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Rates of Activated Processes with Fluctuating Barriers
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We study the ultimate rate of relaxation to equilibrium, as defined by the appropriate master equation,

in a bistable potential that is fluctuating in a stationary manner; we obtain results for both dichotomic
and Gaussian barrier fluctuations, as a function of the correlation time characterizing the fluctuations.
"Resonant activation, " previously observed in specific model problems, is shown to be typical and to
have a simple physical interpretation. In the slow fluctuation limit we find that the ultimate rate of
relaxation —when it exists—differs from the inverse mean first passage time.

PACS numbers: 82.20.Mj, 05.40.+j, 82.20.Db

The discovery [1]of "resonant activation" in the prob-
lem of passage over a fluctuating barrier —the discovery
that the mean first passage time (MFPT) has a minimum
as a function of the correlation time characterizing the
fluctuations —has prompted a flurry of literature [2]. The
original work, and almost all that followed, dealt with
MFPT's for special model problems. In contrast, our con-
tribution here is a study of the ultimate rate of relaxation
to equilibrium, as defined by the appropriate master equa-
tion, in a fluctuating bistable potential; we assume only
that the potential barrier is high compared to k&T and that
the fluctuations in it are relatively small, although possi-
bly also large compared to k13T. We find that resonant
activation is typical and that it has a simple physical inter-
pretation. If barrier fluctuations are very fast, the rate of
relaxation is determined by the average barrier. If barrier
fluctuations are very slow, the ultimate rate of relaxation
is determined by the highest barrier. If barrier fluctua-
tions are slow enough that, during a correlation time, we
may speak of a rate over the instantaneous barrier, but
fast enough that a number of correlation times must pass
before substantial relaxation occurs, the rate is the aver-
age of the "instantaneous" rates over the various barrier
heights. Given the Arrhenius dependence of rate on bar-
rier height, this average rate must be greater than the rate
over the average barrier and, of course, greater than the
rate over the highest barrier; that is the maximum called
resonant activation.

We will support this picture by calculations on both
dichotomic and Gaussian barrier fluctuations. The slow
fluctuation limit in the Gaussian case is particularly
delicate, for there is no "highest" barrier, arbitrarily large
fluctUations being permitted by a Gaussian distribution.

First the dichotomic case, which is easier. The poten-
tial is V(x) + yW(x), where y is the stationary Markov
process with values ~ l, zero mean, and correlation
(y(t)y(t')) = exp(—)t —t')/r, ) We migh. t, for example,
be concerned with a chemical isomerization whose bar-
rier is modulated by a second isomerization, already at
equilibrium; the relaxation rate of the second isomeriza-
tion sets the time scale r, In the overdamped (Smolu-
chowski) limit the master equation for the probability

densities p-(x, t) is

tp, l ~p. 't

kp-)
where the subscripts ~ refer to the two possible values of
y, y = (2r, ) ', and L are the Fokker-Planck operators
associated with V ~ W: L = B,(V' ~ W' + p 'il, ),
where V'(x) = dV/dx, etc. , and p ' = kttT In thi. s
equation "time" has dimensions "(length) /energy" be-
cause we have absorbed a friction constant into it.

In the limit y = 0, eigenvectors of the matrix opera-
tor in Eq. (1) can be constructed from eigenfunctions
of L . Let p+ = exp[—p(V + W)]/Z+ be the equi-
librium density in the potential V + 8', where Z+ =
f dx exp[—p(V + W)]; then L+p+ = 0. Let p+ be the
"relaxation" eigenfunction of L+—the eigenfunction with
the least negative eigenvalue, L+p+ = —k+ p+. With re-
spect to the dot product (p&+~p2+)+ = f(dx/p+)pt+pq+,
L+ is Hermitian, p+ is normalized and orthogonal to p+„
and both are orthogonal to eigenfunctions of L+ with
more negative eigenvalues. We may assume that p" is
normalized. Similarly, p' and p" denote the equilibrium
and relaxation eigenfunctions ofL, orthonormal with re-
spect to the dot product (p& )p2 ) = f(dx/p')pt p2
We construct four orthonormal eigenvectors of the y = 0
matrix in Eq. (1) as follows: (p+, p ) = (p+, p')/+2.
(p+, —p')/+2, (p+, 0), and (0,p'). For y 4 0 we cal-
culate the eigenvalues of the 4 X 4 matrix formed over
this basis. The eigenvalues 0 and —2y are of no interest:
One refers to overall equilibrium, the other to relaxation
of the stochastic process y, if it were not already in equi-
librium. The eigenvalue of interest, —k(y), is the less
negative eigenvalue of the 2 X 2 matrix,.(. i'),

