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Abstract. - We study the quantal dynamics of a harmonically driven quartic double well in the
presence of dissipation. A master equation for the reduced density operator is derived in the
Floquet representation. In the classical limit, this system corresponds to a Duffing oscillator with
Ohmic damping. We present numerical results for the transient time evolution and for the
stationary sate. The influence of the weak dissipation on interference effects in the context of
driven tunnelling is discussed on the basis of these ‘results. We find that the coherent suppression
of tunnelling can be stabilized by reservoir-induced noise for a suitably chosen temperature.

The study of non-linear dynamics on the quantal level is centred around one basic theme: the
competition of classical instabilities and fractal phase-space structures with quantum interference
effects. Bistable systems under the influence of periodic driving exhibit this competition in a
striking way: classically, they are characterized by the coexistence of two or more (possibly
strange) attractors[13], while on the quantal level, they form the paradigm for coherent
tunnelling. At the same time, this system class is particularly versatilc+to name just a few
examples: ax.-driven SQUIDS [4,5], laser-irradiated semiconductor double-well structures [61,
laser-induced isomerization of bistable molecules [7], and paraelectric resonance [8]. Specific
questions to be addressed concern, on the one hand, the influence of incoherent processes on
interference effects such as the variations of tunnelling produced by driving, including its
complete suppression[9-11]. On the other hand, one can ask for the moditications quantum
mechanics imposes on the classical non-linear dynamics: e.g., classically separate attractors will
communicate through tunnelling and quantum noise, and fractal basin boundaries [12] will exhibit
a lower cut-off in their fine structure. Furthermore, the phenomenon of stochastic resonance
occurring in periodically driven bistable systems [13] may be brought about by quantum noise in
a similar way as it is produced by classical noise.

In the present letter, we investigate a paradigmatic model, a harmonically driven quartic
double well with Ohmic dissipation, corresponding, in the classical limit, to the Duffing
oscillator [l-31. There is a wealth of literature on tunnelling with dissipation 114,151,
particularly in the context of the Kramers problem [ls]. In contrast to that work, however,
our emphasis is on the complex spatial and temporal patterns developed by the quantal
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dynamics and its transition to the classical limit. Therefore, our approach is similar in spirit
to that of Graham et al. and Haake et aZ., respectively, on the quantal manifestations of chaos
in dissipative systems [17-201. Other systems in the same class have been studied in
ref. [21-241. In this letter, we concentrate on the discussion of the quantum-mechanical
description and present a choice of first numerical results. A more detailed study is deferred
t o  a subsequent publication [25].

The quantization of the Duffing oscillator naturally divides into two subtasks, the quantal
description of an undamped driven quartic double well, and the introduction of dissipation. In
the first step, we resort to Floquet theory[26-30]. It makes full use of the discrete
time-translational symmetry of the Hamiltonian. Provided with the Floquet representation
of the conservative system, we add dissipation by a coupling to a reservoir. Thereby, we
follow closely the approach used in ref. [31].

We specify the system plus reservoir by the Hamiltonian H(t)  = HOG) + HI + H R .  The
Hamiltonian for the driven double well reads

P 2  x 2  I x 4  +xscoswt.H,( t )= - - -2 4 640

(We use dimensionless variables throughout.) In periodically driven systems, the basic dynamical
group is generated by the unitary evolution operator over one period 2x/w of the driving force,

U = Texp [ - i / dt Ho (t)] (T indicates time ordering). According to the Floquet theorem, its

eigenstates have the form 1 Ql (t)) = exp [ - ic, t]  I pl (t)), with I q1 (t + Zx/w) )  = [ pl (t)). The
quasi-energies E ,  have the character of phases and are therefore defined modo.

x(gi bi + gp b2) and
HR = 2 wi (b> bi + 112). Here bi , b> are the annihilation and creation operators, respectively,
for a boson mode of frequency w i ,  and gi is the corresponding coupling constant. Starting
from the von-Neumann equation for the density operator of the full system, we perform the
usual procedure [32-331 to trace out the reservoir degrees of freedom under the assumptions
i) that driven double well and reservoir are initially uncoupled, and ii) that the reservoir is
Markovian, i .e. correlation functions for the boson modes decay instantaneously on
characteristic time scales of the double-well dynamics. We also neglect shifts of the system
frequencies due to the reservoir coupling. This procedure yields a differential equation for
the time evolution of the reduced density operator in the interaction picture (with respect to
H I ) ,  Z( t )  [311. In order t o  simplify this differential equation further, we drop all oscillating
contributions, i .e. terms corresponding to pairs of reservoir-induced transitions that
virtually violate energy conservation. This approximation is analogous to the rotating-wave
approximation. It is justified if the quasi-energy spectrum shows level repulsion, so that all
nearest-neighbour level separations are of the order of their average. It is critical, however,
and will have to be partially lifted (see below), as soon as near degeneracies, such as tunnel
doublets, come into play. They introduce exceptionally slow oscillations into the equation of
motion for ?(t) which will not drop out upon integration. Switching to the interaction
representation in the Floquet basis, we finally obtain the master equation [31]

in, ( t )= (2)

where ;;48 ( t )  = (Q, (0) 1 Z( t )  I Qp (0)). The transition probabilities W, depend on the potential and
the driving via the quasi-energies (which are not known analytically) as well as on the reservoir

