
                            
             

Localization and tunneling in periodically driven
bistable systems
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Department of Physics, University of Augsburg, Memminger Str. 6, W-8900 Augsburg,
Germany

The quantum dynamics of a quartic double well, subjected to a harmonically oscillating
field, is studied in the framework of the Floquet formalism. The modifications of the familiar
tunneling process due to the driving are investigated numerically and explained in terms of
the local quasienergy spectrum. In particular, there is a one-dimensional manifold in the
parameter space spanned by amplitude and frequency of the driving force, where tunneling is
almost completely suppressed by the coherent driving. The influence of dissipation is also
discussed.

1. Introduction

Bistable systems are abundant in physics, from the microscopic to the
macroscopic realm. On the macroscopic level, bistability represents a basic
concept in nonlinear dynamics. In quantum mechanics, on the other hand,
bistable potentials are associated with a paradigmatic coherence effect: tunnel-
ing [l]. Accordingly, this class of systems represents a particularly promising
field to study the interplay of classical nonlinearity and quantum coherence,
and the way it is reflected in phase-space transport.

In the present work we investigate the influence of periodic driving on the
quanta1 dynamics in a bistable potential. Being equivalent to adding one more
degree of freedom, external driving is capable of qualitatively altering the
dynamics: e.g., in the classical limit, it can render a bistable system chaotic
[2,3]. Here, however, we concentrate on the alterations of the tunneling
process, due to the driving, in the deep quanta1 regime: They take the form of
mere quantitative changes of the tunnel splitting, from its complete vanishing
up to its augmentation by orders of magnitude, as well as of qualitative changes
as a consequence of the admixture of additional levels, beyond the ground-
state doublet.
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Periodic driving is simple enough to still allow, by way of its discrete
time-translational symmetry, for a systematic analytical treatment: The Floquet
formalism provides a generalization of the notions of energy eigenvalues and
eigenstates to periodically time-dependent systems [4-71. Since its validity is
not restricted to small amplitudes of the driving nor to large characteristic
actions, we need not resort to perturbative or semiclassical methods. Further-
more, the Floquet formalism obviously enables to go beyond the two-state
approximation commonly used in the context of tunneling.

In section 2, we present our working example, a harmonically driven quartic
double well, and introduce some analytical concepts for later reference, such as
the Floquet operator and the local spectrum. Section 3 contains our principal
results. They form a survey of the coherence phenomena that replace tunneling
in various regimes of the parameter space spanned by amplitude and frequency
of the driving force. Aspects of the classical limit - the influence of chaotic
classical dynamics and of incoherent processes induced by the environment -
are briefly addressed in section 4. In section 5, we give a summary of our
results.

This contribution is partially based on results originally published in earlier
works by the present authors [S-11].

2. The periodically driven double well

The system we study is a quartic double-well potential driven by a mono-
chromatic force. Its Hamiltonian reads, in dimensionless variables,

H,(x; t) = sx cos(wt) )

where D denotes the barrier height, and S and w are the amplitude and
frequency of the driving force, respectively.

In systems with a discrete time-translational symmetry, a stroboscopic time
evolution is generated by the Floquet operator [12-1.51, the propagator over a
single period of the time-dependent force,

U= U(T,O)= Texp(-i[drH(i)), (2)
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where 1 denotes the time-ordering operator. Therefore, U may be called a
quantum map. According to the Floquet theorem, its eigenstates take the form

Iced) = exp(-i%f)b#&)) , with I+,(t + T)) = 14,(t)) . (3)

The eigenvalues .c, are called quasienergies. In fact, each of them is a
representant of an infinite class of eigenvalues E,.~ = E, + ko, k =
0, tl, 22,. , . . The E~,~ correspond to solutions equivalent to eq. (3), as is
obvious if one defines I+,,,) = exp(ikwt)(4,). In other words, the quasienergy
spectrum is cyclic, i.e., defined mod w, similar to the Brillouin-zone structure
in the solid-state context.