y(. ip. )
The barrier separating the left and right wells in

the potential V + W is high compared to k~T. so
in each well p ", is to good approximation propor-
tiona1 to p'. The proportionality constants are easily
determined by (p' ~p" ) = 0, (p" ~p" ) = 1: In the
left well p' == p' (p" /p'"')'t2; in the right well
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p+ = —p+(p+'"t/p+ )'t2, where the p's are equilibriutn
occupation probabilities (i.e., p+"tt = p+ integrated over
the left well). Similarly, p" is well approximated by
analogous formulas for the potential V —W. Then

r
[

r ) ( right lefty t'g "t left)1/2 1/( r
)

r )
The relaxation rate k(y) is therefore independent of the
occupation probabilities p and is given by (if k ~ k+
and Ak = k —kp)
k(y) = k+ + y —(Ak/2) {[1+ (2y/Ak) ]' —1). (2)
This approximation is accurate as long as y is small

in magnitude compared not with k but with the other
nonzero eigenvalues ofL, that is, as long as the correla-
tion time ~, is long compared with the characteristic times
of relaxation within the wells of the bistable potential. If
the barriers are high, intrawell relaxation is much faster
than barrier passage, and Eq. (2) therefore accurately de-
scribes the range from y = 0 to y &) Ak (but still small
compared to intrawell rates). In this range k(y) increases
monotonically from k+—the rate over the higher barrier,
when y = 0—to (k+ + k )/2—the average rate—when
y»5k.

It is worth emphasizing the basic point that in the
"static" limit of very small y the ultimate rate of relaxa-
tion is that over the higher barrier, for in this limit the
mean first passage time turns out to be the arithmetic
average of the MFPT's for each of the two barriers
V ~ W [1,2]. In this limit the usual equivalence between
calculation of a rate and calculation of a mean first

passage time T„„(from reactant to product) breaks down,
i.e., k(y) W T,„' [3].

In the opposite limit y ~, i.e., ~„short compared
with intrawell relaxation times, we expect the relaxation
eigenvector to be close to a zero-eigenvalue vector of the
operator obtained by setting L = 0. We therefore write
p (x, y) = @(x,y) ~ BP(x,y), where BP is a small
correction, and try an expansion in y

@(y) = @.+ y-'e +
k(y) = ko + y 'kl + "

~4'(y) = y '~4'o + " .

We find Lvgp = kpPp, where Lv = (L+ + L )/2
is the Fokker-Planck operator for the average potential,
which is just V. Therefore tttp = pv and kp = kv, the
relaxation eigenfunction and the rate in the average
potential V.

The rate in the limit y ~, i.e., k&, is smaller
than the average rate (k+ + k )/2, for (k+ + k )/2 =-

kv[exp( —PA) + exp(PA)]/2, where 6 denotes the shift
in barrier height due to W.

The first-order correction to the rate is readily calcu-
lated from the first-order eigenfunction equation

(Lv + kv)4» = kt Qv ——(L+ —L )fv/g-
by multiplying through with exp(P V)gv, integrating over
x, and using the fact that Lv exp(PV) = exp(PV)Lv, Lv
being the adjoint of Lv. One finds

k~ dxexp V ~ = — dxexp V ~ L+ —L ~ 8 = — dxexp V y B„W'B„W' q 2

dx (B„[exp(PV)Q v])W'[8„(W'Q v)] /2.