2r; fw

The interaction and reservoir Hamiltonians, respectively, are HI =
i

i

1
2 v(waW 5,” ( t )  - w,, z,, ( t ) )  , i, ( t )  = - - z(w,, + wVp> G~ (t> , for x * p ,
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coupling and on temperature. They will be given explicitly in [25]. Equation (2) separates into
two independent subsets of equations, one for the non-diagonal elements which decay
exponentially, and one for the diagonal part which determines the stationary state of the
system.

We briefly address two important limits of the quantal dynamics, the classical limit and
the long-time limit. The classical limit (which here amounts to D + so) can be obtained, e.g.,
by deriving the time evolution of a (quasi-)probability distribution defined on the classical
phase space, such as the Wigner distribution [34] or the Husimi function [35]. Specifying the
frequency dependence of the coupling strength as lg(w)I2 = yw/is(l t w2/wz) we obtain, in
the classical limit, the Langevin equation

t
X x 3
2 16D2 t ywc \ dt ’k( t ’ )exp[-  w c ( t  - t ’ ) ]  - -(1 t 2 p , )  t - t Scoswt  =f ( t ) ,  (3)

- m

where f(t) is a random force with the autocorrelation function (f(t)f(t’)) = ylcB Tw;
. exp [ - w,  I t - t ’ I I. Equation (3) describes a Duffing oscillator with Ohmic damping and
fluctuations.

The long-time limit of the density operator leads into a stationary state which is
determined by the diagonal part of eq. (2) alone. In fact, stationarity in the sense of strict
time independence is reached only in the Floquet representation. At finite times, the reduced
density operator 4) does not even possess the discrete time-translational symmetry of the
Floquet states, which is retained, however, in the <(stationary,) state. A similar situation ,
arises with another, more special unitary symmetry of the undamped system: the Floquet
states are either even or  odd under the generalized parity transformation [9] P : x + - x,
p + - p ,  t -+ t t n/w.  Again, invariance under P is generally lost for the reduced density
operator, but retained in its stationary state. This applies also to the corresponding classical
phase-space distribution.

In fig. 1 we present the quantum dynamics generated by the master equation (2), at a
parameter point (D = 6, w = 0.9 and S = 0.08485) where the driving frequency w is close to a
resonance with the transition from the ground-state doublet to the first-excited doublet in the
undriven double well ( i .e .  the transition E2+E3) ,  for y = lo-’ and T = 0. A pure,
minimum-uncertainty state centred in one of the wells served as the initial state. Figure la)
shows the time evolution of the autocorrelation function PdOj ( t )  = tr [ d t )  ~(O)]/tr [ ( ~ ( o ) ) ~ ]at
discrete times t, = 2m/w. There is a slow oscillation of Pdo’(t,) between 0 and 1, which
corresponds, up to an augmented rate, to the familiar tunnelling, and there is a superposed fast
oscillation of smaller amplitude due to the participation of quasi-energy states related to
higher-lying unperturbed eigenstates. The Fourier transform of PdOj (t,) yields the local spectral
two-point correlation function P27(’) (U;) (see, e.g., ref. [9]), a section of which is shown in fig. lb):  it
reflects the primary effect of the incoherent processes induced by the heat bath, a broadening of
the quasi-energy levels. The broadening is not uniform but lets the high-frequency components,
contributed by quasi-energy pairs separated by a large qyasi-energy difference, decay faster, as
should be expected from the Ohmic reservoir coupling.

The spatially resolved states after 20 (graph l), 40 (2), 8910 (3) and 5 .  lo4 (4) periods of the
driving, respectively, as well as for t + so, are presented in fig. IC). While the slow
oscillation ([1,2] + 3) corresponds to a flow of probability between the two potential wells,
the fast oscillations are associated with transport within the wells. This transport can no
longer be attributed to only a few quasi-energy states, but it still has the character of a
coherent process without close similarity to the classical phase-space flow.

