
                                                       

Coherent Transport in a Periodically
Driven Bistable System

Frank Grossmann, l'2 Thomas Dittrich, 1 Peter Jung, i and Peter H~inggil

The quantum dynamics of a quartic double well, subjected to a harmonically
oscillating field, is studied in the framework of the Floquet formalism. The
modifications of the familiar tunneling process due to the driving are
investigated numerically and explained in terms of the structure of the corre-
sponding local quasienergy spectrum. In particular, there is a one-dimensional
manifold in the parameter space spanned by the amplitude and frequency of the
driving force, where tunneling is almost completely suppressed by the coherent
driving. The quantal dynamics in the semiclassical regime as well as the
influence of weak incoherent processes are briefly discussed.

                                                                    
                                          

1. I NTRODUCTI ON

Bistable systems are abundant in physics, from the microscopic to the
macroscopic realm. On the macroscopic level, bistability represents a basic
concept in nonlinear dynamics. In quantum mechanics, on the other hand,
bistable potentials are associated with a paradigmatic coherence effect:
tunneling.(1

Accordingly, this class of systems represents a particularly promising
field to study the interplay of classical nonlinearity and quantum coherence
and the way it is reflected in phase-space transport.

In the present work we investigate the influence of periodic driving on
the quantal dynamics in a bistable potential. Being equivalent to adding
one more degree of freedom, external driving is capable of qualitatively
altering the dynamics: e.g., in the classical limit, it can render a bistable
system chaotic. (2' 3~
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However, only periodic driving is simple enough to still allow, by
way of its discrete translation symmetry, for a systematic analytical treat-
ment: The Floquet formalism provides a generalization of the notions of
energy eigenvalues and eigenstates to periodically time-dependent systems
and thus enables the use of the associated formal tools (e.g., spectral
analysis). (4-8)

Specific questions we address concern the fate of the ground-state
doublet under periodic driving and the concomitant modifications of the
familiar tunneling process, as well as, in an advanced stage of the project,
the way the system approaches its classical limit, both in the sense of h
becoming small compared to characteristic actions and in the sense of
incoherent processes entering the stage.

In Section 2, we present our working example, a harmonically driven
quartic double well, and introduce some analytical concepts for later
reference, such as the Floquet formalism and the local spectrum. Section 3
contains our principal results. They form a survey of the coherence
phenomena that replace tunneling in various regimes of the parameter
space spanned by the amplitude and frequency of the driving force.
A prominent and surprising example, to be discussed in some detail, is the
almost complete suppression of  tunneling along one-dimensional manifolds
in that parameter space. Aspects of the classical limit--the influence of
chaotic classical dynamics and of incoherent processes induced by the
environment--are briefly addressed in Section 4. In Section 5, we give
a summary of our results and add a note on possible experimental
realizations.

This contribution is partially based on results originally published in
earlier works by the present authors. ~ ~1)

2. THE PERIODICALLY DRIVEN DOUBLE WELL

The system we study is a quartic double-well potential driven by a
monochromatic force. Its Hamiltonian reads, in dimensionless variables,

H(x, p; t) = Ho(x, p) + Hi(x; t)
p2  x 2 x 4

Ho(x, p) -- -~ 4 + 64D (2.1)

H~(x; t) = Sx cos cot

where D denotes the barrier height, and S and co are the amplitude and
frequency of the driving force, respectively.
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In order to discuss the symmetries characterizing this system, it is
helpful to treat the Hamiltonian (2.1) as if it were an autonomous one.(~2' ~3~
This is achieved by giving time the character of an additional spatial
degree of freedom, with energy / ~ = - i ~ / O t  its conjugate momentum.
Correspondingly, the Hilbert space is extended to the product of the set
of square-integrable functions on the strip - ~  < x  < 0o and the set of
T-periodic functions on the interval 0 ~< t < T, where T = 2rt/co is the period
of the driving force. The original Hamiltonian (2.1) is replaced by

0Jr(x, p; t, E)= H(x, p; t)+ E= H(x, p; t ) - i ~  (2.2)
6g

The invariance of the system under discrete translations t---,t+nT,
n =0,  _+ 1, _+2,..., left by the periodic driving, can now be exploited in
complete analogy to the discrete spatial invariance of crystalline solids,
with all its far-reaching consequences.

