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Initiation of a phase transition by preexisting nuclei 
Vitaly A. Shneidmana) and Peter Hanggi 
Institute of Physics, University of Augsburg, Memminger Str. 6, D-86135 Augsburg, Germany 

(Received 17 March 1994; accepted 7 April 1994) 

Preexisting nuclei are often invoked in situations where the observed kinetics of a phase transition 
is much faster than one would expect from the classical theory of homogeneous nucleation. We 
examine analytically the time-dependent effects produced by such nuclei. Corrections to the number 
of nucleated particles, the time lag, and the transient rate of homogeneous nucleation are derived. 
For a high nucleation barrier the results are expected to be asymptotically accurate, both for the 
continuous ("Zeldovich-Frenkel") and the discrete ("Becker-Doring") nucleation models. This is 
confirmed by comparison with exact expressions available for a parabolic barrier in the continuous 
case, and with numerical solutions of the discrete Master equation. The probability formulation of 
the nucleation problem is also considered and the distribution of waiting times to detect the first 
"successful" nucleus is obtained. 

I. INTRODUCTION 

The classical nucleation theory (CNT)I-5 has been re-
markably successful in explaining various experimental data. 
Nevertheless, in certain cases the CNT seems to overestimate 
dramatically the limits of stability of a metastable phase. One 
could mention the metastable classical liquid,6 or the under-
cooled helium-III? where the CNT predicts an unrealistically 
small rate of the phase transition. Another example is nucle-
ation in glasses.s Here the discrepancy between the CNT and 
experiment may look not so striking-particularly because 
there are no independent data for the interfacial tension.9 

Nevertheless, there seems to exist a systematic overestima-
tion of the time lag as predicted by the CNT. \0 

To go beyond the CNT one requires a more detailed 
understanding of the thermodynamic properties of small 
clusters-see, e.g., Ref. 11 and references therein. On the 
other hand, in many of the above-mentioned situations the 
CNT can be "saved" if one assumes the presence of some 
preexisting nuclei which reduce the stability of the meta-
stable phase. Such nuclei can be either "quenched in" during 
preparation of the metastable phase,12 or can be produced by 
a permanently acting source, such as cosmic radiation.7 In 
some experimental studies l3•14 preexisting nuclei are deliber-
ately produced. In such cases one can examine the sensitivity 
of nucleation to variation of initial conditions. 14 

In the present study we are not going to discuss various 
mechanisms to produce the preexisting nuclei. Such mecha-
nisms can be rather intricate--consider, e.g., the "baked 
alaska" model put forward in Ref. 7(a)-and they are very 
specific in each particular experimental situation. Rather, we 
assume instead that such nuclei have already entered the sys-
tem, and we examine the resulting corrections to homoge-
neous nucleation. We will mainly consider subcritical nuclei 
which still have to cross the barrier in order to grow into the 
stable phase, and for this situation a detailed analytical treat-
ment is presented. On the other hand, in the context of the 
present study the effects induced by overcritical nuclei are 
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simpler, and they are only briefly discussed in the Appendix. 
We organize our work into six sections: 

In Sec. II we consider the correction to the time lag of 
homogeneous nucleation-its precise definition is given be-
low. This quantity is of special importance for the nucleation 
problem, being often the only experimentally accessible in-
dicator of transient effects.s,13 Moreover, it is the only physi-
cally meaningful quantity related to transient nucleation 
which can be directly derived from the Master equation, both 
exactly and asymptotically.15 We show that preexisting nu-
clei add new unexpected aspects to the time lag problem. 
First, the correction due to such nuclei can be derived from 
elementary considerations, which is by itself surprising tak-
ing into account the general complexity of the problem. Sec-
ond, even minor concentrations of preexisting nuclei can 
cause the time lag to assume negative values. In such cases a 
reconsideration of the conventional definition of this quantity 
is required. 

In Sec. III we derive the correction to the transient 
nucleation rate, and discuss the "scaling" form of the result 
for a monodisperse distribution of preexisting nuclei. Actu-
ally, the low-noise asymptote of the Green's function de-
scribing barrier crossing is derived in this section. This quan-
tity is useful for other (non nucleation) problems which 
include noise-assisted barrier crossing. 16 

In Sec. IV the results are used to evaluate the total num-
ber of the nucleated particles. Also, for a specific example of 
the Zeldovich-Frenkel nucleation equation, we explicitly ob-
tain the correction to the distribution of particles over their 
sizes. This section is more oriented towards potential appli-
cations. Particularly, in view of experimental data,S we 
evaluate the reliability of estimations which to a first ap-
proximation treat the nucleation process as being homoge-
neous. 

In Sec. V we demonstrate the high accuracy of the ob-
tained results by comparing them with numerical solutions of 
the Master equation of the CNT. Actually, we expect that the 
significance of a highly accurate approximation to the solu-
tion of a Master equation extends beyond the nucleation 
problem. We do not discuss here the mathematical aspects of 
this fact, as it deserves a separate study.17 Nevertheless, the 
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numerical comparisons in this section provide an important 
complement for the more formal proofs given in the afore-
mentioned reference. 

Section VI is devoted to the probabilistic formulation of 
the nucleation problem. Such a consideration stands some-
what apart from the other sections of our paper. It becomes 
important, however, if one is able to detect a single nucleus 
when nucleation should be described as a random process. 
We show that the results which were obtained from the con-
ventional nucleation picture can be directly incorporated into 
the probability problem. We obtain the distribution of ran-
dom waiting times to detect the first overcritical nucleus, and 
separate the effects produced by preexisting nuclei from 
those due to homogeneous nucleation. 

