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We study the enhancement of the quantum decay rate out of a metastable state, via tunneling, in presence of an external sinu-
soidal force. It is shown that the Floquet picture of quantum mechanics, together with the complex scaling method, provides an
adequate methodology to describe the periodically driven decay process in a nonperturbative way. In the limiting cases of ex-
tremely slow and fast external forces the numerical results are compared with sample semiclassical estimates. The decay near the
fundamental resonance assumes a Lorentzian line shape in agreement with recent experiments on Josephson junctions m the deep
quantum regime. For small forces the enhancement grows proportional to the square of the forcing strength and saturates above
a threshold value. Additionally our results also exhibit secondary resonances: at higher frequency corresponding roughly to a
second harmonic induced by the nonlmear potenttal shape, and at lower frequency, exactly at the half of the first resonance,
revealing a two-photon transition.

1. Introduction

In this work we focus on the problem of the quan-
tum decay out of a metastable state in presence of
external periodic driving. In recent years the decay
theory of unstable states [ 1 ] has been extended to
quantum systems interacting with an environment
which includes dissipation [ 2,3]. Our investigations
have been motivated by recent experiments on rf-
stimulated biased Josephson junctions both in the
classical and the quantum regime [ 41. Likewise our
study should also be of relevance in quantum chem-
istry, surface physics and quantum biology when
considering photon-assisted dissociation reactions
(decays) involving “precursor’‘-induced barriers or
energetic angular-momentum obstructions.

In contrast to the classical regime where the effect
is generally known as resonance activation [ 5 1, there
exist no previous theoretical studies which address
the deep quantum regime at zero temperature in a
nonperturbative manner. Here we present a full ac-
count of the decay rate enhancement of the ground
state induced by an external sinusoidal force. In doing
so we shall cover the whole frequency regime extend-
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ing from zero frequency to very high frequencies. The
two extreme cases can both be tackled on analytical
grounds whereas the intermediate regime - except at
resonances between the external frequency and inter-
nal level spacings - can be treated on numerical
grounds only.

In section 2 we will present the theoretical model
that will be studied subsequently, pointing out one of
its experimental realizations. Section 3 gives a brief
review of the Floquet theoretic approach to unstable
systems. In the fourth section we treat the undriven
(S=O), the adiabatic and the high frequency case.
Section 5 deals with the near-resonance case when the
frequency of the external force approximately equals
the spacing between the ground state and higher ex-
cited states. In section 6 we summarize our work and
discuss possible future applications.

2. Model Hamiltonian

The starting point of our investigations is the driv-
en Hamiltonian of a particle in a cubic metastable
landscape,
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Fig. I. Unperturbed (S=O) metastable potential V,,(X) of the
Hamiltonian in eq. ( 1) with 0~2, supporting two quasistation-
ary states under the barrier; the horizontal lines indicate the po-
sitions of the real parts E,,, E,, E2 of the resonance energies; x,
denotes the exit point of the potential.

E-gj;+;x2- $-x3+xSsin(c0t).

Here we use dimensionless units. Time is measured
in units of l/we, with w. denoting the angular fre-
quency of small oscillations at the bottom of the well.
The external frequency o and energies are thus mea-
sured in units of o. and Am,,. The dimensionless bar-
rier height D is connected to the exit point (the co-
ordinate is measured in units of JG, with m

the mass of the particle) of the potential V,(x) by
x,= flD, see fig. 1.

The model in ( 1) is motivated because the cubic
potential approximately describes the decay of the
(macroscopic) phase in a current-biased Josephson
junction. The frequency of small oscillations is then
given by the plasma frequency w,= ,,fmc and
the dimensionless force strength is S=Z,,,/2ew,. Here
C and I, denote the capacitance and critical current
of the junction and ZeXt is the amplitude of an external
sinusoidal microwave current. We will henceforth
deal with systems containing only one or two unper-
turbed resonance states (see below) under the bar-
rier, which corresponds to the experimental setup
used for macroscopic quantum tunneling [ 41.

3. Floquet theory for decaying systems

To obtain a detailed description of the decay pro-

cess in presence of an external periodic force, we re-
frain from the use of time-dependent perturbative,
semiclassical methods alone. In these approaches [ 6 1,
the periodicity of the Hamiltonian is not fully ex-
ploited. Moreover at strong forcing the perturbative
approach no longer sufftces. The concept which seems
most appropriate for a rigorous treatment is the Flo-
quet picture of quantum mechanics [ 7 3. Given ( 1))
solutions of the time-dependent Schrodinger can be
cast in the form

Yc(x, t) =QE(x, t) exp( -iet) , (2)

@Et-G t) = @Ax, t+ T) , (3)

where the Floquet function Qc(x, t) is periodic with
the period T=21tlw of the external force and the
quasienergies e determine the long-time behaviour of
the wavefunction.