By the same reasoning that leads to Bloch's theorem (14~ in the solid-
state context, one derives Floquet's theorem, its analog for periodically
time-dependent systems. (15-~s) It states that solutions of the Schr6dinger
equation for the extended Hamiltonian (2.2),

I0~> =o (2.3)

can be written in the form

~ ( x ;  t)=exp(-ie~t) ~b~(x; t), q6~(x; t+nT)=(~(x, t) (2.4)

The eigenvalues e~ are called quasienergies. In fact, each of them is a repre-
sentative of an infinite class of eigenvalues e~,k = e~ + kog, k = 0, • 1, -4- 2,...,
as is obvious if one expands q6~(x, t ) =  Z~ (x) ~b~,~ exp( - ikc~t). In other words,
the quasienergy spectrum is cyclic, i.e., defined rood ~0, similar to the
Brillouin zone structure in the solid-state context.

Again in analogy to the Bloch case, the eigenfunctions (2.4) are
simultaneously eigenfunctions of the group of unitary operators associated
with the translational symmetry in time, i.e.,

U f~,~> = exp(--ie~, T ) I ~ >  (2.5)

The Floquet operator U is defined as the propagator over one period of the
driving force,

U=U(T,O)=g-exp - i  dtH(t) (2.6)
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where Y denotes the time-ordering operator. The property

U ~ 1~(0) )  = U(nT, 0 ) 1 ~ ( 0 ) )  = [~9~(nT)> (2.7)

shows that U provides a stroboscopic description of the time evolution and
this justifies calling U a "quantum map."

Another, more special symmetry of the system described by the
Hamiltonian (2.1) goes back to the inversion symmetry x ~ - x ,  p ~ - p ,
of phase space for the time-independent system Ho(x, p). This symmetry is
destroyed by an arbitrary driving term, but for the harmonic time
dependence chosen here, the relation cos(cot+ re)=-cos(cot )  allows for
invariance under the operation

T
~: x ~  - x , p ~  - p ,  t - -* t+~ (2.8)

forms a unitary symmetry and may be regarded as a parity generalized
to the extended Hilbert space introduced above. As a consequence,
quasienergy eigenstates are either even or odd under r

r t) = _+ O~(x; t) (2.9)

which establishes two symmetry classes of eigenstates. Invariance under
can be destroyed both by lifting the inversion symmetry of Ho(x, p)

or by choosing a time dependence f ( t )  of the driving force such that
f ( t  + T/2)= - f ( t )  no longer holds.

A quantity that provides some condensed information on the trans-
port of probability between the two wells of the bistable potential, and that
allows one to relate this information directly to the relevant structures in
the quasienergy spectrum, is the probability to return, (19' 2o)

pr = I <~( t ) l  0o>1 = (2.10)

defined with reference to some initial state ]~o>. Restricting time to a
stroboscopic, discrete series tn = nT, n =0,  +_ 1, _+2 ..... and expressing the
time evolution by means of the Floquet operator U defined in Eq. (2.6), we
can write the probability to return as

P(~176 = I<~ol U ~ I~o>1 ~ (2.11)

The role of the quasienergies for this time evolution is made explicit by
expanding Eq. (2.11) in the basis of the quasienergy eigenstates,

p(0o)(n)= ~ 1+ ~ exp[ i (~-e~)nT]  [(~k~]~o>[ 2 1 ( ~ [ ~ o > [  2 (2.12)
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Here, ~-1, the diagonal part of the double sum in Eq. (2.12), gives the
long-time average of P(~~

1 N
~ - 1 = ~ t < 0 = [ 0 o > 1 4 =  lim ~ P(*~ (2.13)

ct N~oo 2 N +  1 n= -N

It is referred to as the inverse participation ratio. By Fourier trans-
formation, the probability to return is related to the spectral two-point
correlation of the local spectrum, (19-22)

e(2+o)(~) = 2-~u : ~ - ~  exp(--i~/n) [P(O~

= F~ t ( 0 ~ / 0 o ) 1 2 1 ( 0 ~ 1 0 0 ) 1 2
=vs/~

2~ r/

where r/, -~z ~< r/< 7c, is a scaled quasienergy argument. As is obvious from
Eq. (2.14), P(2~176 is not an unbiased spectral correlation function, but
endows each pair of quasienergies with a weight equal to the product of the
respective overlaps of the associated eigenstates with the initial state 100)
chosen. In other words, it weights the components of the spectrum with
respect to their relevance for a particular dynamics as it evolves from a
specific initial preparation of the system.

