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We study the crossover from coherent transport by tunneling to diffusive transport through classically chaotic
phase-space regions, and the corresponding changes in the spectrum. The harmonically driven quartic double
well is used as a working model and treated numerically in the framework of the Floquet formalism. We find a
transition from exponentially small tunnel splittings to level separations of the order of the mean level distance,
when the corresponding classical dynamics becomes dominated by chaotic diffusion.

1. I N T R O D U C T I O N

In periodically driven bistable systems with a
discrete symmetry,  tunneling coexists with dif-
fusive classical t ranspor t  through chaotic phase-
space areas [1-5]. In this work, we address the
question how the tunnel splittings reflect the on-
set of chaotic motion in the corresponding classi-
cal system.

A rule-of-thumb known from quantum chao-
logy says that  eigenstates spread over classically
chaotic phase-space areas show level repulsion,
while those localized in regular regions have un-
correlated eigenvalues. Accordingly, we start
from a simple working hypothesis: The tunnel
splitting is correlated with the overlap of the asso-
ciated pair of eigenstates with the globally chaotic
part  of the classical phase space. It  grows from
an exponentially small value to a size comparable
with the mean level separation as the correspond-
ing pair of tori dissolve in the chaotic sea.

2. T H E  M O D E L

We consider a cosine-driven quartic double
well, described by the Hamiltonian (in dimension-
less units),

g ( x , p ; t )  = go(x ,p)  +xScos(wt) ,
p2 1 - x 2 + ~ 1  x4 (1)

H0(x,p)  - 2 4 64D "

Here, S and ~ denote the amplitude and fre-
qnency, respectively, of the driving force. The
barrier height D gives approximately the number
of doublets below the barrier. For our numerical

studies, we set D = 8 and w = 0.95 throughout.
The model (1) possesses two discrete symme-

tries, the periodicity of the driving force (t
t + 27r/w) which allows to use the Floquet formal-
ism, and a generalized pari ty (x --* - x ,  p --* - p ,
t --* t + r /w) .  It implies that  the Floquet states
are either even or odd, and gives rise to the tunnel
doublets which form the subject of our study.

3. F L O Q U E T  S T A T E S  A N D  C L A S S I C A L
P H A S E  S P A C E

As a representation of the Floquet states
I¢~(t)) = exp( - i e~ t ) I¢~( t ) )  in classical phase
space, we use the Husimi distribution h~(x,p; t)
of I¢~(t)), defined as a projection onto coherent
states of the harmonic oscillator that  approxi-
mates the motion on bo t tom of each well.

In particular, we consider the "low-lying" Flo-
quet eigenstates whose t ime-averaged energies,
for S --+ 0, approach eigenvalues En,p of H0 below
the barrier, where p denotes pari ty (even / odd).

As a crude measure inhowfar a Floquet s tate
belongs predominantly to the chaotic layer A
around the separatrix, we calculate the overlap
Fn(t) = fA dpdx h~,e(x,p; t) of the correspond-
ing Husimi distribution with A.

4. R E S U L T S

In Fig.l ,  we compare the S-dependence of the
tunnel splittings AN = Ie~,e -- Cn,ol (part  a) with
that  of the overlaps (b) for the "lowest" seven
doublets. It clearly shows a qualitative agree-
ment: Both quantities exhibit a marked increase
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Figure 1. Tunnel splittings (part a) and overlaps with the chaotic layer (b) for the seven lowest tunnel 
doublets, as functions of the amplitude S of the driving force. 
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Figure 2. Husimi distribution (in gray-scale representation) for [~4,e(0)), compared with the correspond- 
ing classical phase-space portraits, at S -- 10 -5 (part a) and S = 0.2 (b). 

as soon as chaotic behaviour begins to domi- 
nate the classical dynamics. This correlation is 
substantiated by comparing (Fig.2) h4,~(x,p; 0), 
at an S-value below the transition (part a) and 
one above it (b), with the corresponding classical 
phase-space portraits. It demonstrates that the 
increase of the overlap Fn actually reflects both 
the growth of the classically chaotic phase-space 
region, and the change in position and shape of 
the individual eigenstates belonging to the tun- 
nel doublet n. Insofar the naive picture sketched 
in the introduction is confirmed. However, in or- 
der to obtain a more quantitative understanding, 
a semiclassical description, in terms of path in- 
tegrals, of the interplay of tunneling and chaotic 
diffusion is required. 
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