Another, more special symmetry of the system described by the Hamiltonian
(1) goes back to the inversion symmetry x-+ -x, p-+ -p, of phase space for
the time-independent system H,( p, x). This symmetry is destroyed by an
arbitrary periodic driving term, but for the harmonic time dependence chosen
here, the relation cos(wt + rr) = -cos(ot) allows for invariance under the
operation

P: x+-x, P-+-P3 t+t+$T. (4)

P forms a unitary symmetry and may be regarded as a generalized parity. As a
consequence, the basis formed by the Floquet eigenstates can be divided into
an even and an odd subset.

A quantity that provides some condensed information on the transport of
probability between the two wells of the bistable potential, and that allows to
relate this information directly to the relevant structures in the quasienergy
spectrum, is the probability to return [16,17],

P ?‘) = I(~(nT)I~(0))12 = I~w)lww))12 , (5)

defined with reference to some initial state Iv(O)), and with time restricted to
a discrete series t, = nT, n = 0, ?l, 52, . . . . The role of the quasienergies for
this time evolution is made explicit by expanding eq. (5) in the Floquet basis,

P?‘) = 5-l + a~y4i(e, - E,)nTl I(~~~~(0))~2~(~~I~(O))~2.(6)

Here, c-‘, the diagonal part excluded from the double sum in eq. (6), gives the
long-time average of P:(O). The spectral counterpart of P:(O) is the two-point
cluster function P~(“‘(~) of the local Floquet spectrum [16-191. It is related to
Pzco’ by Fourier transformation and thus contains all the frequencies involved
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in the time evolution of PTCO’, weighted according to their relative significance
for the specific dynamics starting from (q(O)).

3. Driven tunneling

In the present section, we discuss the modifications imposed on the familiar
tunneling dynamics, due to periodic driving. That is, we concentrate on the
time evolution, under the external force, of a state that is initially prepared as
an approximation to a superposition of the two lowest unperturbed eigenstates,
I& y> = (]I) * ]2))/fi, centered in one of the two wells. Accordingly, we trace
the quasienergy doublet that corresponds to the unperturbed energies E, and
E,, through the parameter space spanned by amplitude S and frequency w of
the driving force. Thereby, we exclude dynamical complexity due to mere
preparation effects from our investigation.

There are two regimes in the (S, 0) plane where tunneling is not quali-
tatively altered: Both in the limits of slow (adiabatic) and of fast driving, the
separation of the time scales of inherent dynamics and external force effective-
ly uncouples these two processes and is reflected in a mere renormalization of
the tunneling rate A(S, w). Specifically, as both an analytical treatment and
numerical experiments show [8], the driving always reduces the effective
barrier height and thus augments the tunneling rate in the two limits at issue.

Qualitative changes in the tunneling behavior are expected as soon as the
driving frequency becomes comparable with the internal frequencies of the
double well, i.e., in particular, the tunnel splitting A = E, - E, and the
so-called resonances E, - E,, E, - E, , E, - E,, , . . . A physical understanding
of the temporal complexity in this regime is obtained by relating it to the
“landscape” of quasienergy planes F~,~ (S, 0) in parameter space. Features of
particular significance are close encounters of quasienergies: Two quasienergies
approaching each other form an exact crossing if they belong to different parity
classes, otherwise the crossing will be avoided.

We discuss two specific instances of the quasienergy spectrum with the
corresponding tunneling dynamics, one of them featuring an avoided crossing,
the other an exact one. The “single-photon transition” at w = E, - E2 is called
the fundamental resonance. At S = 0, it corresponds to a crossing between the
quasienergies E~,~ and E~,~ _ 1 and, for S > 0, forms an avoided crossing, since
the corresponding eigenstates have equal parity. Fig. la shows the time
evolution of P:(O), at the fundamental resonance (D = 2, S = 2 X lo-‘, w =
0.876), for an initial state prepared as the ground state of a harmonic oscillator
approximating one of the wells, i.e., a Gaussian approximation of 1 I, r) . The
monochromatic oscillation of PKCo’ characteristic of unperturbed tunneling has
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Fig. 1. Driven tunneling at the fundamental resonance, w = E, - E2. (a) Time evolution of Pr’“’
over the first 2 x 10’ time steps; (b) corresponding local spectral two-point correlations. The
parameter values are D = 2, S = 2 x lo-’ and w = 0.876.

given way to a more complex beat pattern. The two-point correlation P:“‘(T)
of the local spectrum reveals that these beats are mainly composed of two
groups of three frequencies each (fig. lb), which can be identified, in turn, as
the quasienergy differences E~,_~ - E~,~, E~,~ - ~i,~, ~~,_r - ~r,~, and E~,_~-
E~._~, e4,_r - E*,~, E~,_~ - e,,,, at the avoided crossing.