3. DRIVEN TUNNEL I NG

In the present section, we discuss the modifications imposed on the
familiar tunneling dynamics due to periodic driving. That is, we concen-
trate on the time evolution, under the external force, of a state that is
initially prepared as an approximation to a superposition of the two lowest
unperturbed eigenstates, f 0/~/R ) = (I 01 ) -+ 102 ) ) / ~ '  centered in one of the
two wells. Accordingly, we trace the quasienergy doublet that corresponds
to the unperturbed energies E1 and E2 through the parameter space
spanned by amplitude S and frequency co of the driving force. Thereby,
we disregard effects due to a preparation of the initial state that includes
significant contributions from higher-lying eigenstates. Despite the elemen-
tary nature of the dynamics thus specified, we encounter a surprisingly rich
repertoire of coherent variations of tunneling.

There are two regimes in the (S, m) plane where tunneling is not
qualitatively altered: Both in the limits of slow (adiabatic) and of fast
driving, the separation of the time scales of inherent dynamics and external
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Fig. 1. Driven tunneling in the adiabatic/fast limits. (a) Log-log plot of the deviation of the
tunnel splitting from its unperturbed value, for adiabatic driving, as a function of the driving
amplitude, (b) log-log plot of the same quantity, for fast driving, as a function of the driving
frequency.

force effectively uncouples these two processes and leads to a mere
renormalization of the tunneling rate A(S, ~), given as the splitting of the
two quasienergies involved. Specifically, as both an analytical treatment
and numerical experiments s h o w ,  (23) the driving always reduces the
effective barrier height and thus augments the tunneling rate in the two
limits at issue (Fig. 1).

Qualitative changes in the tunneling behavior are expected as soon as
the driving frequency significantly interferes with the internal frequencies of
the double well, i.e., in particular, the tunnel splitting A and the so-called
resonances E3-E2, E4-Et, Es-E2,... (see Fig. 2a). A more detailed
account of this intuitive picture is obtained by constructing the intricate
three-dimensional "landscape" of quasienergy planes e~,k(S, ~0):

E~

E.

E c
Es

Fig. 2.
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Energy and quasienergy levels in the quartic double-well potential. (a) Time-
independent potential with energy eigenvalues, for D =  1 [arrows indicate transitions from
the ground-state doublet to excited states, allowed by parity conservation (resonances)];
(b) schematic plot of relevant quasienergies, as functions of co, at a small value of S (quasi-
energies associated with eigenstates of even/odd parity are indicated by full/dashed lines;
energy differences are not to scale to make the crossing structure visible).
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As a starting point, consider the case S = 0 ,  where the driving is
switched off. Here, the quasienergies are exactly given by the linear
dependence

~,k=E~+k~o, k = 0 ,  -+-1, ___2 .... (3.1)

As pointed out in the previous section, this infinite multiplicity is a conse-
quence of the fact that there is an infinity of equivalent ways to construct
the Floquet solutions in the form given by Eq. (2.4); it is lifted if the quasi-
energies are considered mod co. Physical significance can only be ascribed
to the difference Ak = k ' - k  of the k-indices of a pair of quasienergies
e~,k, e~,,~,. In particular, crossings e~,~e~,.k, ~k can be considered as
Ak-photon transitions between levels of the undriven system if a quantum-
optical interpretation of the periodic driving is adopted. This makes it
immediately clear that for S > 0, where Eq. (3.1) is no longer exactly valid,
it is the quasienergy crossings where the driving is felt most strongly.
Actually, this statement has to be qualified by two restrictions:

First, by an argument going back to yon Neumann and Wigner,(24' 257
two parameters must be varied independently to locate an accidental
energy degeneracy in a time-reversal-invariant system. This implies that
quasienergy crossings are found at isolated points in the (S, co) plane, and
a one-dimensional section through this plane will typically show avoided
crossings. This is true, however, only within each of the two parity classes
of eigenstates mentioned in the previous section [see Eq. (2.9)]; crossings
between quasienergies associated with eigenstates of opposite parity may
form one-dimensional manifolds in the (S, co) plane and thus show up as
exact crossings in sections through the e(S, co) space along arbitrary lines
in the (S, co) plane.

