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Phase diagram of doped oxide superconductors: A slave-boson approach
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A phase diagram for the doped high-temperature superconductors is calculated, using a tight-binding
model for the electronic states in the copper oxide planes. The model includes the oxygen p (x) and p (y)
orbitals and the copper 3d(x —y ) orbitals. The hybridization between the copper d (x —y ) and the
oxygen p (x) and p (y) orbitals is considered, with the direct overlap between the p orbitals of neighbor-
ing oxygen ions. The Coulomb interaction is treated by the slave-boson mean-field theory. The system
shows a phase diagram consisting of a highly correlated metal, for general values of the doping. For
hole doping, there also exists a possible high-temperature state with completely localized d electrons.
This occurs if the bare charge-transfer energy is sufficiently large. Thus, for the stoichiometric system
there are two possible zero-temperature states; a metallic state and a charge-transfer insulator state. The
introduction of the p-p hopping matrix element has a significant effect on the phase diagram. The
paramagnetic phase of La2Cu04 is found to be metallic. The mean-field theory does not include the
effects of the antiferromagnetic ordering, that could open an antiferromagnetic Slater gap in the metallic
system.

INTRODUCTION

The stoichiometric high-temperature superconductors
are insulating and antiferromagnetic, ' however the origin
of the insulating gap remains unknown. Several possibili-
ties have been considered. One possibility is that the insu-
lating gap induced by the antiferromagnetic order.
Another is that the gap is the Mott-Hubbard ' band
splitting due to the large interaction between the holes on
a Cu ion. This latter picture has been modified by in-
cluding the 0 p bands which lies between the lower and
upper Hubbard bands leading to the charge transfer insu-
lating state. On introducing extra electrons or holes in
the Cu-0 planes, the Neel temperature is reduced and the
antiferromagnetic order disappears. Photoemission ex-
periments show that on doping away from half filling new
states appear. The Fermi level is pinned to these states
and the intensity associated with this narrow Fermi-level
peak keeps growing until the metallic state is reached.
For highly doped systems, Fermi-surface measure-
ments ' agree with calculated electronic structures. ' '
Thus, the states at the Fermi level may be coherent quasi-
particle' ' states.

At the stoichiometric composition, slave-boson
theories' ' shows two distinct types of behavior, either
metallic or insulating, depending upon the strength of the
effective hybridization matrix element compared to the
bare charge transfer gap. ' ' In this Brief Report the

I

phase diagram of the oxide superconductors is examined
using a parametrization"' ' of the Cu and 0 bands.

SLAVE-BOSON MEAN-FIELD THEORY

ao+II (2.1)

where IIo represents the one-body terms and Hl the in-
teractions between the electrons. The geometry and the
wave functions are depicted in Fig. 1. The kinetic energy
terms of the Hamiltonian can be written as

The relevant low-energy ionic states of Cu are Cu +
and Cu+, corresponding to the 3d and 3d '
configurations. For the stoichiometric system, the Cu
ions are in a 3d and the 0 ions in a 2p configuration.
The tenfold degeneracy of the 3d band is broken by the
crystal field splitting into a fully occupied sixfold degen-
erate t2g band and a partially occupied fourfold degen-
erate e band. The latter is split due to a Jahn-Teller dis-
tortion into a fully occupied d (3z —r ) level and a
singly occupied d (x —y ) orbital. The crystal field is as-
sumed to lower the energy of the out-of-plane p (z) orbit-
al and leave the p (x) and p (y) orbitals degenerate.
Therefore, only the electronic states composed from the
copper d (x —y ) orbital and the p (x) and p (y) orbitals
of the 0 ions are considered. The total Hamiltonian is
written as

Hp= QEp(p„p mp„z m+py z mpy t, ~ )+ +Eddy ~dg ~

+ g[2Vcos(k a/2)(p„z dz +d~ p z )+2Vcos(kya/2)(py I, dz +dz py ~ ) j
k, m

—+4t cos(k„a/2)cos(kya/2)(py, ~, p, ~, +p, ~, py, k, m )
k, m

(2.2)
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FIG. 1. The real-space structure of the two-dimensional
copper oxide planes. The form of the copper 3d (x —y ) and
the oxygen p (x) and p (y) orbitals are shown schematically.

where N, is the number of unit cells in the lattice, a is the
linear dimension of the unit cell, and dk, p &, and
p &, respectively, create an electron with spin I, in the
Bloch state labeled by wave vector k in the bands com-
posed of the d (x —y ), p (y), and p (x) orbitals. The
spin index m, takes on 1V distinct values. The first term
represents the binding energy of the degenerate 0 p (x)
and p (y) orbitals, and the second term the binding ener-
gy of the Cu 3d's. The third and fourth terms are the hy-
bridization of the d with the p (y) and p (x) orbitals on
the neighboring 0 ions. The last term is the direct hop-
ping of electrons between the p (x) and p (y) orbitals on
neighboring ions. The slave-boson field is introduced to
eliminate Hl which represents the interaction between
the holes on the same Cu ion, Udd. The interaction U

I

between holes in the orbitals of the same 0 ion is smaller
and has been shown' not to appreciably affect the elec-
tronic structure, so we shall neglect this interaction.
Also, the interaction U d between the p electrons and d
holes is estimated to be the smallest parameter in the
Hamiltonian.

