, is not without limitation:
The approximation has a limited range of validity, addressing mostly
asymptotic regimes of small or very large noise correlation time. For the
sake of simplicity and clarity only, we shall in the following address
exponentially decaying colored noise characterized by a unique time scale
r; see (2.2).

4.1. Smal l -Cor re la t ion -T ime  Approx imat ion

Given (3.1), we use for ~(t) Ornstein-Uhlenbeck noise [see (2.1)] and
set for the shape function g(x) a constant, i.e., g ( x ) -  1. The nonstationary
bistable flow thus reads

= ax - bx ~ + d sin(f2t + cp) + ~(t) (4.1a)
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with
({( t )  3(0))  = (D/r) exp( - I t l / v )  (4.1b)

In the following we shall work with dimensionless variables, i.e., we rescale
the state variables and the time according to (the direction of the arrow
refers to the dimensionless variables):

at--+ t

a'r-+ T

s --* f2

( b a - l )  1/2 x ---+ x (4.2)

(ha 3)1/2 ~ _+ e

( b a -  3) 1/2 ~4 --* d

1D/~ U --, D

where A U = a 2 / 4 b  denotes the barrier height of the bistable, symmetric
potential. Equation (4.1) is then recast in dimensionless quantities as.

2 = x - x 3 + ~4 sin(f2t + (p) + ~(t) (4.3)

with <~(t)r  = ( D / r ) e x p ( - I t l / r ) .  Because the colored noise source is
not affected by the periodic driving force, the effective Fokker-Planck
approximation at small noise color follows by using the same reasoning as
put forward for time-homogeneous processes. (8' 17 2o5 The result thus reads

0
Pt(x; r) =- - ~ { [-x -- x 3 + d sin(f2t + ~p)] p, (x;  r)}

0 2
+ D ~ x  2 { [1 + z(1 - 3x2)] p, (x ;  z)} (4.4)

In this context we emphasize again (2~ the regime of validity for (4.4): The
result in (4.4) holds good for small z--+ 0, with the (dimensionless) ratio
r iD  ~ 1 staying small. The Fokker-Planck equation (4.4) serves as our
starting point to evaluate the effect of noise color on SR in Section 5.
In contrast to the white noise case (r = 0), it involves a state-dependent
diffusion coefficient. In passing, we point out that the decoupling approxi-
mation,(2o. 2t) although somewhat crude, would describe the effect of noise
color solely within a renormalization of the noise intensity, i.e.,

D --+ D / [ 1  - z(1 - 3 (x2>)3 ~ O/(1 + 2r) (4.5)
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4 . 2 .  Unified-Colored-Noise Approximation (UCNA)
Following ref. 22, we consider next an approximat ion  scheme aimed at

eliminating adiabatically the velocity 2.
Upon  a differentiation of (4.3) we obtain

2 = 2 ( 1  - 3x2) + sgs cos(t2t + ~o) + ~

With a substitution of ~ [see (2.1)] the flow in (4.3) is
represented as

5C = ~ ( l  - -  3X 2) + ~ r  c o s ( Q / - { -  ~o)

1 D ~/2
+-[x- -x3+~Csin( f2 t+cp) - - s  r

By use of a new time scale, i.e., i =  t = v I/2t, this is recast as

2 + 2 7 ( x , z ) _ ( x _ x 3 ) _ d z  ~ + Q 2

x sin(Q~l/Zt + ~) = Dm/2~w(Zl/2t)

(4.6)

equivalently

(4.7)

(4.8)

where 7(x, r)  - [ z -  l/2 + ~ 1/2(3x2 _ 1 )], and ~b = (p + e with tan c~ = s Note
that JT(x,r)l approaches infinity both for r - -*0 and z- - ,oe .  With
7(x, z) --+ oo, we may set 2 equal to zero, yielding the U C N A  approxima-
tion for SR, i.e.,

~- ~-- l (X,  Z){(X --  X 3) + g ~ [ ' l  -]- ~(~2"C23 1/2

x sin(f2ri/2t + ~b) + Dl/2rm/4~w(t ) } (4.9)