Generally the decay of unstable states can be asso-
ciated with complex-valued poles of the s-matrix.
These correspond to simple poles on the unphysical
sheet of the complex-valued energy Riemann surface
and constitute the well-known resonance states. By
use of the complex-scaling approach [ 8 1, i.e. if one
rotates the coordinate x+xe’@, one uncovers the res-
onance poles in the complex plane and ends up with
square integrable eigenfunctions [ 9 1, denoted by
I &) = I n) in the undriven case.

Here we apply this concept generalized to the qua-
sienergy approach. The decay rate r in the periodi-
cally driven case is then given by the imaginary part
of the Floquet resonances (complex-valued quasi-
energies) as

r,=-2Ime. (4)

Because we treat the zero temperature limit, we con-
tine ourselves to the rate enhancement y. of the low-
est unperturbed resonance state, i.e.

Yo=
r,, -ro

ro ’
(5)

where to denotes the “lowest quasienergy”. Note that
the quasienergies can be defined only modulo o, i.e.
eg,k= e. + ko; k=O, & 1, k 2, . . . . The quasienergy to
merges into the lowest resonance E. with imaginary
part ro= - 2 Im Eo, as the amplitude S of the exter-
nal force approaches zero.
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4. Limiting cases

Before we focus on the most interesting regime of
resonant driving, w* 1, we first deal with the undriv-
en (S=O) and the two limiting cases of adiabatic
(weTa) and very fast (WXD 1) driving.

4.1. Undriven case

In the undriven (S= 0) case we have calculated the
decay rates out of the resonance states (compare fig.
1 for the case D = 2 ) as a function of the barrier height.
In table 1 we present the rates for the three lowest
states at three different values of D. The decay rates
r, monotonically decrease with increasing D, for fixed
D they increase with increasing index i.

4.2. Adiabatic case

Following the mathematical reasoning put forward
recently for an adiabatically driven symmetric dou-
ble-well configuration [ lo], we obtain with an aver-
age over the slowly varying phase the “adiabatic rate
enhancement” as

2rr
1

p=r0-
,(

1 +6 ssin(@) 3’4
ccl 2a

0 XC >

xexp -9
1 #

1+6Ssi n( @)  3' 2_1 dgXC> 11 . C6)
In fig. 2a we compare the semiclassical approxima-
tion (6) (solid line) with the numerical exact results
(circles). The excellent agreement for the absolute
rate is due to the fact that we used for r. in (6) the
numerical value and not its semiclassical estimate
(which exceeds the numerical result by 36% for the
parameters we used [ 9 ] ) . The shape of the enhance-
ment, being proportional to S2 for weak fields, is thus

Table I
Numerical values of the undriven (S=O) decay rates out of the
resonance states of the cubic metastable potential (eq. ( 1) ) as a
function of the barrier height D

D ro l-1 r2

1 4.5400x lo-’ 2.2686x 10-l 1.0103
2 5.8308x 1O-6 2.7220~ lo-’ 1.3854x 10-l
3 5.56 x~O-~ 5.183 x 1O-6 1.5403x 1o-3
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Fig. 2. (a) Adiabatic dimenstonless decay rate r,, of the driven
metastable potential for the parameters D= 1, w= 10d3; dashed
line: semiclassical result, circles: numerical result. (b, c) Double
loganthmic plot of the high-frequency rate enhancement y0 of the
driven decay problem for the parameters: (b) D= 1, S=~X 10-l;
(c) D= 1, w= 5. Full line: numerical result, dashed line: semi-
classical result.

well described by its semiclassical estimate!

4.3. High-frequency case

In the other extreme limit of very high frequencies,
the decay rate can be obtained again within semiclas-
sical accuracy by use of two Kramers-Henneberger
transformations (see ref. [ 10 ] ) and a final cycle av-
eraging. In this way one finds the approximate result
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In figs. 2b and 2c we depict the rate enhancement de-
lined in eq. (5). The semiclassical result (dashed
lines) is compared with the numerical precise values
(solid lines) as a function of w (fig. 2b) and S (fig.
2c), respectively. The power-law behaviour pre-
dicted in (7) is thereby confirmed by the numerics.
Note that for w-+03, the high-frequency limit ap-
proaches the unperturbed (zero frequency) value
proportional to oe4. Clearly, as o+co the system is
no longer capable to respond to the external pertur-
bation and therefore the extreme fast limit reduces to
the extreme adiabatic limit, i.e. r,,, = r,.

5. Near resonance

Let us now consider the most interesting regime of
frequencies near resonance o z w, = Re (E, -E,,)
“Z2 0.9057 (see fig. 1). For the numerical investiga-
tions we used a barrier height of D= 2.