The stationary state, in turn (thick line in fig. le)), does bear the signature of the classical
dynamics. Figure Id) shows a phase-space representation of this state, in terms of the Husimi
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Fig. 1. - Tunnelling in the periodically driven double well with dissipation, for the parameter values
D = 6, o = 0.9, S = 0.08485, y = l O - 5 ,  and T = 0. a)  Time evolution of the autocorrelation function
Pd0)(t,), with t, = Zxn/w,  over the first lo4 time steps, starting from a pure, minimum-uncertainty
state centred in one of the wells; b)  a section of the Fourier transform of a), corresponding to the local
spectral correlation function (dashed: the same function for the undamped system); c) spatially resolved
state a t  selected times t, as marked in part a) (graph 1) n = 20,Z) n = 40,3) n = 8910,4) n = 5. lo4) and
stationary state (thick line); d )  Husimi representation of the stationary state, compared with the
corresponding classical stationary distribution (sharp peaks).

function. A comparison with the corresponding stationary state of the deterministic (i.e.
noise-free) classical system (sharp peaks in fig. I d ) )  demonstrates that the occurrence of two
pairs of maxima (each pair rotates with the phase of the driving) coincides with the bifurcation of
the classical stationary distribution into two separate point attractors (in the stroboscopic
dynamics) in each well. For the present parameter values, there is a fifth classical point attractor
which, however, has no discernible counterpart in the quantal stationary state.

Figure 2 is devoted to the influence of dissipation on the coherent suppression of
tunnelling[9-11]. It occurs on part of the one-dimensional manifolds q,,(S) in the (S ,w)
parameter space where the splitting between the pair of quasi-energies corresponding to the
tunnel doublet vanishes. In the vicinity of wloc(S) the conservative time evolution contains very
small energy scales and correspondingly large time scales. In order to still obtain an adequate
description by the master equation for Z( t ) ,  we avoided a part of the rotating-wave approximation
used in the derivation of eq. (2) by taking into account also pairs of quasi-energy transitions that
virtually violate energy conservation (details will be given in ref. [25]).

Figure 2a) shows the time evolution of the autocorrelation Pco)(t ,)  at a parameter point
(D = 2, w = 0.01, S = 3.171. l O - 3 )  very close to, but not exactly on a manifold wloc(S), for
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Fig. 2. - Coherent suppression of tunnelling in the presence of dissipation. a) Time evolution of the
autocorrelation function Pdo)(t,), with t, = 2xn/w, over the first lo7 time steps, at a parameter point
(D = 2, w = 0.01, and S = 3.171. close to a manifold where the tunnel splitting vanishes, for y = low6
and various values of T, starting from a pure, minimum-uncertainty state centred in one of the wells (inset:
the f i s t  2.  IO4 time steps on an enlarged time scale); b) temperature dependence of the decay time 7 of
Pdo)(t,) (defined by Pdo)(t,) - exp [ - n / ~ ] )  for three values of the detuning Aw = w - q,,(S) from the
localization manifold (graph 1) AW = -1.4.10-‘, as in part a), 2) Aw = 5.0.10-? at S = 3.1712.W3,
3) AW = 1.4. The other parameters are as in part a). The data shown do not
extend down to T = 0, where dT) diverges, but start only with the rising part of this function.

at S = 3.1715.

y = lop6  and various values of T. For low temperature, Pco)( t , )  exhibits a slowly decaying
coherent oscillation with a very long period, due to the slight offset from wloc(S). Also here,
there exist superposed oscillations reflecting the admixture of other quasi-energy states.
Their decay is visible only on an enlarged scale (inset in fig. 2a)). Asymptotically, the
distribution among the wells is completely thermalized. With increasing temperature, the
decay time of the slow coherent oscillation first decreases until this oscillation is suppressed
from the beginning (not shown in fig. 2b)) .  After going through a minimum, however, the
thermalization time increases again. At a characteristic temperature T*, this time scale
reaches a resonancelike maximum where the incoherent processes induced by the reservoir
stabilize the localization of the wave packet in one of the wells and thus compensate for the
detuning introduced deliberately. In fig. 2b), we present the temperature dependence of the
decay time 5 (defined by Pdo)(t,) - exp [ - %/?-I) for three values of the detuning bw =
= o - wloc (S): with increasing Aw, the maximum is shifted towards higher temperatures and
decreases in height.

The stabilization of the coherent suppression of tunnelling by noise has already been
observed in a model simpler than the present one, where the deterministic sinusoidal driving
of the double well was replaced by a noisy one[36]. In fact, this phenomenon bears some
resemblance both t o  stochastic resonance [13] and to the stabilization of instable equilibrium
states by multiplicative noise [37]. It will facilitate the experimental observation of the
coherent localization of driven bistable systems. A qualitative explanation, however, is not
yet available.

* * *
One the us (BO) would like to thank the financial support by the State of Bavaria.
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