With r---,0, this adiabatic approximat ion  is well justified. In contrast,
with r ~ oo the variat ion of 2 is with lime ~ ~ ~ sin(t2r~/zt) being rapidly
oscillating, not  slowly varying. The approximat ion  in (4.9) nevertheless
still holds good for z ~ oo if we note that the best Fokke r -P l anck  approxi-
mat ion to the Langrangian Lf of the path integral solution (23--26) for the
nonsta t ionary  colored noise process x(t), i.e.,

Y [ x ( s ) ]  = (4D) -1 {r2 + .~[1 - z(1 - 3x2)] - sr163 cos(f2t + cp)

- [ x - x  3 +sY sin(f2t + (p)] }2 (4.10)

is obtained by setting 2 = 0; see also refs. 23-26. 4 This in turn is (within the
prepoint  discretization) consistent with the white noise Langevin equat ion

4 In writing (4.10), we have neglected boundary terms; for details see ref. 25.
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(4.9)! The corresponding Fokker-Planck equation possesses a strictly
positive diffusion coefficient, independent of the size of the correlation time
r. The UCNA for time-homogeneous processes has been proven to yield
good results for the invariant stationary probability. We thus expect that
(4.9) also yields good results for the time-periodic asymptotic probability
pa~(X, t; q~; ~) for both r ~ 0 and z -~ oe.

5. STOCHASTIC  RESONANCE FOR COLORED NOISE

As mentioned in the Introduction, the SR describes the amplification
of small signals embedded in a noisy background. It occurs when the time
scale of the external driving frequency T~ = 2rc/O is of the order of the
escape time from one of the metastable wells. Given weak noise, the noise
strength D---DsR = A U/[ln(Te~OO/4~)], with ~o 0 denoting the angular well
frequency, results in a hopping dynamics between the two metastable states
most highly correlated with the external driving signal. Following ref. 15,
the SR is measured by the ratio between the "power" at the (angular)
frequency s of S~(co) and the input power Pi, = ~A2. The signal amplifi-
cation t/(~4, f2) is then given by (~5/

IMI[ ar/(d, g2)=4 d---- 5 -  (5.1)

with MI the first Fourier component of the asymptotic, time-periodic mean
value (x(t); q~)as. The ]MI] can be evaluated approximately by use of
linear response theory. (15'27'28) With Z ( c o ) = ~  exp(i~ot)x(t)dt the (one-
sided) Fourier transform of the response function X(t), which describes the
perturbation in x(t), one finds (is)

IMI[ ~-~-I)~(s (5.2)

5.1. SR for Small Noise Color

Given the small-correlation-time approximation in (4.4), the stochastic
operator describing the perturbation reads

Fe~(t) = -~sin(f2t+~o)~x=dsin(g2t+~o)Fe~t (5.3)

i.e., / 'ext = --O/OX. In linear response the expectation, i.e.,

(x( t ) )  Z(t - s ) d  sin(•s + ~o) ds (5.4)
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gives for the response function the correlation function result (27)

z(t)  = o(t)(x(t) ~[-x(0)]  ) (5.5)

where ~b[x] = - (c~/#x)[ln Pst(X, 3)] is a fluctuation of vanishing mean and
O(t) denotes the step function. Here, Pst(X; 3) denotes the stationary, unper-
turbed probability. From (4.4) it is given explicitly by

P s t ( X ' 3 ) = l [ l + 3 ~ - ~ 3 x Z ) ] l e x p -  - 2 X D + ~ X  1 - ~ 3 ( x - x 3 )  2 (5.6)

where Z denotes the normalization constant. Thus, the fluctuation ~b[x, 3]
is evaluated to read

q~[X, 3] = D - l [ 1  + 3(1 - 3x2)] -1 ( x - x 3 + 6 D 3 x )  (5.7)

An alternative form for the response function can be obtained following ref.
27: If we denote by F the unperturbed (~4 = 0) Fokker-Planck operator in
(4.4), we find, with $(x) defined by

the result

~bl-X, 3] Pst(X)= [[ 'extPst](X)= -- [-/)pPst](X)

z(t)  = - O(t) ~ (x(O ~,[-x(0)] )