Note that in the course of the treatment we shall encoun-
ter three different types of the nucleation flux. To avoid con-
fusion with notations, we note from the start that fO) will 
denote the flux of homogeneous nucleation and 8j-the flux 
due to preexisting nuclei originally present in the system. 
The total flux, i.e., the sum of the two aforementioned fluxes, 
will be denoted as j. Similar notations will be used for the 
number of nucleated particles, n and for the time lag, t L . The 
flux due to a permanent source of nuclei of unit intensity will 
be denoted as J, although it will be considered solely for 
auxiliary purposes. The stationary values of corresponding 
fluxes are indicated by a subscript "st." 

II. THE TIME LAG 

A. The probability for a nucleus to cross the barrier 

Consider a nucleus of a subcritical size g 1 < g * (the as-
terisk indicates the critical value). This nucleus tends to de-
cay with a deterministic (macroscopic) rate gl<O, but there 
is also a small probability that, via activation, it will cross the 
barrier, and grow to large sizes. To assess this probability we 
shall consider the following auxiliary problem (cf. also Ref. 
18). 

Let us insert one nucleus per second at size g I' After 
some transition period a steady-state regime will be estab-
lished: The majority of inserted particles will go to small 
sizes, while an exponentially small fraction, J st' will go into 
the growth region. The numerical value of J st will just coin-
cide with a probability for a single nucleus to cross the bar-
rier. To estimate this value recall that in the region of deter-
ministic decay, g~gl a distribution f(g)= -l/g is 
established. On the other hand, the Zeldovich expression for 
the steady-state homogeneous flux j~~) can be represented in 
the form 

(2.1) 

where, with kT denoting the thermal energy, 

={ __ l a2¢>J }-112 
6. 2kTP , 

g * 
_.{ dgJ }-I T- --d ' 

g * 
(2.2) 

and N(g *) is the equilibrium distribution at the critical size. 
In the CNT the latter is estimated as 
N(g *),.,. N 1 exp{ - ¢>(g *)/ kT}, with N 1 being the number of 
monomers and ¢>(g) the minimal work required to form a 

nucleus of size g. The only difference between homogeneous 
nucleation and the present problem is that instead of the 
distribution f(g= 1)=N1 of the CNT one now has 
f(gl)= -l/gl and the barrier to cross is reduced by ¢>(gl)' 
Thus one obtains 

6. 1 {¢>(gl)-¢>* } 
J st= 2T.j; - gl exp kT ' (2.3) 

which is the correction to homogeneous nucleation rate due 
to a permanent source of unit intensity placed at g 1 < g * . 
Moreover, it is also the probability for a single nucleus to 
cross the barrier. Obviously, upon approaching the barrier 
this probability increases. This is due to the effective reduc-
tion of the barrier height as well as to the smaller values of 
the decay rate g l' The latter implies that the nucleus spends 
more time at large sizes with better chances to overcome the 
barrier. The region of validity of Eq. (2.3) is restricted to 
J st q; 1. Equivalently, this means that initially the nucleus is 
placed not too close to the top of the barrier, i.e., g * - g 1 ~6., 
implying that the fluctuational corrections to the determinis-
tic decay rate are negligible. The alternative situation which 
can arise for g 1 within the immediate neighborhood of g * is 
considered in Appendix A. 

B. Correction to the time lag 

The time lag (also, "induction time") of transient nucle-
ation is defined as 

tL(g)= lim[t-ng{t)lj~~)]. (2.4) 
/-+00 

This is equivalent to the operational definition used in ex-
perimental studies.8(a)-8(c),13 In the above expression ngCt) is 
the total number of nucleated particles with size exceeding 
the observation size g > g * . At large times the input to n gC t) 
due to a single preexisting nucleus approaches a constant 
(2.3), and the correction to the time lag is given by 

"'t - -J / .(0)":::0 UL- st}st""'· (2.5) 

For an arbitrary initial subcritical distribution f o(g I), one 
thus has 

(2.6) 

Here grax<g * is the size of the largest nucleus initially 
present in the system. Despite its elementary derivation this 
result is expected to be asymptotically accurate for 
¢>(g *)- ¢>(grax)~kT (or equivalently, for g * - grax~6.). The 
exponential factor in Eq. (2.6) means that the effect of pre-
existing nuclei on the time lag may be dramatic even for 
extremely small concentrations. In particular, the absolute 
values of the correction in Eq. (2.6) may easily exceed the 
time lag of homogeneous nucleation, making the total time 
lag negative. This is discussed more explicitly in Sec. V 
below. Negative values of the total time lag, though, do not 
have any essential physical consequences. This simply 
means that in this case the time lag, as defined by Eq. (2.4), 
is not an adequate physical characteristic, and alternative 
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quantities (e.g., the mean waiting time to detect the first 
nucleus-see Sec. VI) should be considered. However, here 
one needs the full time dependence of the flux of nuclei. This 
is the topic of Sec. III. 

III. TRANSIENT NUCLEATION RATE WITH 
PREEXISTING NUCLEI 

A. Correction to the nucleation flux 

We again start with the auxiliary problem discussed in 
Sec. II A: A nucleus with size g 1 <g * is inserted each sec-
ond at g = g \ but now we do not wait until the steady-state 
flux l5t over the barrier is established, but consider the time 
dependence 1 (g, t) at an arbitrary observation size g > g * . 
This flux is composed by superposition of effects of each 
inserted nucleus. Thus, the effect of a single nucleus can be 
derived as 

a 
oj(g,t)= at l(g,f). (3.1) 

Now compare the transient flux l(g,f), which is due to in-
serted particles, with the transient flux of homogeneous 
nucleation, fO)(g,f). Upon an abrupt "switch-on" of the ho-
mogeneous nucleation at f = 0 the equilibrium distribution 
N(g) will gradually build up at subcritical sizes. According 
to the microscopic reversibility principle, this equilibrium 
distribution will be established at the size g 1 precisely after 
the same time f 1 which is required for a nucleus of size g 1 to 
decay. Later, the system will not "know" the origin of the 
distribution at g~gl' and it will evolve in time in the same 
manner as it would evolve in case of a distribution created 
artificially. This immediately implies 

l(g ,f - fl) = U(gl )/N(gl) ]j<0>(g ,f). (3.2) 

Here. I(g I) is the distribution caused by preexisting nuclei 
which was estimated in Sec. II A as -1/ g I' As mentioned, 
the time f \ can be evaluated as the decay time 

(3.3) 

Substituting this value into Eq. (3.2) and using the explicit 
expression for I(g I) and N(g I) of Sec. II, one obtains 

fKr;ax dgl lo(gl) 
oj(g,f)= =-=- -N exp[¢>(gl)/kT] ° gl 1 

(3.4) 

where gTax is the maximal (subcritical) size present in the 
system. One can show that in case gT8X is well separated 
from g *' i.e., g * - gT8X~ll, which is actually the region of 
validity of the above equation, integration over time leads to 
Eq. (2.6) for the time lag. 