Second, the effective coupling, due to the driving, between two
unperturbed levels at a crossing E~ = E~, -  Akco, as reflected in the degree
of splitting of that crossing for finite S, rapidly decreases with increasing
Ak, namely as S ~k. This is suggested by the interpretation as a Ak-photon
transition and can be substantiated using Akth-order perturbation
theory. (26) Consequently, in the regime of small S, only crossings with Ak
a small number exhibit significant splittings.

The few rules stated in the previous paragraphs are sufficient to provide
a semiquantitative understanding of the structure of the quasienergy
spectrum as a function of ~o, at least for small S, as it is revealed by
numerical diagonalization 3 of the Floquet operator U (the validity of our

3 For the numerical calculation of the quasienergy spectrum we adopted the method of matrix
continued fractions described in ref. 27.
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numerical treatment is, of course, not restricted to small S). A schematic
representation of this structure is given in Fig. 2b.

As an application, we discuss two specific "samples" of the quasienergy
spectrum with the corresponding tunneling dynamics, one of them
featuring an avoided crossing, the other an exact one.

The "single-photon transition" at co = E 3 - E 2 is called the fundamental
resonance. It corresponds to a crossing between the quasienergies 52,k and
53,k_1 and, for S > 0 ,  forms an avoided crossing, since the corresponding
eigenstates have equal parity. Figure 3a shows the time evolution of the
probability to return, P(~176 [see Eq. (2.11)], at the fundamental
resonance (with S = 10-4), for an initial state prepared as the ground state
of a harmonic oscillator approximating one of the wells, i.e., a Gaussian
approximation of }eLm>- The monochromatic oscillation of P(~~
characteristic of unperturbed tunneling has given way to a more complex
beat pattern. Its Fourier transform, the two-point correlation p~q,0)(~/) of
the local spectrum [see Eq. (2.14)] reveals that this beat pattern is mainly
composed of two groups of three frequencies each, which in turn can be
identified as the quasienergy differences 5 3 , - 1 -  52,0, 5 2 , 0 -  51,0, 5 3 , - i -  el,O
(Fig. 3b), and 54,_1--53,  1, 54,--1-- 52,0, 54, 1--51,0, at the avoided
crossing (Figs. 3c and 3d).
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Fig. 3. D r i v e n  tunnel ing  near  the fundamenta l  resonance,  o~ = E 3 - E 2 ,  at S = 10-4 .  (a)  T i m e
evo lut ion  of P(O~ over  the first 2 x 10 5 t ime steps; (b) local  spectral  two-po int  corre lat ion
as obta ined  from (a)  (on ly  the lower  one  of  two  triplets is shown);  (c) quas ienergy  spectrum,
as a funct ion of  ~0 near  ~o = E3 - E2, at S = 10-4;  (d) quas ienergy  spectrum, as a funct ion of
S near  S = 10-4 ,  at co = E 3 - E2.
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In contrast, a two-photon transition that bridges the tunnel splitting
A = E 2 - E 1  is "parity forbidden," and thus the quasienergies el.k+1 and
e2,k_l give rise to an exact crossing. Equation (2.12) indicates that a
vanishing of the difference e 2 _ 1 -  e1,1 will have a drastic consequence: For
a state prepared as an exact superposition of the corresponding two
quasienergy eigenstates only, P(~'~ and all other observables become
constants, at least at discrete times nT, and thus it is possible that tunnel-
ing comes to a standstill! As discussed above, exact crossings should occur
along one-dimensional manifolds in the (S, co) plane. Figure 5 shows such
a manifold for e2, 1 = e1,1, as determined numerically: It is a closed curve,
reflection-symmetric with respect to the line S =  0, with an approximately
linear frequency dependence for A < co < E 3 - E2. Furthermore, simulations
of the dynamics show that along the linear part of that manifold, the
second necessary condition for a complete suppression of tunneling--that
the inherent time dependence of the quasienergy eigenstates, with period T,
vanish as well--is indeed approximately fulfilled. For A/2 < co < A, on the
other hand, S becomes so small on the manifold that the dynamics
approaches that of the undriven case, while for co ~ E 3 - E 2 ,  the strong
participation of a third quasienergy introduces nonzero frequencies into the
time dependence.