From (5.8) one finds with 3 small

yielding

d 0 = { D [ l + 3 ( 1 - 3 x 2 ) ] }  1 , ~ D - 1 [ 1 - 3 ( 1 - 3 x 2 ) ]
dx

(5.8)

(5.9)

(5.1o)

~r = D l[x--3(x--x3)] (5.11)

In conclusion, the response function Z(t) can advantageously be recast as
the time derivative of the correlation

Z(t) = - O ( t ) D  - 1  d (x(t){x(O)- 3 Ix(O) - x3(O)] } )

- O(t)D ' d Cx~ (5.12)
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In the context of SR, we set for the correlanon (x(t) ~,[x(0); ~] )  the long-
time approximation 5

Cxo(t) ~ (xtp(x) ) exp(--2min t) + O(D) (5.13)

= ( (x  2) + rD) exp(-2rain t ) + O(D) (5.14)

TO obtain (5.14), we eliminated (x  4) by observing that (d/dt)(x 2) = 0 =
( F + x 2 ) ,  where F + is the adjoint operator of F. Upon noticing that
IMI[ =1s r  IZ(f2)I, we thus obtain for the amplification r /(d,  f2 ; r ;D)  in
linear response approximation, i.e., r /(d,  f2)~r/(f2), from (5.1), (5.2) the
result

( )2 ,
~ ( ~ ) =  Iz(~)12= (x2)+~O (5.15)

O 1 + (f2/2min) 2

In the limit of small noise color and r/D ~ 1, "~min has been evaluated in
previous works (19' 2o, 29) to read

  )exp(1)"~min(T)=~Q 1To --2

With (x  2) ~ 1, we obtain therefore (see footnote 5)

1 1
t l(f2),~7(l + 2rD) l +(l + M)(f22n2/2)exp(1/aD) (5.17)

At stochastic resonance, i.e., f2 = (rC/2)2min, the peak height becomes

1 +2~DsR(~) ( 1 )
max r/((2) = ~max ~ D2R(r) 1 + ~r2/4 (5.18)

with

Ds~(V) = ~ I ln/ /1 - 3z'~] -1\ x / 2  (2JJ > DSR(~ = 0) (5.19)

Put differently, with colored noise present, the peak in SR is shifted toward
higher D values. Moreover, with qmax or 1/D2R, the peak value is, with
DSR(Z) > DsR(Z = 0), reduced compared to SR at z = 0. These characteristic
colored noise features become more pronounced with increasing noise

5 At weak noise, the correction of O(D) can be approximated by a single exponential, see
Eq. (6.3.46) in ref. 27, which in our case reads (D/2)exp(--2t)+O(zD2). For D~0, this
implies for (5.17) the finite limiting value q(g2, D ~ 0) = (4 + 0 2) t; see also ref. 2.
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color r. Indeed,  with r increasing, ,~min('C) becomes exponent ial ly  reduced in
compar i son  to 2mi,(r = 0)6; see ref. 30. With 12 fixed, we therefore must
increase D to match  the SR condit ion 12~(rC/2)2min. This results in a
drastic shift of the SR peak toward  higher D values, and a corresponding
reduction of the peak height; see Section 5.2. In Fig. 1 we depict the result
of the theory in (5.17). Indeed,  we find that  small noise color  suppresses the
effect of  SR.

5.2. SR w i t h i n  UCNA

In order  to treat  bo th  small noise color and large noise color on the
same basis, we consider the U C N A  in (4.9). To  compare  with Section 5.1,
we use the original t ime scale, i.e., t=rmi .  The stochastic opera to r
describing the t ime-periodic per turba t ion  then reads

F~xt(t) = - d ( 1  + 122~2)1/2 sin(12t + (~) ~xx [1 - r (1  - 3x2)3

-= d ( 1  + ~ ' - 2 2 ~ ' 2 )  1 / 2  s i n ( O / +  ~)Fr (5.20)

with

0 ( [  1 z(11 3x2)3 )F e x t  = a X  - -  - -

6A rough estimate based on the decoupling theory in (4.5) yields / ~ m i n ( T ) O C  exp[-(1 + 2r)/4D];
numerically (3~ one finds instead 2min(r ) oc exp[-(1 + 0.40/4D].