For a single inserted nucleus I(gl) = o(g - g I) Eq. (3.4) 
multiplied by g -\ determines the transbarrier asymptote of 
the Green's function-an explicit expression will be dis-
cussed in Sec. IV below. Recall that in the derivation of Eq. 
(3.4) we did not assume specific forms of the barrier, the 

growth rate, or even the nucleation equation. Particularly, 
this expression is expected to be valid for the discrete form 
of the nucleation equation as we shall demonstrate numeri-
cally in Sec. V, and as was discussed analytically in Ref. 17. 
We also verified that in the corresponding limit [Eq. (3.4)] 
coincides with the exact expression available for a parabolic 
barrier (cf. Appendix B), and that in case/o(gl) corresponds 
to the steady-state distribution of homogeneous nucleation it 
will not evolve in time (cf. Appendix C). 

From a mathematical point of view, the possibility of 
relating oj and /0) is by no means trivial as we have a 
superposition of two problems with different boundary con-
ditions. Recall that in CNT one assumes I(g = I) = N J and 
adding preexisting nuclei must not change this condition. On 
a formal level this means that when discussed separately, 
preexisting nuclei assume an absorbing boundary at g = I, in 
contrast to the "nonuniform" boundary condition character-
istic for homogeneous nucleation. Generally speaking, this 
leads to a qualitatively different solution. What helps is that 
in the asymptotic limit considered an influence of a different 
boundary extends only on a very short distance ("boundary 
layer"), but otherwise the solution remains unchanged. 

The expression for the homogeneous transient flux 
j<°>Cg,f) was previously obtained in Ref. 19 using singular 
perturbation technique. The result reads 

j<°)(g,t)= j;?) exp[ -exp( - x)], X=[f-fi(g)]lr. 
(3.5) 

Here the "relaxation time" r is the same as defined in Eq. 
(2.2), while fi(g) is the "incubation time" (Le., the time for 
the homogeneous flux to achieve the value of j~~)le). This 
latter time is smaller than the homogeneous time lag by a 
value 'Yr, with 'Y=0.5772 ... being the Euler's constant. In 
general form, i.e., for arbitrary growth rate g(g), the incuba-
tion time is given by 

fi(g)=2r In v'2g* -2r (g* dg(~ __ l_) + £1: d~ . 
II J 0 rg g - g * Jog 

(3.6) 
The principal value of the last integral which accounts for 
the growth of nucleated particles is indicated. In many spe-
cific cases the integrals in Eq. (3.6) can be evaluated in terms 
of elementary functions. 19(b) We, however, postpone the dis-
cussion of an "elementary" example until Sec. IV, and focus 
on the general properties of the solution which are indepen-
dent of the specific form of the growth rate g(g). 

B. Scaling form of the result 

Consider a monodisperse distribution of subcritical nu-
clei: 

10(g)=N(g)Vo(g-gJ) (3.7) 

with V denoting the ratio between the number of inserted 
particles and the equilibrium number of particles with the 
same size. Let us introduce a scaling variable 

x = [t- fi(g) + tdec(g 1)]1 r=x + fdec(g J)/ r (3.8) 
with x defined in Eq. (3.5). In this case the solution of Sec. 
III A for the correction oj(g,t) can be represented in the 
form 
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FIG. 1. The scaled excessive flux [the left-hand side of Eq. (3.9)] as a 
universal function of the scaling parameter £. 

""( ) 71g" [A A)] Uj g,t V.(O) =exp -x-exp(-x . 
jst 

(3.9) 

It is remarkable that three (!) independent variables, namely 
the time t, the observation size g, and the size of the inserted 
nuclei g I collapse to form a single scaling variable £. The 
universal function on the right-hand side of Eq. (3.9), which 
contains no parameters, is plotted in Fig. 1. Note the asym-
metry of the function with respect to £ and, hence, with 
respect to time. The transbarrier asymptote of the Green's 
function G(gl,g;t) coincides with oj(g,t)lg for 
V= lIN(gl), Le., when a single nucleus is inserted. The 
scaling variable £ remains constant on the growth trajectory, 
i.e., the solution is carried in a drift-like manner to large 
sizes. 

IV. THE NUMBER OF NUCLEATED PARTICLES AND 
THEIR DISTRIBUTION OVER SIZES 

Formally, the flux of nucleated particles j(g,t) which 
was described above provides the complete solution of the 
nucleation problem. We wish, however, to discuss certain 
consequences which bring the results somewhat closer to re-
alistic experimental situations8(a),8(b) in which one measures 
not the nucleation rate but rather the number of nucleated 
particles with size exceeding some well-defined size g. We 
shall also consider the time-dependent distribution of par-
ticles over their sizes for the specific example of the 
Zeldovich-Frenkel nucleation equation where this distribu-
tion is given by an elementary function. 