The function exp(P V)gv is essentially constant except in
the immediate vicinity of the barrier maximum, where
Pv changes sign; in this region exp(PV) is essentially
constant and Pv is near zero, so the integrand is approxi-
mately exp(pV)(pv)2(W')2/2. kl is therefore positive
and proportional to the square of the fluctuation W, i.e.,
kl = O(b, 2)

These calculations on the dichotomic case therefore
confirm the physical picture outlined in the first para-
graph: k(y) has a single maximum whose value is the
average of the rates over the higher and the lower barri-
ers, and from this maximum k falls monotonically to the
limiting values kz at y = ~ and k+ at y = 0.

For the case that the barrier fluctuations are Gauss-
ian, the instantaneous potential is V + yS', where y is
the Gaussian Markov process (Ornstein-Uhlenbeck) with
mean zero and correlation (y(t)y(t')) = exp(—(t —t'[/r, ).
We shall first do a transition state theory estimate of the
rate [3] by finding the equilibrium distribution of x and y,

P„[(V' + yW' + P B„)p ] + yB [(y + a,)p"] = 0,

where now y = 1/r, . We introduce an auxiliary function
u, to be determined, and split the Fokker-Planck equation
into two first-order pieces,

(V' + yW' + P 'B„)p'q = 8 u,

y(y+ a, )p" = -a„u.
(4a)

(4b)

For large y we try an expansion in y '. p'q = pp +
y 'p~ + . . u = yu ~ + ~p + y 'u~ + . . . From
(4a) we find B~u l = 0, i.e., u l —= u t(x). From (4b)
we find pp(x, y) = exp(—y2/2) [pp(x, 0) —fp dy' &&

exp(y /2)tt„u l(x)]; since pp must be everywhere

p q(x, y), and calculating an effective barrier to reaction
along x by integrating p'q over y.

The Fokker-Planck equation for p'q is
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non-negative we conclude that B„u ~(x) = 0 and that
po(x. y) = exp(—y'/2) po(x, o).

Integrating (4a) over y, we find (V' + P 'B„)po(x, 0) =
0 or po(x, 0) = exp[—pV(x)] (we ignore normalization
constants, which are of no interest). In the limit y
the effective potential along x is therefore the average
potential V(x), as in the dichotomic case.

Similar calculations determine the first-order cor-
rection p i. Given po, solve (4a) for uo, up to a
function of x; then solve (4b) for p~, then use (4a),
integrated over y, to determine the function of x.
We find that pi(x, y) = po(x, y) [y(W" —PV'W')—
p Jo dx'W'(W" —pV'W') + c], where c is a constant
to be fixed by normalization. Integrating po + y 'p&
over y, we conclude that to order y ' the effective
potential along x is V(x) + y ' Jodx W'(W" —PV'W').
Specialize to the symmetric case, V(x) and W(x) even in
x with maxima at x = 0; then to order y ' the effective
potential is

V(x) + y '[W'(x)] /2 —y 'P dx' V'WQ,

and away from x = 0 both additions to V(x) are posi-
tive, which implies that the effective barrier to reaction
decreases as 7, = y ' increases, the effect—as in the di-
chotomic case—being proportional to the square of the

fluctuation.

For small y we try an expansion in y. p'q = po +
ypi +; u = uo + yui + . From (4b) we
find B„uo = 0; solving (4a) and insisting that po
be non-negative, we find that po(x, y) = N(y) &&

exp(—P[V(x) + yW(x)]); integrating (4b) over x, we
find that N(y) =- exp(—y /2)/Z(y), where Z(y) =
Idx exp[—P(V + yW)]. As should be the case, in
the limit y 0 p'q is a Gaussian distribution of the
static (fixed y) equilibria in x. Again specialize to the
symmetric case and suppose that the barrier modulation
W(x) is nonzero only around x = 0; then V(0) + yW(0)
is the static (fixed y) barrier and—since V(0) » kttT and
W(0) &( V(0)—Z(y) does not depend strongly on y. In-
tegrating po(x, y) over y, we find that the Arrhenius factor
for barrier passage is now exp[—PV(0)] (exp[—Py W(0)]),
where (exp[—pyW(0)]) = exp[pzW(0)2/2] is the average
over the Gaussian distribution of y. This is precisely the
rate enhancement given by averaging the instantaneous
rates k(y) = kv exp[—PyW(0)] over the Gaussian distri-
bution of y.