14  i ., i ,

1] 12, ~=0 f2 = 0.1
=0.1

1 0 . = .

8 .

6 -

4 "

2 -

0
0 .0  0 .2  0 . 4  0 .6  0 . 8  1 .0

D

Fig. 1. The signal amplification r/, evaluated within linear response approximation [see
Eq. (5.15)], depicted as a function of the noise strength D at so2 =0.1 for increasing values of
the noise correlation time z.
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Proceeding as before, we set
UCNA UCNA[FextPs~ ](X) = -- [F~/tps t ](X) (5.21)

which yields for the fluctuation 0(x)

d 0UCNA(X,~) D _ I [  1 r (1--3x2)]
dx

This yields
~ouCNA(X, r ) = D  l[x--~(x--x3)] (5.22)

Note that 0ucNA(X, V) coincides precisely with the smalM result in (5.11).
In contrast to (5.11), however, we can use (5.22) for arbitrary ~ values,
0 ~ v < oe. The response function zUCNA(t) thus reads

d)~uc~A(t) = -O(t)D-l-fft (x(t){x(O)-r[x(O)-x3(O)]}) (5.23)

with the long-time (low-frequency) approximation

,~O(t)O-l)~min('C, D)(xOUCNA(X, ~)) exp(-- 2mi, t) (5.24)

By the use of previous works (2~ 23-26.29.3o) we obtain within UCNA and
path-integral methods for 2mi n the crossover approximation (3m

~UiCNA("C, D ) -  N/f2 (1 + 3r)- ' /2 exp [ - -1  (1 + (27/16)'c + 1,~2~- --~--- ~ i + ~  J J  (5.25)

The corresponding result for the amplification thus reads

~UCNA(fa)  = IzUCNA( co = "q)l 2

-=((1--'r)(X2> q-'~(X4)) 2 UCNA1 (5.26)
D 1 -q- [~r (Z', D ) ]  2

where the mean values are evaluated with the stationary probability

st l1 --z(1 --3X2)1 exp - (x--  x3) a

x e x p -  4 D (5.27)

which has a support over all x values for r <  1; but _UCNA,, ~)=--0, forP st t "x,
[xl < [ ( r - -  1)/32] ~/2, when z >  1. The result in Eq. (5.26) is depicted in
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Fig. 2. The amplification factor r/(g2) at C2=0.1 as predicted by the UCNA theory in
Eqs. (5.25)-(5.27) plotted versus the noise strength D at moderate to large noise color ~.

Fig. 2. We note the consistent shift toward higher D values induced by the
exponential decrease of )~min with increasing noise color r. Related with this
shift is the corresponding reduction of the SR peak value; see Fig. 2. With
the moderate-to-large noise-color approximation (3~

2min=---~-~exp_( I + ~ F ]  \ 4D ] (5.28)

where ~ = 0.1 for moderate r, and ~ = 8/27 as r ~ 0% we can evaluate the
condition for SR in (1.1). Fixed D=(~/2)2mi n then yields for the noise
intensity DSR at the SR-peak location the result

DsR, -~(1  + ~ r )  In (5.29)

Ds~ thus increases almost linearly with increasing r. The characteristic
behavior depicted in Fig. 2 for SR in the presence of Ornstein-Uhlenbeck
noise is in good agreement with the simulation results by Gammaitoni
et  a./. (31) for the signal-to-noise ratio [this quantity is not quite identical
with r/(C2)] at moderate noise color 0.2 < ~ < 1.36.