A. Number of nucleated particles 

The total number of particles n gC t) with a size exceeding 
a given overcritical value g is given by fhdt' j(g,t'). Again 
we split ng(t) into a homogenous part, niO)(t) and the cor-
rection ongCt). For simplicity we consider a monodisperse 
initial distribution (3.7). Integrating the corresponding ex-
pressions for the nucleation rate one obtains: 

For the homogeneous nucleation [cf. Ref. 19(b)], 

(4.1) 

where x=x(g,t) is defined in Eq. (3.5), and 7 in Eq. (2.2); 
E I is the first exponential integra1.2o The correction due to 
preexisting nuclei is given by 

ong(t)=Q exp[-exp(-£)], Q= - 01 'j'(O) 
L st ' (4.2) 

where £ is given in Eq. (3.8), and Q=N I VI( - gl) is the 
total number of preexisting nuclei that cross the barrier. One 
can introduce a reduced value q = QI 7j sl-the reduced cor-
rection to the time lag, - 01 d 7. In this case, in the "scaling 
form," one has 

(4.3a) 

Note the following. The difference of the "scaling param-
eters" x and £ is given by tdec(g 1)/7, being small if g I is 
noticeably smaller than g *. Within a crude approximation 
this difference can be neglected. If, in addition, one considers 
small q~l, and recalls that the double exponenta in Eq. 
(4.3a) is the derivative of the first exponential integral, one 
obtains 

Thus, the small correction due to preexisting nuclei results 
simply in the time shift of the number of nucleated particles. 
This shift is, of course, the same as the shift of the time lag 
OIL' For ng(t) evaluated at the time corresponding to the 
total time lag t L, one thus finds 

ng(tL)1 7j~~)=EI (e- Y ) + O(q2) + O(q· tde! 7)=0.49, 
(4.4) 

where, we remind the reader, r0.5772 is the Euler's con-
stant. In the leading approximation this reduces to the same 
result as in case of homogeneous nucleation. 19(b) The impor-
tance of the above relation is that it allows one to extract the 
values of 7 from the measured values of ng(t) and j~?) with-
out any assumptions concerning the nucleation 

h · 10 19(b) 0 th· mec anism.' ne can see at WIth reasonable accuracy 
this relation can also be applied in the presence of preexist-
ing nuclei-there is no first-order corrections in Eq. (4.4). 
Moreover, one can show that the higher corrections are of 
opposite sign, so that Eq. (4.4) may be valid even for q~l, 
i.e., in situations where the effects of preexisting nuclei are 
otherwise already strong. This is illustrated in Fig. 2 where 
we plot Eq. (4.3) for different values of q and for 
tdec(g 1)/r=0.785. (The latter corresponds to g 1= g *12 for 
the model that will be discussed below in Sec. IV B.) One 
can deduce from this plot that even for q ~ 1 the main effect 
of preexisting nuclei is a shift in time for the values of ng(t) 
compared to niO)(t). Thus, at t=tL the value ng(t) is indeed 
very weakly sensitive to preexisting nuclei, and is close to its 
"homogeneous value," approximately giving 0.5 7j~?) . Only 
for larger values of q (q=3 in Fig. 2) does the quantity 
n (t = t L) acquire much smaller values, but in this case the 
qualitative difference from the typical "homogenous" behav-
ior is evident: For large q the transient curve approaches its 
large-time asymptote from a different side. Thus, one con-
cludes that an application of the homogeneous relation [Eq. 
(4.4)] to deduce 7 from experimental data8 may be quite 
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Q-O, HOMOGENEOUS NUClEATlON -q-1 ___ 0· 
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·2 ., 0 1 
SCAlING PARAMETER x 

FIG. 2. Time dependence of the reduced total number of nucleated particles 
n,(t)ITjc:t) for different concentrations of preexisting nuclei-Eq. (4.3a). 
The scaling parameter x is related to time in Eq. (3.5). The numerical values 
of q define the reduction of the time lag, i.e., q = - 8t d T. Straight (iong-
dashed) lines correspond to the large-time asymptotes of the corresponding 
curves n,(t) - jc:t)(t - t L). Note the qualitatively different way of approach-
ing the large-time asymptote for small and large q. For small q the curve 
n,(t) is simply shifted in time compared to its homogeneous values, being 
in accord with Eq. (4.3b). 

reasonable as a first approximation, unless the effects of pre-
existing nuclei are so strong that they can be detected from 
"naked eye." 

B. The distribution function. An example 

In the growth region the distribution function f(g, t) is 
given by j(g,t)lg. The growth rate g and thus the distribu-
tion (even the steady-state one!), depends on the specific 
nucleation model considered. It is more convenient to dis-
cuss specific examples in terms of the radial distribution 
f(R,t)=f(g,t)·dgldR, as the growth law R(R) generally 
looks more compact than g(g). Using for the flux the results 
of Sec. III, one obtains the correction to the distribution 
function due to a single nucleus injected at t=O at the size 
R(gl)=R 1: 

fO)v 
8f(R,t) sl 

41TRiTNtiR(R 1)IR(R) 

[ 
CP(Rl) A (A)] Xexp -u -x-exp -x . (4.5) 

Here v is the molecular volume of the new phase, N I is the 
number of monomers, and in accord with Eq. (2.2), T- 1 

equals dRldR at R=R*. Equation (4.5) also explicitly gives 
the transbarrier asymptote of the Green's function. For fur-
ther specification one needs to relate the scaling parameter x 
to the physical quantities t, T, R, and R I which requires an 
explicit expression for R(R)-see Eqs. (3.8) and (3.5). A 
frequently used expression for the growth rate is the one that 
follows from the Zeldovich-Frenkel nucleation equation,5 
i.e., 

(4.6) 

This corresponds to the "continuous ballistic model" in clas-
sification of Ref. 15; on other occasions this growth rate 

emerges when the growth of nuclei is determined by reac-
tions on their surfaces, or for a "nonconserved order 
parameter" .21 As shown in Refs. 15 and 22, this model is 
also very close to the Turnbull-Fisher model which is often 
discussed [see, e.g., Ref. 12(b), and references therein] in 
view of the mentioned experiments. For this growth rate the 
integrals in Eq. (3.6) can be elementary evaluated [see Eq. 
(12) in Ref. 19(b)], and the expression for the decay time can 
also be integrated explicitly.15{a) For the "scaling parameter" 
x in Eq. (4.5) one thus finds after some transformations: 

A t 6cp* R1+R (R-R*)(R*-R 1) 
x=--ln -- +2----ln 2 • 

T kT R* R* 
(4.7) 

Note that despite the general complexity of the problem, the 
solution in Eq. (4.5) is now given by an elementary function. 
At large times this solution describes a hump with the shape 
shown in Fig. 1, which propagates towards large sizes with a 
constant rate R *' T. 