Various aspects of the suppression of tunneling are elucidated in
Fig. 4. A typical time evolution of P(~'~ demonstrating the suppression
of tunneling is presented in Fig. 4a. In fact, oscillations of small amplitude
remain; they can be ascribed to an admixture of higher-lying quasienergy
states to the initial state, as the local spectrum (Fig. 4c) shows. In addition,
the time dependence synchronous with the driving frequency has not
completely vanished, as is revealed by the resolved evolution of P(~~
within a single period of the driving force (Fig. 4b). Finally, a space-resolved
comparison of O(x, t) with the initial state, at a time (n = 458) where the
deviation of P(O~ from unity is exceptionally large (Fig. 4d), confirms
that the leakage of probability into the initially empty, opposite well indeed
remains extremely small: So the coherent suppression of tunneling truly
amounts to a localization of the wave packet in one of the wells.

Surprising as it is, this phenomenon appears to be an elementary
quantum interference effect. As a matter of fact, much of it can be
understood on basis of a two-state approximation

A
H(t) : ~- (-[~'1 ><Oil + 102>(02[) + A cos cot([~{,~ > <~'21 + 1~'2 > (Ip~])

(3.2)

where A is again the tunnel splitting and A = S(01] x ]02) is the effective
strength of the perturbation. In the present case, it is more appropriate to
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Fig. 4. Suppression of tunneling due to a crossing of e1,1 and ~2,-1, at co=0.01 and
S = 3.171 x 10 -3. (a) Time evolution of PCO~ over the first 21~ time steps; (b) resolved time
evolution of P~*~ over a single period of the driving force; (c) local spectral two-point
correlation function P~O~ as obtained from (a); (d) space-resolved state at n = 458 (dashed
line), compared with the initial state (full line), the dotted line indicating the unperturbed
potential.

use the  basis  p r o v i d e d  by  the states ] O L / R ) = ( I O l ) + I O 2 ) ) / X f 2 .  The
H a m i l t o n i a n  t hen  takes  the form

A
H(t) =~- (IM'L><M,~I + IM'~> <M'LI)+A cos o~t(l~L > <M,L I -  I~><,PR I)

(3.3)

so tha t  the e q u a t i o n s  of m o t i o n  for the e x p a n s i o n  coefficients of an
a rb i t r a ry  s tate  ] ~ ( t ) )  = cL(t) I ~ r )  + cR(t) I~bR) are

~L(t) = - i A cos o~t eL(t) + -~ cR(t)

A
~R(t) = - i [ - A  cos cot c~(t) +-~ cL(t)]

(3.4)

A n  a p p r o x i m a t e  so lu t i on  of this pa i r  of  coup led  differential  e q u a t i o n s  is
o b t a i n e d  if i ncomple t e  loca l iza t ion ,  i.e., 0 ~< oR(t) ~ cr(t) ~< 1, for all  t imes t,



                                    239

is assumed as an ansatz. The contribution of cR(t) to the equation of
motion of cL(t) can then be neglected, allowing for an analytic solution
of Eq. (3.4). It reads, for the right-hand well coefficient at stroboscopic
times nT,

cR(nT) = - i ~ Jo (3.5)

where Jo(x) denotes the ordinary Bessel function of zeroth order. Equation
(3.5) immediately implies that a suppression of tunneling is to be expected
if the condition

fo
S(co) - 2(~11 x ]~2) aj (3.6)

is fulfilled, where aj is the j th  zero of Jo(x).
A comparison of the function S(co) given by Eq. (3.6) with the numeri-

cally determined manifold for localization to occur (Fig. 5) shows that
this function, for j =  1, reproduces the linear section of that manifold.
Moreover, analogous manifolds, given by the subsequent zeros aj, where
exact crossings of ez,_j with el,j, j = 2, 3,..., occur, are indeed found where
predicted by Eq. (3.6). (28) Finally, the decay ~ x  -~/2, for large arguments,
of the modulus of Jo(x) implies that within the two-state approximation,
tunneling should always be suppressed for sufficiently large S.

O0
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10 1

10 3

10-5
1

. "  +++++

.4." +

- " •

f.O

Fig. 5. Two of the manifolds in the (S, co) plane where a suppression of tunneling occurs.
Data obtained by diagonalization of the full Floquet operator for the driven double well are
indicated by crosses, the full line is the result of an exact solution of the corresponding two-
state model (3.3), and the dashed lines have been obtained by the approximate condition (3.6)
derived from the two-state model (3.3).
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The two-state approximation does not account, however, for the sec-
tion of the localization manifold that bends back to S = 0 for (D ~ E 3 - E2,
due to the approach of a third quasienergy, and of course, it cannot
provide any detailed information as to the spatial aspects of tunneling.