6. STOCHASTI C  RESONANCE FOR THE KRAMERS EQUATI ON

The systems considered thus far were restricted to the overdamped
case with colored noise and periodic forcing. Here, we discuss thermal
equilibrium systems subject to periodic driving. The archetypal situation
is given by the stochastic motion of a Brownian particle in a symmetric
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bistable potential field U(x)= 1 2 -  1 4 - 5 x  + xx driven by white Gaussian noise
~w(t) which satisfies the fluctuation-dissipation theorem of the second kind,
i.e., (~w(t)~w(O))=2D76(t). The Fokker-Planck equation is thus the
driven Klein-Kramers equation (32)

D,(x,v,t;q~)= - ~ x V + ? ~ v - ( x - x  3) - ~ 4 s i n ( ~ 2 t + ~ 0 ) ~ +  023v 7D

xp,(x, v, t; q~) (6.1)

where D - kT  characterizes the noise intensity and 7 is the damping coef-
ficient. As before, all variables are assumed to be scaled dimensionless; see
(4.2). In the presence of colored noise ~(t), the corresponding Langevin
equation involves a memory friction. For weakly colored noise we give in
Appendix B the result for the small-correlation-time approximation for
colored-noise-driven thermal equilibrium systems. If we just add colored
noise of the Ornstein-Uhlenbeck type to the deterministic flow, the noise
does not obey the second fluctuation-dissipation theorem, i.e., the flow so
obtained describes a nonequilibrium situation. For this latter non-
equilibrium case, analog simulation results for SR have been studiect in
ref. 31.

W e  point out that the (x, v) dynamics contracted over the velocity
would yield a stochastic flow perturbed by colored noise. In the limit
? -~ oo we would recover the Smoluchowski dynamics perturbed by white
Gaussian noise. In this sense 7 -1 is a measure for the amount of noise
color present in (6.1).

We now turn to the evaluation of SR. The response function for the
variable x(t) is given, as it must be, by the classical fluctuation-dissipation
theorem(27, s3) (of the first kind), i.e., with k T - D ,

)~(t)= -O(t )D 1 d d ~t (x ( t )x (O))=--O( t )D l ~ C ~ ( t )  (6.2)

The relevant long-time approximation for (x(t)x(O)) reads

Cxx(t) ~ (x  2) exp(-;~Kt) + O(D) (6.3)

where '~K denotes the lowest eigenvalue given by the celebrated Kramers
rate FK; i.e., )~K=2FK. The (one-sided) Fourier transform )~(co) is thus
approximated by

Z(o)) ,,~ D-IAK(X 2 ) f ;  exp[-- t(ico + 2K)] dt -- D ico+2x (6.4)
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From Eqs. (5.1), (5.2) we thus readily find for the amplification in linear
response approximation

(x2)  2 1
~(~) = D 2 1 + ( ~ / , L D  ~ ( 6 . s )

The essential input into (6.5) is thus given by the Kramers eigenvalue ;tx,
which depends both on the noise intensity D and the friction 7. As is well
known, the eigenvalue 2K(D, 7)/2Tsr, with 2xsT--(~/~)exp(--1/4D)
denoting the transition-state estimate, exhibits as a function of increasing 7
a bell-shaped dependence, commonly known as "Kramers turnover. ''(34)
Whereas the detailed theory of this turnover is rather complex, (35) we use
here a poor-man's (multiplicative) bridging expression given by Eq. (6.4) in
ref. 34. With (angular) well frequency and (angular) barrier frequency given
by co~=2 and co~= 1, respectively, barrier height AU= (4D) -~, and the
abbreviated action at energy E = A U evaluated to be I b = 4/3, this bridging
expression reads explicitly

2 - 4 7  [(1 + 3D7-1) I/2- 72"~ 1/2K--3DL(l+3DT_l)l12+~]4L(l+~) --27 exp (--+) (6.6)
It obeys the well-known limiting forms

and

2X/2TST~ {(1 +72/4)1/2--7/2} as 7~>c%= 1 (6.7a)

2K/2TST --* 4D- ~7 as 7 ~ 0 (6.7b)