In contrast, a two-photon transition that bridges the tunnel splitting A is
“parity forbidden”, and thus the quasienergies E~,~+~ and E* k_ 1 give rise to an
exact crossing. Eq. (6) indicates that a vanishing of the difference Ed,_, - el,,
will have a drastic consequence: For a state prepared as an exact superposition
of the corresponding two quasienergy eigenstates only, P:(O) and all other
observables become constants, at least at discrete times nT, and thus it is
possible that tunneling comes to a standstill! According to an argument going
back to von Neumann and Wigner [20,21], exact crossings should occur along
one-dimensional manifolds in the (S, o) plane. Fig. 2a shows such a manifold
for cz,ml = +, as determined numerically: it is a closed curve, reflection-
symmetric with respect to the line S = 0, with an approximately linear fre-
quency dependence for A 5 w =S E, - E,. A typical time evolution of P%(O) for
parameter values on the linear part of that manifold (D = 2, S = 3.171 x 10P3,
w = 0.01) is presented in fig. 2b. With P:(O) staying essentially constant around
a value Sl, it clearly demonstrates the suppression of tunneling. Remaining
oscillations of small amplitude can be ascribed to an admixture of higher-lying
quasienergy states to the initial state. In addition, the time dependence
synchronous with the driving frequency has not completely vanished, as is
revealed by the evolution of P*(‘)(t), resolved within a single period of the
driving force (fig. 2~). In fig. 2d, we compare I( ?P(t)(x)l’, at a time (t = 458T)
where the deviation of P, q(o) from unity is exceptionally large, with the initial
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Fig. 2. Suppression of tunneling at an exact crossing, E?,_ , = E, , (a) One of the manifolds in the
(S, o) plane where this crossing occurs (data obtained by diagonalization of the full Floquet
operator for the driven double well are indicated by crosses, the full line has been derived from a
two-state approximation, the arrow indicates the parameter pair for which parts (b)-(d) of this
figure have been obtained); (b) time evolution of PT”” over the first 1000 time steps; (c) time
evolution of PVC0 (t) within the first period of the driving; (d) I(P(t)lx) 1’ at t = 458 T (full line).
compared with the initial state (dashed line, the dotted line indicates the unperturbed potential).
The parameter values are D = 2, S = 3.171 X 10-’ and w = 0.01, so that w equals 52.77 times the
unperturbed tunnel splitting.

state: This confirms that the leakage of probability into the initially empty,
opposite well indeed remains extremely small. So the coherent suppression of
tunneling truly amounts to a focalization of the wave packet in one of the wells.

This phenomenon appears to be an elementary quantum-interference effect.
In fact, much of it can be understood on basis of a two-state approximation. It
is achieved by solving the equations of motion for the expansion coefficients of
a localized initial state in the Hilbert space spanned by the unperturbed
ground-state doublet 11)) 12). The two-state approximation predicts an infinite
number of manifolds where localization occurs and yields analytical expressions
for them [11,22].
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4. Influence of dissipation

The approach towards the macroscopic realm comprises, at least, two
different aspects: the increase in characteristic phase-space scales allows the
use of small-wavelength approximations and lets finer and finer details of the
classical phase space flow show up in the quantum dynamics, while the growing
role of the ambient degrees of freedom tends to reduce the complexity of the
quantum dynamics of degrading coherence effects. We shall here restrict
ourselves to the latter aspect (for semiclassical studies of driven tunneling, see
refs. [23,24]) and present some preliminary results on the influence of dissipa-
tion on the quantum dynamics of the driven double well.