4. ASPECTS OF THE CLASSICAL LIMIT

While the previous section has dealt with driven tunneling in the
deep quantum regime, we shall now discuss issues that are associated with
the approach toward the macroscopic realm. This includes at least two
different aspects: the increase in the phase-space scales characterizing the
system that allows the use of small-wavelength approximations and lets
finer and finer details of the classical phase space influence the quantum
dynamics, as well as the growing role of ambient degrees of freedom that
tend to reduce the complexity of the dynamics by destroying the subtler
quantum coherence effects.

A quantitative measure for the position of the system between the
quantal and the classical limit is given by the ratio of some action that
characterizes the scales of the classical structures in phase space and
Planck's constant h. Writing the unperturbed Hamiltonian of the quartic
double well in an unscaled form,

m2(D 2 p 2  re(D2 x 2 0 x 4
H~ P)=2m 4 + 6---~8 (4.1)

where (Do is the frequency of oscillations on the bottom of each of the wells
and EB is the barrier height, we can extract a characteristic action as

S =--EB (4.2)
(D o

It is proportional to the volume of phase space encircled by the separatrix
that separates motion within the wells from motion above the barrier.
Consequently, the classical limit is approached if

h h(Do
hre I (4.3)S EB

becomes small. According to the scaling used to obtain the Hamiltonian
(2.1) from the version (4.1), the identity hrei = 1/D holds, so that, with
the parameters used in Sections 2 and 3, D ~ oc corresponds to the
classical limit. This is plausible since D approximately gives the number of
unperturbed eigenenergy pairs below the barrier.
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As soon as the driving is switched on, the classical motion becomes
chaotic. In accordance with the KAM theorem, integrability is destroyed
first, i.e., for small S, in the vicinity of the separatrix. (2' 3t A further increase
of S lets the integrable areas around the potential minima shrink until they
disappear completely. Within the chaotic "sea," classical motion is diffusive.
In this way, a classical transport mechanism between the wells arises that
competes with tunneling(29~: A central question, therefore, is how these two
mechanisms will interact with one another.

Figure 6 gives an impression of the changes driven tunneling under-
3
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Fig.  6. Driven tunneling at parameter values where the corresponding classical dynamics is
dominated by chaos. (a) Classical phase-space portrait, at discrete times t~=nT; (b )  t i m e
evolution of P~~176 over the first 2 a2 time steps; (c) local spectral two-point correlation as
obtained from (b). The parameter values are D = 2, S = 0 . 1 5 ,  co = 0.876.
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goes in the classically strongly chaotic regime. As a phase-space portrait
[a plot of the classical trajectories (x(t), p(t)) at discrete times nT; Fig. 6a]
shows, the integrable islands on the bottom of each well have almost
disappeared at the parameter values chosen (D = 2, S = 0.15, co = 0.876).

The time evolution of the probability to return (Fig. 6b) looks much
more irregular, compared, e.g., to the beat pattern shown in Fig. 3a, where
only S differs from the present value (S= 10 - 4  in Fig. 3). This is consistent
with the structure of the local spectrum (Fig. 6c). It shows a large number
of significant peaks, whereas the beat pattern of Fig. 3a is dominated by
just six frequencies. However, with D = 2, the case shown here is still in the
quantal regime, where specific features of the dynamics cannot yet be
unambiguously related to structures in classical phase space.

From the various methods available to incorporate the influence of the
ambient degrees of freedom into a quantal dynamics, we restrict ourselves
here to the crudest one: Adding a noisy component to the unitary time
evolution of the system. (3~ This can be realized, e.g., by contaminating
the deterministic periodic driving f ( t ) =  S cos(cot) by noise,

f~(t) = S cos(cot) + a ~ ~n 6(t - nT) (4.4)
n

For simplicity, we have restricted the noise to a series of 3-like kicks,
synchronous with the driving frequency, so that in denotes a discrete
random process. Again for simplicity, we define it to have unit variance and
to be uncorrelated for different times. The noise strength is given by e.
Clearly, a simple construction like this may serve to study the destruction
of coherence by the environment in an unspecific way; it does not allow us
to model dissipation nor any microscopic details of the environment. In
Fig. 7, we show the results of a few numerical experiments using the noisy
driving of Eq. (4.4) in conjunction with the two-state approximation (3.3),
i.e.,

A
H(t)=~(I tpL)(~bR]+IIpR)(~pLI)+Fe( t ) ( I~L)(~pLI+I~kR)(~RI  ) (4.5)

with Fe(t)= (~1[ x [O2>fe(t). Figure 7a is based on the unperturbed
double well (i.e., S=0) ;  it demonstrates how the oscillatory flow of
probabilitY that characterizes tunneling is damped out on a time scale
increasing with decreasing noise strength and gives way to a thermalized
state where probability is fluctuating around an equidistribution between
the wells.