The result in (6.7a) holds within the steepest descent approximation, while
(6.7b) holds within a harmonic-well approximation and large Arrhenius
factors AU/D~> 1. The result for q(O) in (6.5), evaluated by use of (6.6), is
depicted in Fig. 3. We note that SR is enhanced for decreasing damping
strength, i.e., SR is enhanced for effective noise color (oc 7 -1) which is
increasing. The increase of the SR peak height and the shift of the maxi-
mum toward smaller D values with decreasing 7 follow from the fact that
in (6.7a) the rate is decreasing for increasing 7- Put differently, increasing
7 yields a smaller 2K, which with fixed O at the SR condition ~ = (n/2)2K
must be compensated for by a higher value for the noise intensity DSR. In
Fig. 3 we have with g? = 0.01 chosen not to plot SR curves for very small
friction values 7 ~ 1. This is so because the weak-noise estimate in (6.6),
(6.7b) for 7 ~ 0 is reached for very high barriers only, i.e., A U/D >> 1. This
in turn would imply very small f2 values for the SR condition to be obeyed
within the weak-noise estimate for 2x in (6.6).
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Fig. 3. The signal amplification t/(s = 0.01)/or the Kramers equation [Eqs. (6.5) and (6.6)]
as a function of the noise strength D -~ kT for three different damping strengths 7.

A P P E N D I X  A

The linear flow perturbed by Orns te in-Uhlenbeck  noise and periodic
driving, i.e.,

sr
2 = - ~x + e - ~ -  cos (~ t  + ~o)

g 1 1 '2
= - - + - D ~  ~w(0

17 17

(A.1)

is exactly solvable. By differentiating 2 ~ 2 we find a periodically driven
stochastic oscillator, i.e.,

2 = - 7)? - coZx + d sin(f2t + q~) + (kTT) 1/2 ~w(t) (A.2)

with

7 = e + ( I / z )  ( A . 3 a )

~2 = ~/z (A.3b)

k T =  (D/z2)(c~ + 1/z) ~ (A.3c)

With  these substitutions, the Floquet  eigenvalues, Floquet  functions, and
asymptot ic  probabilities can be readily read off from the explicit results
given for (A.2) in ref. 14. Fo r  example, the Floquet  eigenvalues are given
by

2 , m = n ~  + m(1/z ) (A.4)
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n, m =0 ,  1,.... The time-periodic, asymptotic probability pa~(x, t; q)) is a
Gaussian given by

(o:(o~'c +__1))1/2 { o:(o~z + l)
p~(x, t; q~ )= \  2~D exp - 2D

x I x -  ag(o%) sin(Ot + 0 + q3)~2~ (A.5)
.)

with

o4 f a ( ~  + 1 )
~/(~'~) = r(o{/T_ (~2)2_.~,(~2(0r + 1..g,2~i/2 ; / ) j  tanq3 = " c~-- f22~ (A.6)

APPENDIX  B

For systems with internal exponentially correlated noise, i.e., a system
which is in equilibrium with a heat bath in the absence of a periodic force,
the Langevin equation reads

, a u (B.1)
iJ = - 7 Jo ~ ~(t -- t') v(t') d t ' -  -~x + ar sin(f2t + 4o) + (TkT)1/2 ~(t)

where ( ~ ( t ) ) = 0 ,  and

( r ~(t') ) = ~ e x p  ( - ~  l t -  t'l ) (8 .2)

In order to perform a small-correlation time analysis, we first embed (B. ! ),
(B.2) in the three-dimensional stochastic process

2 = v
dU

= - ~/z - -~x-x + d sin(f2t + (p) (B.3)

~= - - z + - v - -  ~w(t)T "C "C
Expanding the solution of the corresponding Fokker-Planck equation into
the complete set of Hermite functions and neglecting all terms which are of
order ~n, n > 1, as well as transient effects, we obtain for the Fokker-Planck-
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type equa t ion  for the reduced  p robab i l i t y  p(x ,  v, t) = ~ o ~  dz p (x ,  v, z, t) the
result

/~,= - V ~ x + V ~ v V ( l + v r ) +  ~ - ~ - x - ~ 4 s i n ( Q t + q ~ )

9 2 9 2 }
+TkT(1  + 7 0 - ~ v 2 + 7 ~ k T ~ - ~ v  P, (B.4)

The s t a t iona ry  so lu t ion  for ae = 0 i s  given by the canonica l  form

p~t(x, v) = Z -~ exp{ - [ U ( x )  +  89
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