V. COMPARISON WITH NUMERICAL SOLUTIONS OF 
THE MASTER EQUATION: RESULTS AND 
DISCUSSION 

The Master equation of the CNT can be represented in 
the form 

(5.1) 

with f3 g ~ g 2/3 being the gain coefficient and N g the equilib-
rium distribution; i.e., 

Ng=N 1 exp{ - cp(g)lkT}, 

cp(g) = cp* {3(gl g *)213 - 2g1 g *}. 
(5.1 ') 

At some small g = g < ~ g * the kinetic distribution f g (t) co-
incides with the equilibrium distribution N g , and this is used 
as the left-hand boundary condition. The second boundary 
condition is taken as fg(t) =0 at some overcritical size g>. 
In the steady-state version, Eq. (5.1) was introduced into the 
nucleation theory and solved by Farkas.2 He, however, hesi-
tated to extend the macroscopic expression (5.1 ') into the 
region of the smallest clusters, considering quite reasonably 
that here a microscopic treatment is required. Nevertheless, 
not having at our disposal a better expression for N g' we 
shall follow Becker and Doring3 in extending Eq. (5.1 ') to 
all sizes. This defines the problem completely, and allows a 
comparison with the analytical treatment given above. 

The parameters g < and g> have no direct physical 
meaning and thus must not affect the results. Recall that g < 
and g> did not enter the asymptotic solutions of Secs. III and 
IV-and as shown below, upon reasonable choice they really 
do not influence the results numerically. 

The numerical method to solve Eq. (5.1) is close to the 
one described by Kelton et al.,23 although the Tumbull-
Fisher Master equation considered in that paper had a differ-
ent form for the gain coefficient, and we also added a mono-
disperse distribution of preexisting nuclei at g 1 < g * . 
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To relate the numerical results to the asymptotic solu-
tion, one has to specify the deterministic growth rate g. It 
was shown l5 ,19 that for the model considered the growth rate 
is given by 

g= 3g* (gig )2/3(1-exp{a[1-(g Ig)1/3]}) (5.2) 
aT * * 

with a = 2( cP*1 kT)g; 1 (in case of vapor condensation a is 
the logarithm of supersaturation). In the limit a---+O Eq. (5.2) 
is reduced to Eq. (4.6). We, however, considered large values 
of a==1.2. The general expression (5.2) is substituted into 
Eqs. (3.6) and (3.3) to calculate ti(g) and tdec(g I), respec-
tively. This in tum determines the scaling variables x and x 
in Eqs. (3.5) and (3.8). The total flux /O)(g ,t) + 8j(g ,t) is 
then obtained as a sum of Eqs. (3.5) and (3.8). 

The following parameters are held constant. The critical 
size g*=50.1, the nucleation barrier cP*lkT=29.9, and the 
size of inserted nuclei g \ =20. 

In Fig. 3(a) we plot the transient flux for different con-
centrations of preexisting nuclei. In accord with the discus-
sion of Sec. II A, even minor concentrations of such nuclei 
may be very important, leading to a substantial "overshot" 
of the nucleation rate. For example, the upper curve in Fig. 
3(a) corresponds to gd(gl)IN1=4XlO- JO• According to 
Ref. 24, such concentrations, which are smaller than 10-6, 
are currently far beyond the limit of experimental resolution. 
On the other hand, the time lag is given by the area between 
the transient curve and the steady-state line j I j sl"'= I-see 
Fig. 3(a). This geometric interpretation follows from the 
definition (2.4). For small values of the fluxj/jst<1 the area 
is positive, while in case of an overshot j I j st> 1 the corre-
sponding area is negative-see the lower and upper shaded 
areas in Fig. 3(a), respectively. In case the overshot is suffi-
ciently large-as in the depicted example-the total time lag 
becomes negative. 

When solving the Master equation (5.1) for the largest 
concentration of preexisting nuclei [upper points in Fig. 3(a)] 
we verified the insensitivity of the results to the position of 
boundaries by shifting g < from 1 to 6 and g> from 102 to 
402. All these results are shown using the same symbols 
(diamonds) and they practically overlap, so that the solution 
is really insensitive to "unphysical" parameters. As dis-
cussed in Ref. 15, to account in the homogeneous asymptotic 
solution for artificially large values of g <, one simply has to 
reduce the time lag (and, equivalently, the incubation time) 
by t dec(g <). The shift of g <, however, is not expected to 
affect the correction 8j (g, t), provided of course, g < remains 
smaller than g \ . 

