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We study the crossover from coherent transport by tunneling to diffusive transport through classically chaotic
phase-space regions, and the corresponding changes in the spectrum. The harmonically driven quartic double
well is used as a working model and treated numerically in the framework of the Floquet formalism. We find a
transition from exponentially small tunnel splittings to level separations of the order of the mean level distance,
when the corresponding classical dynamics becomes dominated by chaotic diffusion.

1. INTRODUCTION

In periodically driven bistable systems with a
discrete symmetry, tunneling coexists with dif-
fusive classical transport through chaotic phase-
space areas [1-5]. In this work, we address the
question how the tunnel splittings reflect the on-
set of chaotic motion in the corresponding classi-
cal system.

A rule-of-thumb known from quantum chao-
logy says that eigenstates spread over classically
chaotic phase-space areas show level repulsion,
while those localized in regular regions have un-
correlated eigenvalues. Accordingly, we start
from a simple working hypothesis: The tunnel
splitting is correlated with the overlap of the asso-
ciated pair of eigenstates with the globally chaotic
part of the classical phase space. It grows from
an exponentially small value to a size comparable
with the mean level separation as the correspond-
ing pair of tori dissolve in the chaotic sea.

2. THE MODEL

We consider a cosine-driven quartic double
well, described by the Hamiltonian (in dimension-
less units),

H(z,p;t) = Ho(z,p)+ xS cos(wt),
2
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Here, S and w denote the amplitude and fre-
quency, respectively, of the driving force. The
barrier height D gives approximately the number
of doublets below the barrier. For our numerical

studies, we set D = 8 and w = 0.95 throughout.
The model (1) possesses two discrete symme-
tries, the periodicity of the driving force (¢ —
t+ 2w /w) which allows to use the Floquet formal-
ism, and a generalized parity (x — —z, p — —p,
t — t +w/w). It implies that the Floquet states
are either even or odd, and gives rise to the tunnel
doublets which form the subject of our study.

3. FLOQUET STATES AND CLASSICAL
PHASE SPACE

As a representation of the Floquet states
|1ho(t)) = exp(—icat)|pa(t)) in classical phase
space, we use the Husimi distribution hy(x,p;¢)
of |¥.(t)), defined as a projection onto coherent
states of the harmonic oscillator that approxi-
mates the motion on bottom of each well.

In particular, we consider the “low-lying” Flo-
quet eigenstates whose time-averaged energies,
for § — 0, approach eigenvalues E,, ,, of Hy below
the barrier, where p denotes parity (even / odd).

As a crude measure inhowfar a Floquet state
belongs predominantly to the chaotic layer A
around the separatrix, we calculate the overlap
Tn(t) = [, dpdx hn(z,p;t) of the correspond-
ing Husimi distribution with A.

4. RESULTS

In Fig.1, we compare the S-dependence of the
tunnel splittings A, = |en.e — €n,0| (part a) with
that of the overlaps (b) for the “lowest” seven
doublets. It clearly shows a qualitative agree-
ment: Both quantities exhibit a marked increase
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Figure 1. Tunnel splittings (part a) and overlaps with the chaotic layer (b) for the seven lowest tunnel
doublets, as functions of the amplitude S of the driving force.
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Figure 2. Husimi distribution (in gray-scale representation) for ¢4 .(0)}, compared with the correspond-
ing classical phase-space portraits, at S = 1075 (part a) and S = 0.2 (b).

as soon as chaotic behaviour begins to domi-
nate the classical dynamics. This correlation is
substantiated by comparing (Fig.2) h4.(z,p:0),
at an S-value below the transition (part a) and
one above it (b), with the corresponding classical
phase-space portraits. It demonstrates that the
increase of the overlap T',, actually reflects both
the growth of the classically chaotic phase-space
region, and the change in position and shape of
the individual eigenstates belonging to the tun-
nel doublet n. Insofar the naive picture sketched
in the introduction is confirmed. However, in or-
der to obtain a more quantitative understanding,
a semiclassical description, in terms of path in-
tegrals, of the interplay of tunneling and chaotic
diffusion is required.
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