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Abstract. We consider a periodically driven bistable sys-
tem in the presence of fluctuations. In a number of recent
papers it has been shown that the amplitude of the re-
sponse of the noisy system to periodic modulations ex-
hibits stochastic resonance, i.e. a resonance-like behavior
as a function of the noise intensity. In this paper, we
consider the phase shift between the response and the
periodic driving. For weak periodic driving, the phase
shift also shows a resonance like behaviour as a function
of the noise strength, but this effect is shown to be of
different origin than the one responsible for stochastic
resonance. Furthermore, the phase shift is demonstrated
to exhibit a resonance-like behavior as a function of the
driving frequency.

1. Introduction

In the last years, periodically driven bistable systems in
the presence of noise have been studied in the context of
stochastic resonance [1-8]. Stochastic resonance is char-
acterized by a resonance like behavior of the response
amplitude of  the noisy bistable system on periodic forcing
as a function of the noise strength. It occurs, when the
mean first passage time out of one basin of attraction is
half the period of the driving frequency, i.e. when a sta-
tistical time scale agrees with a deterministic time scale.
In fact, the modulation is even amplified by pumping
energy from the noise source into the signal [2]. This
effect carries great potential for technological applica-
tions such as for instance for the design of detectors. It
possibly also plays a role in the information encoding
process of the brain out of neuron spike sequences [9].

In this paper, we consider the phase shift of the re-
sponse of a noisy bistable system to periodic modulations.
In case of a dynamical resonance the phase shift is
zero for vanishing driving frequency and increases in
the resonance region to reach Tc for large frequencies.
In the context of  stochastic resonance (a statistical re-
sonance), the question of  the corresponding phase shifts

has been first addressed by Gammaitoni et al. [10] and
later in a conflicting paper by Dykman et al. [11 ]. The
paper by Gammaitoni et al. is based on a two-state fil-
tered bistable stochastic process with periodic forcing,
i.e. it neglects all relaxation processes within the basins
of attraction. The paper by Dykman et al. is solely based
on linear response theory. In [11], the authors state, in
contrast to [10], that stochastic resonance is connected
with a resonance like phase shift. Our analysis in this
paper is based on a full numerical solution without any
restrictions such as small modulation strength o r / and
small driving frequencies o r / and  two-state filtering as
well as on a careful linear response study.

The paper is organized as follows: in Sect. 2, we in-
troduce the model and the basic concepts. In the third
section we present numerical results for the phase shifts
and a careful study of the phase shifts in the context of
stochastic resonance. Since our numerical results are not
restricted to small modulation strengths, we can study
our model in regimes where stochastic resonance is pre-
sent and in regimes where it is not. We show in detail
that the phase shift is not related to stochastic resonance,
but exhibits a behavior which is interesting by itself. In
the Sect. 4, we compare our numerical results both with
analytical results obtained for small modulation strength
and with a two-state approximation [2].

2. The model and basic concepts

An archetype bistable model is the overdamped motion
in a double well potential V ( x ) = b x 4 / 4 - a x 2 / 2 .  The
system is disturbed by Gaussian white noise ~ (t) with
zero mean, i.e.

<~ (t)> =0 (1)
(4 (t) ~ (t')> = 2 D 8 ( t - t ' )

and additional periodic modulations A sin ( ~ t  + ~0). The
statistical distribution of  the general unknown initial
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phase of the modulator ~0 is assumed to be uniform over 
the interval [0,2rt]. The corresponding Fokker-Planck 
equation in dimensionless variables ( x ~ x  V~b/a,t-+at, 
A---,A ~ b / a  3, D ~ D b / a  2) reads 

8 t  P (x, t; (p) = (L o + L~ (t)) P (x, t; (p), (2) 

with the operators 

L~ - c~x ( X  - -  X 3)  -~- O ~ x 2 ,  (3) 

and 

L~ = - A  ~x  sin (s + (p). (4) 