In Fig. 3(b) we plot the flux at different sizes with and 
without preexisting nuclei. The "hump" moves to the large 
sizes with the same rate, g (g), as the front in case of homo-
geneous nucleation. Compared to the homogeneous case, the 
impact of preexisting nuclei can be detected somewhat ear-
lier, since homogeneous nucleation is retarded by the decay 
time tdec(g I)' The slight lowering of the "hump" predicted 
by the Master equation is due to diffusional spreading, which 
in the leading approximation is not included in the asymp-
totic solution. In principle, it is not too difficult to include 
this effect in the asymptotic solution as a correction, but one 
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10 

FIG. 3. (a) Reduced flux j(g ,t)!j;~) at the observation size g =96 for differ-
ent concentrations of preexisting nuclei initially placed at g 1 =20. Curves--
asymptotic solution of Sec. Ill, symbols-numerical solutions of the 
Farkas-Becker-Doering Master equation for the same parameters (see the 
description in the text). The difference between the shaded areas below and 
above the steady-state line jljl~)=l determines the time lag (being negative 
for the example depicted). (b) Reduced flux at different observation sizes g 
with and without preexisting nuclei. Lines--asymptotic solution of Sec. Ill, 
symbols--numerical solutions of the Master equation (5.1). Lower (sigmoi-
dal) curves--homogeneous flux (V=O). Upper (bell-shaped) curves-the 
flux with preexisting nuclei (V=200). From left to right (both upper and 
lower curves): g = 100 (solid lines and diamonds) and g =400 (dashed lines 
and crosses). The critical size g*=50.1, other parameters are given 
in the text. 

can show that the diffusion lowering is small, up to arbitrary 
large sizes. Employing the aforementioned geometric inter-
pretation of the time lag, one can see from Fig. 3(b) that for 
a sufficiently large size the time lag will become positive. 
Indeed, the time lag of homogeneous nucleation increases 
with size while the input of preexisting nuclei remains con-
stant. Nevertheless, in practice the overshot shown in Fig. 
3(b) can be exponentially large, which would mean a nega-
tive time lag for every physically reasonable size. 

We also wish to note that the proposed asymptotic solu-
tion is not only qualitatively correct, but is also rather accu-
rate numerically. Recall that Eq. (5.1) is a Master equation 
with essentially nonlinear coefficients and no matching pa-
rameters were used for comparison in Figs. 3(a) and 3(b). 
The accuracy of the homogeneous solution is slightly higher. 
This is due to a "better" (larger) asymptotic parameter g *111, 
compared to (g * - g 1)111 in case of preexisting nuclei. 
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FIG. 4. The probability density apia;, cf. Eq. (6.4). The parameter Q is 
the average number of preexisting nuclei which successfully cross the bar-
rier. For small values of Q (solid line) this density coincides with the scaled 
correction to the nucleation flux of Fig. 1. 

VI. PROBABILITY INTERPRETATION OF THE 
SOLUTION AND THE WAITING TIME TO 
DETECT THE FIRST NUCLEUS 

In certain experiments such as the studies of bubble 
nucleation,6 a detection of a single nucleus is claimed to be 
possible. In this case, nucleation should be considered as a 
stochastic process which may be characterized by a random 
time interval t(g) required to observe the first nucleus with 
size g. Note that this time does not coincide with the stan-
dard "first-passage time" discussed in the theory of random 
processes:25 In contrast to the first-passage time situation, in 
the nucleation problem one has many subcritical nuclei 
which are not conserved being able to dissolve into mono-
mers. 

The probability aspects of the nucleation problem were, 
probably, for the first time discussed by Kolmogorov.26 He 
had shown that (a) nucleation flux can be understood as the 
probability flux in a corresponding reformulation of the 
problem, and that (b) an independent event is the one not to 
detect a nucleus during a smaU time interval dt. The prob-
ability of such an event is (I - jdt), and these independent 
probabilities multiplied for events at different times lead to a 
weU-known resule6 

Pg(t)= l-exp{ - J:j(g,t)dt} (6.1) 

for the probability to detect at least one nucleus with size 
exceeding g at time t. Actually, a "detector" of particles at 
size g means an absorbing boundary, so that the flux j(g,t) 
in Eq. (6.1) is not precisely the flux of the nucleation 
equation, where no such boundary is assumed. However, 
it is intuitively obvious (and it can be demonstrated 
explicitly27(a», that in the growth region (away from g *!) the 
boundary does not change the flux within asymptotic accu-
racy. ' . 

Thus, when evaluating the integral in the exponent of 
Eq. (6.1) one is able to employ Eqs. (4.1)-(4.3) for ng(t). 
This completely determines the probability density 

ap g(t)/ at for the distribution of the waiting times to detect 
the first nucleus. The average waiting time is thus given by 

r(g)= fo'" dt tap/at. (6.2) 

The homogenous nucleation rate j~?) is proportional to the 
size of the system. The same is true for the average number 
Q of preexisting nuclei which cross the barrier if their con-
centration f(g 1)/ N I is held fixed. If the system is not large, 
i.e., ifbothjstT, Q~I, the average waiting time can be easily 
evaluated. In this case the maximum input in the integral in 
Eq. (6.2) is given by large xl?> 1 and xl?> 1, so that n~O)(t) can 
be approximated as jst[t- tl.°)(g)], while ongCt) simply co-
incides with Q-the average number of particles which cross 
the barrier. From Eq. (6.2) on thus finds 

r(g) = 11 j~~) + t~o)(g) - Q/j~~)= 1/j~~) + t~O)(g) + OtL' 
(6.3) 

where Eq. (4.2) relating Q to the correction for the time lag 
has been invoked. Negative values of the total time lag, 
tL=ti,°)(g) + OtL , simply mean that the average waiting time 
is smaller than the one predicted by the steady-state nucle-
ation theory, i.e., r(g) < 1 /j~?) . 