The above Hamiltonian is diagonalized using the stan-
dard, infinite Udd, mean-field slave-boson approximation,
in which no more than one hole is allowed to be present
on a Cu ion. This involves a constraint on a scalar boson
amplitude Bo, and results in the d level energy Ed and the
hopping matrix element V being self-consistently renor-
malized to Ed and V', respectively. The self-consistency
equations allow for the trivial solution BO=O, where the
constraint implies that the number of electrons in d
(x —y ), per site is unity. In this state the d quasiparti-
cle weight is zero, and the d level is dispersionless as it is
uncoupled to the p bands because the effective hybridiza-
tion matrix element V is zero.

For electron doping, this trivial solution representing a
state with localized d electrons cannot occur. Thus the
localized is restricted to the case of hole-doped systems
5(0, and occurs at high temperatures when the bare
charge transfer energy Ed Ep is suf5ciently large.

The self-consistency equations always have nontrivial
solutions, at zero temperature. Thus, for hole doping,
there exists the possibility of a second-order transition be-
tween the coherent metallic phase and the incoherent
phase as the temperature is increased. The critical tem-
perature T, above the d states localize is given by the
solution of

(cosk„a/2+cosk a/2) [Nf(E 4t cosk a/—2cosk a/2) N+1]—
Ed Ed = V 2/N—,g .

k (E„* E+4t cosk—„a/2 costa /2)
(cosk„a/2 cosk a/—2) [Nf(E~+4t cosk a/2cosk a/2) —N+1]+

(Ed E 4t cosk —a/2—cosk a/2)
(2.3)

p(T)=E +k~T ln[4N/ —5]
+kz T ln g I (2n)!/(n! ) ] (t /kz T)~"

n=0
(2.4)

when k&T))t, and then would fall in the band at zero
temperature. As the chemical potential is pinned to the d
level at low temperatures, the d level also becomes degen-
erate with the p bands. From this, one finds a minimum
value for the bare charge transfer energy Ed —E above

where the renormalized d energy level Ed is related
to the chemical potential, p, ( T), via
Ed =p(T) kz T log, (N ——1). For hole doping any
second-order instability of the low-temperature coherent
phase can be inferred from the temperature dependence
of the above equation. For a finite value of the hole dop-
ing —5~ and as the temperature decreases to zero, the
chemical potential p(T) will decrease and eventually be-
come degenerate with the p bands, first varying according
to

which the incoherent phase may occur, at temperatures
T)T, . For Ed —Ep below this minimum value, the
coherent state does not have a second-order transition to
the incoherent state.

The sign of t plays an important role in (2.3) such that
the critical temperature T, is drastically smaller for nega-
tive t than for positive t. The dependence on the sign of t
occurs as the d level hybridizes with the combination,
cosk a/2~px )+cosk a/2~py ), which for small k values
corresponds to the combination ~px )+ ~py ) that diago-
nalizes the p (x)—p (y) hopping terms, t. Since for posi-
tive values of t this is the bonding p orbital, which is ener-
getically far removed from the d level, the hybridization
process is relatively inefficient, compared with the nega-
tive t case.

At the stoichiometric composition, where 6=0—,the
dependence of the effective charge transfer energy
Ed Ep on temperature shows that the critical tempera-
ture T, is close to zero. Since the upper band is of
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(Ed E),=4i V~
—(4t ) /2+—t2/V, (2.6)

whereas for small values of
~
V/4t ~, the phase boundary is

given by the expression

(Ed E),=4~t—~+4V Ivr~t~ln[~/2 4r/V~ ] 2V / —r~;
t (0, (2.7)

(Ed E, ),=4lr—1+2(1—2/~)V'Ilrl; r &0.
Using positive t, the (Ed E)/4t = 1—.077 and

~ V~ /4t =0.615, extracted from tight-binding fits to LDA
electronic-structure calculations, ' ' one finds that for
6=0 La2Cu04 ought to be in the coherent phase. How-
ever, the effect of the term U d that has been neglected in
the analysis will tend to stabilize the incoherent phase.
The critical value of the bare charge transfer energy that
we find, (Ez E),/4t=2. —1, is above most values to be
found in the literature. This conclusion is similar to the
results of Ref. 18. The phase diagram for 5=0 is shown
in Fig. 2.

predominantly d character, (2.3) may no longer be
satisfied if the bare charge transfer energy Ez —E~ —4~t~
is sufficiently smaller than V . That is, by decreasing the
relative strength of the bare charge transfer energy, the
states at the Fermi energy can delocalize at low tempera-
tures. The phase boundary for this delocalization transi-
tion strongly depends upon the sign of t, as inferred from
the zero temperature limit. For k=(Ed E~—)I4~t~ ) 1,
(2.3) takes the form