The Fokker-Planck equation describes a Markovian non- 
stationary stochastic process. One of the most significant 
characteristics of this system is that it approaches for 
large times a time-periodic probability density P~s (x, t; (p) 
[12] and that the phase averaged correlation function 
( ( x  ( t ) x ( t' ) ) ~ ) ~ , being a function of the time-difference 
t - t '  only, does not decay to zero, but approaches a time 
periodic function [12]. The spectral density, obtained as 
the Fourier transform of the phase averaged correlation 
function (a consequence of an extended version of the 
Wiener Khintchine theorem [13]) in turn shows O-spikes 
at odd multiples of the driving frequencies [12]. The 
weight of the 0-spike at the driving frequency s being 
proportional to the coherent output power P~ of the sys- 
tem, is given by the absolute square of the Fourier co- 
efficient of the first moment of the asymptotic large time 
probability density at frequency s i.e. [7] 

Pc =161r2]M2],  (5) 

where 
oo 

(x( t ) ;~0)=  ~, Mnexp(in(t2t+(0)).  (6) 
n ~  --oo 

This result is an exact result and not restricted to small 
modulation strengths or/and small driving frequencies. 
The absolute value of M~ enters the computation of the 
coherent output power (5) or equivalently, the spectral 
signal amplification at the driving frequency, i.e. [7] 

Pc P~. [M,[ 2 
i./-- - - 4  (7) Pi, 4~r2A2 A2 

The phase A of M~ determines the phase shift between 
the input signal A sin (g?t + ~o) and the Fourier compo- 
nent of the output signal at the driving frequency s by 

Ira (M 1)) 
A = ~ - - a r c t a n  Ree(M~) " (8) 

We like to emphasize here that contrary to the claims 
raised in [11] the phase shift A does not occur in the 
phase averaged correlation function ( (x  (t) x ( t ' ) )  ~ )~. 

One can show, in fact, that for large times, the phase 
averaged correlation function is given by [12] 

oo 
( ( x ( t ) x ( t ' ) ) ~ ) e = 2  ~, [M, ,]Zcos[ns  (9) 

n = l  

This result has been established further by use of analog 
simulations [3]. It has been shown in [7] that the spectral 
amplification 17 in (7) shows - similar to the signal/noise 
ratio [1,2] - stochastic resonance, i.e. it increases with 
increasing noise strength to reach for small driving fre- 
quencies a peak value much larger than unity and then 
decreases again upon increasing the noise strength fur- 
ther. The central object in this paper is the behavior of 
the phase shift in the regime, when the amplification shows 
stochastic resonance. 

3. Numerical results for the phase shift 

Using the same technique as in [14], we obtain the com- 
plex Fourier coefficients of the asymptotic mean value 
M,, in terms of matrix continued fractions [15]. The nu- 
merical errors of the results are within line thickness. In 
Fig. 1 we have compared the amplification 1/ with the 
phase shift A as a function of the noise strength for A = 0.1 
and s = 0.1. The amplification shows a resonance-like 
peak at D~0.15. In the region around this peak, the 
phase shift shows monotonic decrease for increasing noise 
strengths. For smaller values of the noise (about 50% 
smaller), however, the phase shift also shows a peak (see 
also [11 ]). In this regime, the amplification shows mon- 
otonic behavior. The question which raises at this point 
is, to what extend the peak of the phase shift is related 
to stochastic resonance, being responsible for the peak 
in the spectral amplification. Calculating the amplitude 
response and the phase shift for larger modulation 
strengths (a regime which cannot be studied within linear 
response theory), we find that the peak of the phase shift 
has disappeared while the resonance in the amplification 
is still present. In Fig. 2, we show the same quantities as 
in Fig. 1, but with A = 0.4. This results implies that sto- 
chastic resonance is not necessarily connected with a peak 
in the phase shift. 

It is also interesting to look at the dependence of the 
phase shift on the driving frequency. The amplification 
shows (see Fig. 3) monotonous decrease for increasing 
frequencies. In contrast, the phase shift shows for small 
noise strength a sharp peak at a small frequency. For 
further increasing frequency it reaches a minimum and 
then increases again. As discussed in the next section, the 
reason for this behavior is the competition between intra- 
and interwell motion. For small frequencies, the response 
of the system to periodic modulation is dominated by 
hopping dynamics, while for larger frequencies, the sys- 
tem response is dominated by relaxation motion within 
the potential wells. For increasing noise strength, the 
peak shifts to larger values of the frequency and becomes 
smoother (see Fig. 4a, b). For increasing modulation 
strength A, the maximum of the phase shift is also shifted 
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Fig. 1, The spectral amplification a is compared  for f 2 -  0.1 and 
A = 0.1 as a function of  the noise strength with the phase shift b 
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A = 1(5) as a function of the driving frequency 

to larger values of the driving frequency (Fig. 5). It is 
interesting to note that the amplitude response shows a 
"shoulder" at those values of the frequency, where the 
phase shift exhibits a relative minimum (note the different 
scales in Fig. 4). 