From Eq. (6.3) one can see that for vanishingly small 
probability of homogeneous nucleation (i.e., j~?)-+O), one is 
hardly able to detect the time lag effects, and thus the effects 
of preexisting nuclei. This difficulty, however, is due to the 
definition of r(g) as the average time over all events. Indeed, 
on certain occasions all preexisting nuclei will decay without 
ever having crossed the barrier, and one will have to wait for 
the first homogeneous nucleus to emerge. This takes a very 
long time, -1/j~?) . Thus, an "unsuccessful" event which has 
no physical meaning in view of preexisting nuclei gives a 
major input to the average waiting time. One can avoid these 
difficulties by registering only successful events. If the first 
nucleus emerges sufficiently fast, such a successful event is 
due to preexisting nuclei. If the nucleus does not emerge at 
aU (lIjf?) may well exceed the time of experimental observa-
tion), or emerges after a very long time, the event is disre-
garded. The above expressions can be easily adjusted to this 
situation by neglecting the homogeneous term in the expres-
sion for ng(t) and introducing !he correct normalization. For 
the conventional probability, P g(t), to detect the first suc-
cessful preexisting nucleus, one thus obtains 

P get) ={l- e- Q } -Ie l-exp{ - Q exp[ - exp( - x)]}). 
(6.4) 

Here we remind the reader that the scaling variable x is a 
function of time t, overcritical observation size g, and the 
size of the inserted subcritical nucleus, g I-see Eq. (3.8). 
Equation (6.4) constitutes a single-parametric function of x28 

and the corresponding probability density is plotted in Fig. 4. 
For small Q (solid-like in Fig. 4) the density corresponds to 
the "scaled flux" depicted in Fig. 1. This has a simple ex-
planation. If in a single measurement the probability to de-
tect a nucleus is small, i.e., Q ~ I, one has to perform many 
measurements (of the order of l/Q) to obtain good statistics. 
Upon averaging over a large number of data, the probability 
aspect of the problem is lost, and it becomes equivalent to 
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the conventional one. In the opposite limit of large Q, the 
maximum of the probability density shifts towards negative 
values of x (small times). This shift occurs very slowly, pro-
portional to In On Q), so that the dependence on the number 
of preexisting nuclei fo(gl) (or, on the size of the system) 
becomes extremely weak, although formally it never satu-
rates. For moderate values of Q the maximum in the prob-
ability density approximately corresponds to x =0, so that the 
average time is given by 

(6.5) 

with (j(g) and tdec(gl) defined by Eqs. (3.6) and (3.3), re-
spectively. This average time < t(g) >, unlike the time r(g) in 
Eq. (6.2), remains finite if the homogeneous nucleation is 
improbable (i.e., j~?L,O). The different method of averaging 
is indicated by the angle brackets. For moderate values of Q 
the integral is small compared to the difference of the first 
two terms, and with accuracy TO(1) one has 

(6.6) 

VII. CONCLUSIONS 

The key results of our study are the explicit corrections 
to the homogeneous nucleation rate which are induced by 
preexisting nuclei, Eq. (3.9), as well as the corrections for 
number of nucleated particles, Eq. (4.2), and the time lag, 
Eq. (2.6). The obtained expressions are expected to be accu-
rate not only for the continuous (Zeldovich-FrenkeI) form of 
the nucleation equation, but also (with a corresponding 
modification of the deterministic growth rate g) for the Mas-
ter equation introduced by Farkas, Becker, and Doering. A 
surprising fact is the ease with which preexisting nuclei, 
even in minor concentrations can completely overshadow the 
effect of homogenous nucleation. Particularly, the total time 
lag may become negative. This also indicates the limitation 
of the conventional definition of this quantity given by Eq. 
(2.4). This definition puts a very strong emphasis on homo-
geneous nucleation, and it is not surprising that the time lag 
may loose its physical meaning when homogeneous nucle-
ation is practically negligible. A probabilistic formulation of 
the nucleation problem (see Sec. VI) allows one to consider 
nucleation by successful inserted nuclei, without a reference 
to homogeneous nucleation. In this case the role of the time 
lag is played by the mean waiting time to detect the first 
nucleus, which, of course, is always positive. Applicability 
of the probability formulation in a realistic physical situation 
depends on the experimental possibility to detect a single 
nucleus. As to other results of the present study, there seems 
to be no obstacles to their application, but one still has to 
know the initial distribution f o(g I) of preexisting nuclei. 
This distribution is very sensitive to the history of prepara-
tion of the experimental sample [quench rate, annealing time, 
etc., see, e.g., Ref. 12(b)]. Thus, we expect that further de-
velopment of the theory can be done only in connection with 
specific experimental situations. 
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APPENDIX A: CORRECTION TO THE TIME LAG BY A 
NEAR-CRITICAL NUCLEUS 

Similar to the treatment of Sec. II A we first consider a 
steady-state problem with a unit source of nuclei at g = g 1 • 

The inserted flux will split into two parts-J + , towards large 
sizes g > g I , and J _ <0 towards the small ones, g < g I . The 
Zeldovich-Frenke1 nucleation equation for the corrections to 
the homo'genous distribution of(g,t) and flux J(g,t) has the 
conventional form on both sides of the source 

aSf 
at 

aJ 
ag , 

a of 
J=-DN--

ag N 
(AI) 

with N being the eqUilibrium distribution and D = g I( a In N I 
ag). The boundary conditions for of are, however, different. 
Its ratio ofl N should decay on both sides of the barrier, and 
it should be continuous at g = g I. In the steady-state case 
(i.e., J=J:t at g~gl) the latter condition leads to 

fOO dg Igi dg 
J+ gl DN =-J_ -00 DN· (A2) 

Formally, we extend the region of integration to negative 
sizes, as the major input to the integral on the right-hand side 
of Eq. (A2) is expected to come from the vicinity of g I 
which is expected to be large (macroscopic). Together with 
the conservation condition 

(A3) 

Eq. (A2) allows the elementary evaluation of J +. In case g I 
is well below g * the integral on the left-hand side of Eq. 
(A2) is asymptotically large compared to the one on the 
right-hand side which, in tum is determined mainly by its 
upper limit and equals -l/[g I N(g I)]' This means J + «': IJ _I 
and from Eq. (A3), J _=-1. In this case one recovers the 
results of Sec. II A. If, on the other hand, g I is close to g * ' 
i.e., IgI - g *1 «':g * [although the parameter Zl =(gl - g *)1 A 
can be of arbitrary value and sign], one can use a parabolic 
approximation near the top of the barrier to evaluate the in-
tegrals in Eq. (A2). In this case the result is 

(A4) 