Ed Ep =—( Ed E~ )—

+4V /art [m/2 K. (k—)
+(Ed E)/—4t [K(k)—E(k) j ],

(2.5)
where K(k) and E(k) are the first and second elliptic in-
tegrals, " and the summations are divergent for k (1.
The left-hand side possesses a minimum, as a function of
(Ed E~ )/4~t~, —which implies that the value of the bare
charge transfer energy Ed —E is at the boundary be-
tween the localized and itinerant phases. This phase
boundary line has the asymptotic large

~
V/4t

~
form

The nature of the phase boundary, can be found by ex-
amining the limit 6—+0+ of the electron-doped phase,6)0. This phase is metallic with the effective hybridiza-
tion matrix element V* is greater than 5' V. There is al-
ways a nontrivial solution of the T=O self-consistency
equations for arbitrary 5 and bare charge transfer ener-
gies. In the limit 5~0+, and for large ~Ed E~—

~
the

solution has a small value for V* and the effective charge
transfer energy Ed —E is of the order of Ed —E . Since
for hole doping the effective charge transfer energy, ob-
tained by considering the T =0 limit, is limited to values
less than 4~t~(1+5/4N) one concludes, ' that for large
bare transfer charge energies there is a discontinuity in
Ed, hence p(0), when going from infinitesimally small
positive to negative 5. This discontinuity is indicative
that the stoichiometric system is a charge transfer insula-
tor, when the parameters lay in the region above the
phase boundary shown in Fig. 2. Thus, one is lead to the
speculation that the CuO planes ought to be metallic in
stoichiometric LazCu04, and the observed insulating
behavior is due to the existence of three-dimensional anti-
ferromagnetic ordering which opens up a gap at the Fer-
mi surface.

The total quasiparticle density of states is shown in
Fig. 3, for 6=0, where it can be seen that there exist
three structures near the Fermi energy, a Van Hove
singularity at E, a band edge at

E=(Ed +E 4t)/2+[IEd —E+4t)/2} —+8V* ]'~,
and the highest energy Van Hove singularity is found at

E =(Ed +E )/2+ [I(Ed E)/2]2+—4V*2]'~~ .

Only two of these peaks are below the Fermi energy.
This is due to the electronic correlations which varies Ed,
producing a sheet of nonhybridizing p bands at the Fermi
surface in addition to the sheet due to the hybridized d-p
bands. The nonhybridizing p states contribute a sheet
given by the solution of

p =4
~
t

~
cosk a /2 cost a /2 (2.8)

and the hybridized p and d sheets are given by the solu-
tion
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FIG. 2. The T=0 phase diagram for zero doping, 5=0, the
localized phase occurs .for large values of the bare charge
transfer gap (Ed —E~ —4t)/4t, and the itinerant phase occurs
for the smaller values. The asymptotic variation of the critical
boundary is the dashed line. The estimated position of La2cu04
is marked with an x.

2 3

( units of t )
FIG. 3. The energy dependence of the quasiparticle density

of states. The units are those of quasiparticles states per unit t,
and energy is given in units of t. The zero of energy is defined to
be E~, and the Fermi energy is given by @=3.05t.
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cos k„a/2=(p E—)[(lJ, E—d )(p E—)—4V* cos k a/2](4I V* (p —E )+(t(p E—d ) 2—V* I4t cos k a/2])
(2.9)

These sheets touch at k„=k =2cos '(lj, /4t). The vari-
ation of the Fermi energy p and Ed* with 5 is such that
the hybridized d-p portion of the Fermi surface avoids
perfect nesting. This happens since, the upper p-d band
does not hybridize along the lines k„=+k, therefore the
system may lower its energy by emptying some of the
upper band states along other directions and recovering
the bonding energy due to the hybridization.

CONCLUSIONS

The phase diagram of the isolated CuOz planes of the
high-T, superconductors has been calculated in the
mean-field approximation, using the slave-boson tech-
nique. The mean-field approximation is expected to be
exact for the case of infinite degeneracy or vanishing
I/N. This approximation has been thoroughly investi-
gated in the context of the single impurity Anderson
model, where it is found that an expansion in powers of
1/N yields good agreement with the exact Bethe ansatz
results. Despite this agreement, doubt has been cast on
the reliability of the mean-field approximation in
describing systems with a finite value of N. A study of an
exactly soluble atomic system has been performed, for
which there is a phase transition as a function of N. Al-
though the restrictive conditions imposed on the exactly
soluble model do not hold for the Hamiltonian (2.1),

some caution should be exercised in judging the reliabili-
ty of extrapolating results which are exact in the limit
N ~~, to the physical values of N.

In the mean-field approximation the direct p to p hop-
ping has the effect of moving the boundary between the
coherent and incoherent phases to larger charge transfer
energies. The large magnitude and the sign of the p —p
hopping matrix element, relative to the p —d hybridiza-
tion matrix elements, has a strong effect on the position-
ing of the phase boundaries. At low temperatures the
systems are in the coherent portion of the phase diagram
for positive and negative values of the doping. However,
inclusion of the nearest-neighbor Coulomb interaction
U~d should increase the tendency for the formation of the
incoherent state, and the charge transfer insulating state
could be stabilized at the stoichiometric composition.
The low-temperature insulating behavior in the
stoichiometric systems could be attributed to the opening
up of an antiferromagnetic Slater gap at the Fermi sur-
face.
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