4. Linear response approach 

Considering the second part of the Fokker-Planck op- 
erator L~ as small compared to the first term L 0, we can 
apply linear response approximation [16]. The response 
of the system is then described as a convolution integral 

(x(t);(o)=A ~ R(t-t')sin(f#t' +~o)dt', (10) 
- - o o  

with the response function 

I -- ~ xexp(Lor)~xPst(x)dx for T > 0  
R ( ~ )  = oo 

0 for r < 0 ,  
(11) 

and Psi(X) being the stationary probability of the non- 
driven system (A = 0). Using the fluctuation theorem, the 
response function is related to the correlation function 
by [16] 

Rx~(r)=  --DR(z). (12) 

The correlation function is approximated by the sum of 
two exponentials, i.e. 

K~x ( r )=  g, e x p ( -  2mi~ r) +g2exp (-- c~), (13) 

where the first one describes hopping between the stable 
states and the second one stochastic motion within one 
region of attraction (intra-well motion) (for our particu- 
lar system: ~ = 2). For (13) to be valid, we have to require 
a sufficiently large time scale separation between hopping 
and intra-well motion, i.e. a small noise strength D. The 
yet unknown statistical weights ga and g2, can be deter- 
mined from the correlation function and its derivative at 
r = 0, yielding 

2 4 
~ m i n < X 2 ) s t  + < X  ) S t - - < X  ) s t  

g 2  J" min  - -  ~ ~ min - -  O~ ' 

gt=(Xa>st--g2, 
(14) 

where 

, ~/7~ r(n + 1/2) O_n_l/2(- 1 / 2 ~ )  (x ~ )  V~.-.  F(1/2)  D_l/2( -1 /] /~)  , (15) 

with D~ (x) being parabolic cylinder functions [17]. The 
susceptibility, i.e. the Fourier transform of the response 
functions thus reads 

~(o~)= g l / ~ ? n i n  1 o0"2 ~ 2  1 
9 2 ~ 2  O32 D 2mi~ + CO D + 

i(-o ( @l~min g2g ) 
~ ~ min -}- (.O 2 ~- ~ 2 -~- (.O 2 ' 

(16) 

Using (10) and (6), the Fourier coefficient M~ of the mean 
value (x(t) ;  ~0) is obtained as 

M~ =~/i f i (O) = ]fi(f#)lexp[iq/(g?)-i~] (17) 

with ~, (fa), being the phase of the response function 
(s This yields for the spectral amplification r/ 

r /=4  IM'I2A2 [ I ~ 1 [ )~min + ' Q 2 g 2  ~, ,2in g2~2 - , ~ ( o ) , - = L )  ~ ~ - 2 0~2 _~_ s  

2& g2 0~ min ( ~ L  mi n -~- , (~2)  ] q (18) (~L,,  + o 2) ( ~  + 0 2 )  ] ' 

and the phase shift 

Im (_~ (o)) 
A (f2)=arctan Re(/~(~2)) ~" (19) 

In the weak noise limit D-+0, the statistical weights are 
obtained by expanding the stationary mean values in 
(14, 15) according to [17] 

D 1 / 2 ( _ 1 / 2 ~ )  D - - 0  1, 2 ~  
- " -  v ( n  + 1 /2 )  

• ( 8 ;  ) (2D)'/4-n/2 (20) 
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as 

D g 2 ~ - - .  