5.1. Below threshold

First we have looked at the rate enhancement for
values of the external force strength lower than a cer-
tain threshold value S,, which will be determined in
subsection 5.3. For external dimensionless forces of
S= 7 x 10m4 (broken line in fig. 3a) and S=
1.5~ 10V3 (solid line in fig. 3a) the numerical values
for the enhancement y0 of the decay rate are depicted
versus the external driving frequency. At the reso-
nance frequency w=o, we find a dramatic increase
in the rate enhancement from Yo(W,, S=
7~10-~)=17toy,,(o,,S=1.5x10-~)~94bytun-
ing up the external forcing. This drastic increase is
well approximated by the result in eq. (20) derived
below!

The line shape of the enhancement curves is rather
symmetric around the resonance frequency. This
driven tunneling-induced Lorentzian-like rate en-
hancement is in clear contrast to the very asymmetric
energy-diffusion induced enhancement found in
classical resonance activation [ 5 1. On theoretical
grounds this symmetric shape is due to the frequency
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Fig. 3. (a) Numerical values for the rate enhancement of the low-
est resonance state y,, as a function of frequency for the driven
decay problem. The parameters are D= 2, S= 7 x 1 O-“ (solid
line), 0=2, S= 1.5x 10-s (broken line). (b, c) Behaviour of
the real parts (crosses) and imaginary parts (circles) of the qua-
sienergies co, t, --w near the first resonance frequency for
S=7~10-~ (b) andS=1.5~10-~(c) (theaxisfortheimagi-
nary parts has a logarithmic scale).

behaviour of the real and imaginary parts of the cor-
responding complex-valued quasienergies (see figs.
3b and 3~). At resonance the corresponding real parts
Re co, Re t, - o of the quasienergies exhibit an exact
crossing, while the imaginary parts avoid to cross each
other; both processes occur symmetrically around
0=oJ,.

Additionally we find a second-harmonic-like tran-
sition near wz=w,=Re(E,-E,)z 1.6459 (see fig.
3a). While within a harmonic approximation of the
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well this second transition is forbidden, the anhar-
monicity of the cubic potential gives rise to a non-
vanishing dipole matrix element (0 1 XI 2) which
characterizes the strength of this higher-order transi-
tion. The width of this second resonance for
S=7x10e4 is enhanced by a factor a~rJT,x51,
see table 1. This is due to the fact that the widths of
the higher levels making up the resonances obey
I-+, > l-‘, > r,. This result can also be deduced in a two-
level approximation by a perturbation-type expan-
sion of eq. (7) in ref. [ 111 for low values of S. The
two widths 8r,* at half maximum of the two peaks of
y0 at wxo, and wz wz, respectively, are approxi-
matedby6,,,~r,,2-rr0~ZD=Zr~,2.

5.2. Above threshold

For external forces larger than the threshold value
S,, the height of the enhancement curve at the first
resonance (ox o, ) is nearly independent of S. This
fact can be observed in fig. 4a where y0 ( oz or,
S=5x 1O-3)x237 and yO(oxwl, S= 1 x lo-*)
~245.

As depicted in figs. 4b and 4c the real parts Re co,
Re E, -o of the quasienergies exhibit - in clear con-
trast to the case with driving strengths S<S, - an
avoided crossirig at resonance, while the imaginary
parts cross each other. We note that the main reso-
nance undergoes a shift of its central frequency pro-
portional to the square of the applied external ampli-
tude. This feature is analogous to the Bloch-Siegert
shift in magnetic resonance described by a sinuso-
idally driven two-level quantum dynamics [ 121. The
shift is depicted in fig. 4c and amounts approxi-
mately 60, z2x 10e4.

We also found a small peak located at precisely the
half of the first resonance frequency o= jw, z 0.453
(see fig. 4a ). Clearly this subharmonic transition can
be viewed as a two-photon stimulated decay process.
The peak height yo( twr ) grows proportional with S’
with 1 exceeding the value 1~2 expected for single-
photon transitions at small fields. The peak at w= for
has only been observed for strong driving S> S, (see
subsection 5.3).

At the end of this section, we want to emphasize
that the particle decays out of the Floquet state with
quasienergy eo. Far away from one of the resonances,
this state has the same structure as the lowest unper-
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Fig. 4. (a) Numerical values for the rate enhancement of the low-
est resonance state y0 as a function of frequency for the driven
decay problem with the parameters D=2, S=5x lo-’ (solid
line), D=2, S= lo-* (broken hne). (b, c) Behaviour ofthe real
parts (crosses) and imaginary parts (circles) of the quasiener-
gies co, t, -o near the first resonance frequency for S= 5 X 1 0W3
(b) and S= lo-* (c). The Bloch-Siegert shift 6wr is depicted in
(c).

turbed wavefunction, which is approximately a
Gaussian wave packet centered around the mini-
mum of the well. Near the avoided crossing, how-
ever, the Floquet state has also admixtures from the
first excited resonance wavefunction [ 131.
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5.3. Two-level treatment at resonance

In this section we will sketch a simple derivation of
the threshold value S, above which the maximal rate
enhancement saturates. To this end we employ a
driven two-level approximation of the decay prob-
lem that will be solved analytically in a rotating wave
approximation at resonance.