The growth probability rapidly approaches unity for an over-
critical nucleus, g I > g * . One can easily check that Eq. (A4) 
overlaps with Eq. (2.3) for subcritical nuclei with 
A «': g * - g I «': g * . Thus, similar to Ref. 27 (b), one can con-
struct a formal interpolation: 

(AS) 

This interpolation covers the whole subcritical and near-
critical regions, including the overcritical sizes up to 
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gl- g * <{g * [for larger gl Eq. (AS) is to be replaced by I]. 
Such an interpolation may be useful if the initial location of 
preexisting nuclei is unclear. As discussed in Sec. II B, the 
correction to the time lag is obtained by mUltiplying -J + by 
the actual number of inserted particles and reducing it by j 5t • 

APPENDIX B: COMPARISON WITH AN EXACT 
EXPRESSION FOR A PARABOLIC BARRIER 

In case of a parabolic barrier, 

cf>pb(g) = cf>*{I-(glg*-1)2}, cf>*lkT=(g*/A)2 
(Bl) 

and D =const, Eq. (AI) becomes the well-known Omstein-
Uhlenbeck equation for an overdamped unstable harmonic 
oscillator. For an unrestricted region of sizes this equation 
can be solved exactly even for an arbitrary time dependence 
of its coefficients.29 In the nucleation context the situation is 
somewhat aggravated by the necessity to restrict g to posi-
tive values.30 Nevertheless, as should be clear from the dis-
cussion in Sec. III, in case a nucleus is placed at 1 <{ g 1 < g * 
it is "almost the same" whether this nucleus will be ab-
sorbed at g = 1, or be allowed to proceed to negative sizes. 
Anyway, the chances for a "negative" nucleus to cross the 
barrier are exponentially small. Without the reference to pre-
existing nuclei the exact solubility was exploited in our pre-
vious study31 to test the asymptotic solution obtained for a 
time-dependent (periodically modulated) barrier. In the 
present case we are interested in a more simpler, transient 
case. A single nucleus with size g 1 is inserted into the system 
at t=O. For the drift part of the flux the result reads 

'pb _ A exp{[cf>pb(g,)-cf>*]lkT}a(t) 
OJ (g,t)- 2~J;lg~bl 

X exp{ - xPb - a 2(t)[ exp( - xPb) 

+~ [~ + (g~: *)2 ]exP( - 2XPb)]). 

Here aCt) is defined by 

aCt) = [l-exp( - 2tlr)r 112, 

while the growth rate corresponds to 

gpb= (g - g *)1 r. 

(B2) 

(B3) 

(B4) 

The scaling parameter X, as follows from Eqs. (3.6) and 
(3.8), is now given by 

xPb = tl r-In(2 cf>*1 kT) -In[ (g - g *)/(g * - g I)], (BS) 

and in Eq. (B2) we choose g, =0. Note the presence of two 
essentially different time scales.27(b) At t~r the parameter x 
has large negative values, which means vanishingly small 
values for the flux in Eq. (B2). Only for much larger times, 
namely for t>rln(cf>*lkT), does the flux acquire noticeable 
values. At such times, aCt) in Eq. (B3) already equals unity; 
and hence one recovers the "scaling expression" (3.9) within 
asymptotically negligible corrections. 

APPENDIX C: THE EFFECT OF OVERCRITICAL 
NUCLEI AND THE STEADY-STATE LIMIT 

An important test of the validity of the obtained results is 
to verify that in case the initial distribution corresponds to 
the steady-state distribution of homogeneous nucleation, the 
solution will not evolve in time. Since we are interested in 
the growth region g > g * ' the overcritical nuclei will become 
important in this case. Although we have not discussed such 
nuclei so far-their inclusion is straightforward. Overcritical 
nuclei simply grow to large sizes with the drift flux gf(g ,t) 
remaining constant along the trajectories of growth. 

Consider now the initial distribution produced by the 
steady-state homogeneous nucleation 

{
N(g,), g*-g,~A, 

fo(gl)= .(0)1' ~ A 
Jst gl, gl- g*~L.J., 

(Cl) 
(C2) 

in the sub- and overcritical regions, respectively. In the 
direct vicinity of g * the distribution is given by 
(l/2)N(g)erfc[(g-g*)/A],4 which bridges the two branches 
given by Eqs. (CI) and (C2). 

Upon the (formal) switch-on of the nucleation process at 
t=O the distribution (Cl) and (C2) is to be treated as preex-
isting nuclei with an input oj(g,t), and the transient homo-
geneous flux, /O)(g,t) should be added. At first, up until 
t- r In(g *,11.), the overcritical nuclei will grow, preserving 
the value of their flux so that their input is given by j~?) . The 
input of subcritical nuclei is given by Eq. (3.4). Note that for 
the initial distribution considered one has in this equation 
j(gl)IN I exp(cf>(gl)lkT)=1. In addition, from the definition 
in Eq. (3.3), one has dtdec=-dgtigl' Thus the total flux due 
to preexisting subcritical nuclei and the homogeneous nucle-
ation is given by 

X(g,t+tdec) 

=/O)[g,t+tdec(g'fax )]. (C3) 

In the above giax has the meaning of the largest size 
where Eq. (Cl) is still applicable. The value g'fax can be 
estimated as g* -A, so that tdec(giax)-r In(g *111.). Recall 
that the incubation time of homogeneous nucleation has 
twice a larger time scale, as one can see from Eq. (3.6). Thus, 
at t < r In(g i A) when the effect of the overcritical nuclei is 
important, the flux (C3) is practically zero, while at 
t>rln(giA) when the overcritical nuclei do not contribute, 
it has the steady-state value. Bridging the effects produced 
by sub- and overcritical nuclei requires a delicate consider-
ation of nuclei in the near-critical region,27(b) which is not 
our purpose at the moment. Anyway, one can see that the 
steady-state flux persists, due to overcritical nuclei at 
t< r In(g *111.) and due to subcritical nuclei at larger times. 

This provides an important independent confirmation of 
the validity of our solution. 
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