We incorporate dissipation by coupling the system at issue to a heat bath,

H(P> X; {bi, by}; ‘)= H,,(py X; t) + H,(x; {b;, bt}) + H,({bi, bl}) )

~,(~;{b,,bt})=~C(g,b,+g*bf), H,({b,,bt})=Cwi(btbi+~),
I I

(7)

with frequency wi, second-quantization operators b;, bit, and coupling constant
gi for the ith reservoir oscillator. Proceeding in a similar way as in ref. [25], we
use the density operator in the Floquet basis, reduced to the double-well
degree of freedom, as the basis of our description, and resort to the usual
rotating-wave and Markov approximations. This allows to derive the equation
of motion for the density matrix 5 (in the interaction picture) in the form of a
master equation [25],

comprising a closed subset of equations for the approach of the diagonal
elements towards a steady state, and another subset describing the decay of the
non-diagonal elements. The coefficients WPv depend on the coupling constants
and on the quasienergies and will not be given here. They determine the
damping constant y characterizing the motion in the classical limit of eq. (8).
This master equation serves as a basis for numerical investigations of the
dynamics. Within the approximations made, it amounts to a quantization of the
driven Duffing oscillator [26].

Fig. 3a shows the time evolution of PzCo’ = tr[c+(nT) o(O)] with an initial
state a(O) = IF(O)) ( U(O)1 and parameters of H,,, as in fig. 1, but with a finite
damping constant y = 4 x lo-‘, at zero temperature. The complex quantum
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Fig. 3. Driven tunneling with dissipation. (a) Time evolution of PzCO’ over the first 2 x lo5 time
steps; (b) corresponding local spectral two-point correlations. The parameter values are as in the
corresponding conservative case shown in fig. 1 (repeated here in dashed lines), but with a finite
damping constant, y = 4 x lo-‘, at zero temperature.

beats characteristic of the corresponding conservative system (dashed line) die
out and give way to a steady state with a finite constant value of PzCo’ (in a
periodically driven system, the steady state may still possess a time depen-
dence, with the period of the driving, which however is invisible in a strobo-
scopic plot like this). The broadening of the quasienergy levels, due to the
incoherent transitions described by eq. (8), can be read off the Fourier
transform of PzCo’, fig. 3b.

A phase-space distribution (specifically, the Husimi distribution [27]) for a
steady state of the dissipative driven double well, at the parameter values
D = 2, S = 0.15, w = 0.876, y = lo-” and T = 0, is presented in fig. 4. A
detailed study of the dissipative dynamics will follow [28].

Fig. 4. A steady state of the driven double well with dissipation, represented as its Husimi
phase-space distribution. The parameter values are D = 2, S = 0.15, w = 0.876, y = lo- ‘, at zero
temperature.
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5. Summary

The present work is intended to give an overview over various aspects of
tunneling in a double well under the influence of periodic driving. The basic
notions to discuss a periodically driven quanta1 dynamics are provided by
Floquet theory, a time-domain analogue of Bloch theory: Quasienergies and
quasienergy eigenstates replace the familiar concepts of energy eigenvalues and
eigenstates, respectively. Consequently, driven tunneling is adequately ana-
lyzed in terms of the quasienergies that contribute to the time evolution of a
state initially localized in one of the wells.

In the limits of slow and of fast driving, the familiar tunneling dynamics is
merely accelerated. Qualitative modifications occur where the quasienergies
corresponding to the ground-state doublet of the unperturbed double well
interact, in parameter space, with quasienergies corresponding to higher-lying
unperturbed eigenenergies. In particular, avoided crossings can lead to quite
complex quantum beats, while at specific exact crossings, which form one-
dimensional manifolds in parameter space, an almost complete suppression of
tunneling occurs. It is essentially a two-quasienergy interference phenomenon,
in fact much of it can be understood in terms of a two-state approximation of
the double well.

Towards the classical limit, both diffusive transport due to classical chaos
and incoherent processes induced by the environment become significant
ingredients of the physics of the driven double well. A dissipative dynamics,
introduced by coupling the double well to a heat bath, leads to a broadening of
the quasienergy lines and to a corresponding decay of the coherence phenom-
ena observed in the conservative case. The steady states approached by this
system form the quanta1 analogues of the attractors of the Duffing oscillator.
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