Treating the cubic term in the potential ( 1) as a
small perturbation we arrive at the Schrijdinger
equation for the amplitudes a0,1,2= (0, 1, 2 1 Y(t) ),

i&(t)=&ao+x,Ssin(ot) a,(t) , (8)

ibi,(t)=E,a,+x,Ssin(wt) so(t), (9)

where i= 1,2 and the energies E, are complex valued
and the matrix elements x, are in leading order given
by

(10)x = (01x11) = (Olxll) = 11
(010) (111, 3’

x = (01x12) = (Olxl2> = 1
2

(OlO> (212) 2Jz’ (11)

The system of differential equations (8 ), ( 9 ) can be
solved at resonance w, = Re (E, - E,,) [ 141. After in-
serting the ansatz

(12)
(13)

and performing a rotating wave approximation we
arrive at the system

b&t)= y b,(t) -x, ;bAt)t
b,(t)= y b,(t) +x, ;boW>
The eigenvalues of its characteristic equation

(14)

(15)

(16)

may be (i) real, (ii) equal to zero, or (iii) purely
imaginary.

We next compare our two-level calculations with
the results of the Floquet-theoretical approach. To this

end we consider the time evolution of the quantity

la0(t) I’+ la,(t)12 (17)

with the initial conditions

ao(0)=l , a,(O)=O. (18)

In the case of real eigenvalues, the sum of the squares
( 17 ) will exhibit three exponentially decaying terms.
The smallest of these rates

r +r, r::(w,) = +- - c-r0 L JC ) 2 -(sx,)2 (19)

corresponds to I-‘,,,. For the rate enhancement at res-
onance o= w, we therefore obtain within the two-level
approximation in terms of R, = I’,/r, > 1

=i(R.-1)-J-. (20)

The numerical values for y. at w x w, given in subsec-
tion 5.1 are well approximated by the result in (20).

For zero or purely imaginary eigenvalues, ( 17 ) ex-
hibits only one exponential with a rate r$( w,) given
by the mean $ (r,+r,) of the two undriven decay
rates, being independent of S. Therefore the vanish-
ing of the eigenvalues (I f = 0) serves as an estimate
for the threshold value

s t= r, -r.
7 . . (21)

above which the rate enhancement saturates. Insert-
ing the numerical values from table 1 for the case
D= 2 we find S, z 1.92x 1 Oe3 at the first resonance,
wzco,. This value just lies between the parameter
values used in figs. 3 and 4.

6. Summary

At present time there exist no experimental data
which allow for a detailed quantitative comparison
with our results. The only existing data are at low but
finite temperatures T> 0, and in addition the strength
of the amplitude (respectively the power) of the ex-
ternal force has not been measured explicitly. Never-
theless, the existing data in ref. [ 41 (see figs. 18 and
20 therein) typically exhibit the change of shape of
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the enhancement curve from a very asymmetric shape,
with more weight located below the resonance fre-
quency w,, characteristic for the classical diffusive
regime, towards the tunneling-induced symmetric
shape at temperatures T<30 mK below the cross-
over temperature to quantum controlled decay. Ad-
ditionally, the existing data are taken at a force
strength (the height of the dimensionless maximum
in the resonance curves in ref. [4] is smaller than
2.718...) that is too low to quantitatively locate a
Bloch-Siegert shift. Moreover the regime of w z o2
andozf o, has presently not been covered in the ex-
treme quantum limit by the existing experimental
data.

We hope that our new predictions will motivate and
guide future experimental efforts, both in the field of
macroscopic quantum tunneling phenomena, as well
as for photon-assisted tunneling-reactions occurring
in the vast field of quantum chemistry.

In conclusion, in this paper we have addressed the
rate enhancement induced by an external periodic
force in the deep nonsemiclassical quantum regime,
and/or for force strengths that are too high for per-
turbative approaches to be valid. By use of the quasi-
energy methodology one finds a drastic enhancement
around the main first resonance with a characteristic
symmetrically peaked lineshape. This enhancement
is analytically well described by the formula given in
(20). Above a threshold value S, of the force a satu-
ration of the rate enhancement is observed which
could be explained within a two-level approxima-
tion. In addition we predict the existence of a reso-
nance shift with increasing amplitude and character-
istic additional enhancements of the driven decay rate
at the first superharmonic o=w2, and at the first
subharmonic w= tw,. Away from these characteris-
tic regimes the decay rate still is enhanced at all fre-
quencies and can be described analytically via eqs.
(6) and (7 ) in the asymptotic regimes of low and
high frequencies.
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