Figure 7b refers to a situation where tunneling is almost, but not
completely, suppressed by the coherent driving. Due to a small offset of
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Fig. 7. Influence of noise on driven tunneling. (a) Unperturbed tunneling, without noise
(dotted line), with noise of strength cr=0.0l (dashed line), and with or=0.1 (full line);
(b) driven tunneling near an exact quasienergy crossing where tunneling is suppressed,
same key as for (a). A two-state model [Eq. (3.3)] has been used with parameters
A ~ 1.895 x 10 -4,  and, for (b), S = 3.1 x 10-3, co = 0.01.

the parameters chosen from the manifold where localization occurs, the
coherent dynamics consists in tunneling on an extremely long time scale.
For weak noise, a damping of the coherent oscillation is again observed.
However, for stronger noise, the time scale for a thermalization of prob-
ability increases ! This means that localization is stabilized by noise, so that
the parameter mismatch deliberately chosen appears to be compensated. In
fact, with the parameter point placed exactly on the localization manifold,
even the slight oscillation of P(O~ that is left in the deterministic case
(see Fig. 4a) is suppressed by the noise (no figure).

This surprising behavior resembles the stabilization of classical
unstable equilibrium states by multiplicative noise, but it is not quan-
titatively understood.

5. S U M M A R Y

The present work is intended to give an overview of various aspects of
tunneling in a double well under the influence of periodic driving. The basic
notions to discuss a periodically driven quantal dynamics are provided by
Floquet theory, a time-domain analog of Bloch theory: quasienergies and
quasienergy eigenstates replace the familiar concepts of energy eigenvalues
and eigenstates, respectively. Consequently, driven tunneling is adequately
analyzed in terms of the quasienergies that contribute to the time evolution
of a state initially localized in one of the wells.

In the limits of slow and of fast driving, the familiar tunneling dynamics
is merely accelerated. Qualitative modifications occur where the quasi-
energies corresponding to the ground-state doublet of the unperturbed
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double well interact, in parameter space, with additional quasienergies.
In particular, avoided crossings can lead to quite complex quantum beat
patterns that enhance tunneling, while at specific exact crossings, which
form one-dimensional manifolds in parameter space, an almost complete
suppression of tunneling occurs. It is essentially a two-quasienergy inter-
ference phenomenon; in fact much of it can be understood in terms of a
two-state approximation of the double well.

Toward the classical limit, both diffusive transport due to classical
chaos and incoherent processes induced by the environment become signifi-
cant ingredients of the physics of the driven double well. A noisy driving,
introduced to crudely account for the influence by the environment,
destroys coherent tunneling and leads to a thermalization of probability in
the double well. Preliminary results indicate, on the other hand, that
coherent localization is stabilized by noise.

Experimental realizations of the driven double well are conceivable in
various fields. The ammonia molecule, as the paradigmatic example for
tunneling, is well described by a quartic double well with a scaled barrier
height D ~ 2. For example, in order to see coherent suppression of localiza-
tion in ammonia, a maser irradiation of wavelength 2 ~ 1 mm and intensity
P ~ 1012 W/m 2 would be necessary. A solid-state realization of the driven
double well is provided by rf-driven SQUIDs, with an external flux
~b~x=~bo/2, ~o=h/2e. For a SQUID with capacitance C =  10 -15 F, self-
inductance L =  10 -9 H, critical current Ic = 10-6A, and corresponding
plasma frequency (.Op = 1012 Hz, an injected current of frequency co = 10~~ Hz
and amplitude I =  10-a~ should lead to a suppression of tunneling.
Alternatively, an oscillating component can be added to the stationary
external flux, with the same frequency and an amplitude A~b~x = 10-19 Wb.
Furthermore, any realization of a two-state system with an off-diagonal
driving term will serve the same purpose [see Eq. (3.2)]. These realizations
naturally involve an interplay of all of the three aspects of transport in a
driven bistable system: coherent tunneling, classical chaos, and incoherent
processes. Its theoretical understanding is far from complete.
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