But we have made a mistake. To speak of a single
effective barrier to relaxation makes no sense if y is so
small that v, is comparable to or greater than the time
of barrier passage. In fact, in the static limit y = 0
we have a continuous spectrum of barriers and rates,
with barrier heights extending up to infinity and rates
extending down to zero because arbitrarily large positive
fluctuations are permitted by a Gaussian distribution
[4]. Nevertheless, the calculation of the last paragraph
has meaning: It applies to the region k~ && y && k„,

where k„ is a rate of intrawell relaxation, provided the
equilibrium solution of the Fokker-Planck equation (3)
in this region does not differ much from po. This will
be the case unless the "perturbation" y&, [(y + &&,)po]
has nonzero projection on the relaxation eigenfunction
@(x~y) of the Fokker-Planck operator L(y) for motion in
the potential V(x) + yW(x), L(y)@(x~y) = —k(y)@(x~y),
where L(y) = B,(U' + yW' + P '8, ) I.n the symmetric
case, by symmetry, there is no such projection: po is
even in x; @(x~y) is odd. We do not pause to analyze
the general case but instead look to the time-dependent
Fokker-Planck equation to see if a rate exists at all in the
small y regime.

We are looking for the solution with the lowest positive
eigenvalue of —y 8 p —y B~(yp) —L(y)p = k(y) p. We
write p(x, y) =—p(y)@(x~y) and replace L(y) by its eigen-
value —k(y): —yB,,p —yB, (yp) + k(y)p = k(y)p. This
is a Born-Oppenheimer type of approximation, and it is jus-
tified in the standard way, by noting that the separation of
levels in the "potential" k(y)—which is O(kv)—is much
smaller than the gap between k(y) and higher "potentials, "
which is O(k„).

In the symmetric case k(y) = kv exp[—PyW(0)] and
the lowest eigenvalue k(y) is easily calculated, in har-
monic oscillator approximation, to be

k(y) = yK'/4 + y/ZPa + [(1 + Pay)'" —I]/2],
(5)

where b, =—W(0) and y is determined by the equation
yy/2 = Phkv exp( —Phy). The separation of this eigen-
value from the next one up is y(1 + Phy)'

If y » kv, y ls small, y =—2Pb, kv/y, and we find
k(y) =—kv(1 + P A2/2), in agreement with what we
found above by effective potentials. The next eigenvalue
to be determined is separated from k by y, so the
relaxation is well described by a single exponential.

If y « k&, y is large, and it is easier to regard y as a
function of y, the limit being y ~; then k —= yy2/4 =
p &kvy exp( —p&y)/2. The rate goes to zero, as expected,
there being no limit on the height of the possible barriers,
but it does so trailing a near continuum of slightly higher
rates behind it, for the eigenvalue separation in this limit
is y(/3b, y)'t (& yy /4. In this regime the relaxation is
not simply exponential with rate constant k, but slightly
faster, going as t 't2 exp(—kt) [5].

In summary, our calculations for both dichotomic and
Gaussian Auctuations support a simple physical picture
of activated processes with Auctuating barriers: If Auctua-
tions are fast, we are in the "motional narrowing" regime
in which the rate is determined by the average barrier;
if fluctuations are slow, we are near the static limit and
the slowest process is ultimately rate determining; the
third characteristic rate—the average rate, the rate aver-
aged over the distribution of barrier heights —is the rate
observed when the time scales of barrier fiuctuation and
barrier passage are comparable, and this average rate is
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greater than the rate in either the fast or the slow fluctua-
tion limit.
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