(21) 

The amplification r/ is  then given for a finite driving fre- 
quency 

D ~ 0,  f2 : f i x e d  1 
r/ ~ (22) e 2 +  g22" 

This value agrees very well with the numerical results 
presented in the last section for small modulation strength. 
The hopping process does not contribute to the response 
of the system to periodic forcing in the weak noise limit. 
To find out the value of the noise strength where the 
hopping mechanism becomes important, we have com- 
pared in Fig. 6 the amplification in (18) with the ampli- 
fication obtained by neglecting intra-well motion (i.e. 
g2 = 0). Starting from zero noise, the agreement is very 
poor. When the phase shift starts to increase (see Figs. 1 b, 
2b) to reach its maximum, the curves approach each other 
quickly. Thus, the hopping process becomes dominant, 
when the phase shift approaches its peak (or vice verse). 

For  the phase shift we find for small noise strength 

(23) A = arctan 1 ~ - -  e " 

z~ ~ ~ : ~  c~+o 2 

For finite driving frequency, we find in the limit D--+0 

[2 
A = a r c t a n - - ,  (24) 

i.e. a finite value which is determined by the relaxation 
motion within the wells. With small but increasing noise, 
the first terms in the nominator and denominator in (23) 
are the leading terms and the (hopping dominated) phase 
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shift is then obtained as (equivalent with two-state model 
[21) 

f2 
A ~ arctan - -  (25) 

~min " 

Since ~. rain is a small quantity, i.e. 2 min ~0~, the phase shift 
in the hopping regime is much larger than in the regime, 
dominated by intra well motion. We find that the increase 
in the phase shift for small noise strength is due to the 
turnover between the regime which is dominated by intra- 
well motion and that controlled by hopping motion. The 
peak of the amplification, however, lies well within the 
hopping dominated regime. 

For  finite but small noise, the phase shift reads in the 
adiabatic limit 

A - , arctan 2rain ~'~min OC ~ exp , (26) 

whereas for large frequencies one finds from (24) 

/2 
A ~ arctan - - .  (27) 

0e 

Equation (26) explains the large slope of the phase shift 
as a function of the frequency for small frequencies, ob- 
served in our numerical study (see Fig. 4b). Both limits 
(26, 27) agree well with the numerical data for small m o d -  
ulation strength. 

5. Conclusions 

We have studied the phase shift of the response of a noisy 
bistable system subject to periodic forcing. The phase 
shift shows for weak modulation a resonance like behav- 
ior as a function of the noise strength (c.f. Fig. 1 b). The 
maximum of this resonance like curve does not coincide 
with the peak of the spectral amplification i/. There are 
even regimes, where the phase shift does not show a peak 
(c.f. Fig. 2b), in contrast to the amplification r/. We have 
identified intra-well motion dominated and hopping 
dominated regimes. The peak of the phase shift for small 
driving reflects the turnover between both regimes, while 
the stochastic resonance peak of the amplitude response 
lies well within the hopping dominated regime. In other 
words, stochastic resonance is a pure synchronization ef- 
fect of a hopping motion with an external signal (acting 
as a "clock"), while the peak of  the phase shift is due to 
competition between motion on a global and a local time 
scale; both effects are of different physical origins. 

We have found further that the phase shift and the 
response amplitude show an interesting behavior as a 
function of the driving frequency f2. The amplification 
exhibits a "shoulder-like" shape around the value of the 
frequency, where the phase shift shows a minimum. For 
increasing noise strength - as well as for increasing mod- 
ulation strength - the shoulder of the amplification and 
the minimum of the phase shift both vanish. 
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The validity of  the linear response theory has been 
shown to be very restricted. I t  fails to describe the dis- 
appearance of  the peak of  the phase shift (large driving 
amplitudes). Also, it cannot account for the dependence 
of  the peaks of the phase shift on the modulat ion strength 
(c.f. Fig. 5). We have further shown in Fig. 6 that the 
inclusion of  intra-well motion correctly reproduces the 
phase shift maximum for sufficiently small modulat ion 
(see also [ 11 ]), but does not yield the relevant corrections 
to the spectral amplification r / a round  its maximum. The 
disagreement of  numerical data with linear response re- 
sults for the response amplitude around the stochastic 
resonance peak, pointed out in [7], are thus, contrary to 
the claims raised in [11 ], due to the failure of  linear re- 
sponse theory. 
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discussions. This work has been supported by Stiftung Volkswa- 
genwerk, NATO Grant No. 0770/85. 
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