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Effect of vertical vibrations on avalaeches in grawnlar systems
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We discuss the efFect of vertical vibration on the dynamics of avalanches on the surface of quasi-two-
dimensional granular systems using a minimal "mesoscopic" model in a regime where no bulk convec-
tion of the grains is present. We give a simple picture of why large vibration strengths or high vibration
frequencies can drastically reduce the static limit of the dynamic friction coeScient entering the minimal
model. We derive an exact relation for the minimal angle of repose and perform an asymptotic analysis
ta obtain the time evolution of the angle of the free surface, which compares well with a recent experi-
ment.

PACS number(s): 05.40.+j, 46.10.+z, 81.35.+k

I. IN raODUCTION

Granular systems (such as sand dunes or dry coff'ee
grounds in a filter) are part of our everyday lives. They
show many peculiar properties which do not fit under the
standard division of states of matter, into solids, fluids,
and gases [1]. Considering a granular system as a classi-
cal many-particle system, an ab-initio-theory is a diIcult
task. It involves the collective dynamics of inhomogene-
ously distributed, finitely extended grains of complicated
shapes which interact via static and dynamic friction and
inelastic collisions in the presence of gravity.

Of particular scientific and technological interest is the
response of granular systems to external vibrations,
which can dilatate the grains and therefore fluidize the
system. External vibrations act as a driving mechanism
to generate flow and lead to a variety of phenomena, such
as avalanches in sandpiles [2-4], pattern formation [5],
surface waves [6], and size segregation [7] ("Brazil nut
effect" [8]). There are several numerical studies [9) based
on two-dimensional hard disk models; the theoretical un-
derstanding of granular systems and their transition to
flow, however, still presents a challenge. There is no sta-
tistical or "hydrodynamic" theory of granular flow avail-
able yet which allows the interpretation of these phenom-
ena.

In order to gain insight into the physics of onset to
flow, several important, highly idealized experiments
[2,3] have been reported recently. They deal with the dy-
namics of avalanches on the surface of sandpiles in drums
or rotating cylinders. Without vibrations, an avalanche
can start if the angle y of the free surface is larger than a
maximum angle of repose y, . It comes to a stop again if
the angle reaches a minimum angle of repose y, . Adding
vertical, high-frequency vibrations to a granular pile in
the drum geometry, Jaeger, Liu, and Nagel [2] found ex-
perimentally a topological change in the dynamics: The
angle of the pile relaxes logarithrnically over a large inter-
val in time to values close to zero.

Recently, we have proposed a minimal "mesoscopic"
model [10,11] for the dynamics of avalanches in granular
systems. This model applies to situations when the dy-

namics of the system is concentrated to a narrow layer at
the surface with no global convection in the bulk taking
place. It consists of two coupled mean field equations for
the velocity v (t) of a grain at the surface and the angle
p(t) of the surface of the pile, which is quite similar to
Coulomb's theory of friction of a body on an inclined
plane. Note that v(t) and qr(t) must be considered as
averages over a large number of experimental runs to lev-
el out the details of one individual avalanche. In the spe-
cial case of no external rotation, it reads

v =g[siny —(bv+bzv )cosy]y(y, v),

with g(tp, v)=8(v)+8(tp y, )—8(v)—8(y—y, ) and
8(y)=0 (1) if y ~0 (y )0). Here, g is the gravitational
acceleration and a the coupling coefflcient between angle
and velocity. The function y accounts for the static fric-
tion (cf. also Ref. [3]}: The pile is at rest if v =0 and
y &y„and it is trapped at the rest state if U goes to zero
and p&y„otherwise, the system evolves dynamically.
Dynamic friction is modeled by a friction coeScient
kz(v) =bv+b2v, with bv and b2 both positive [11].The
static limit of the friction coefficient kd(v~0) corre-
sponds to an angle yz=arctan(bv), which is the basic
quantity in the following.

At first sight, one could think that vertical vibrations
are refiected in (1) by modulation of the gravity accelera-
tion g. Our numerical studies, however, have shown that
this cannot explain the experiments [2]. In Ref. [10]we
have briefly mentioned that the logarithmic relaxation of
y(t), found experimentally by Jaeger, Liu, and Nagel [2],
can be explained as follows: Assume that the leading or-
der effect of vertical vibrations implies a decrease for y&
(without vibrations a quantity of order unity} to an angle
yd which is close to zero.

In this paper we substantiate this idea in detail. The
paper is divided in two parts: In Sec. II we discuss, on
the basis of a simple physical one-grain picture, why vi-
brations might strongly reduce friction. In Sec. III we
work out the effect of reduced kinematic friction using a
systematic expansion of (1) around yd. We derive an ex-
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pression for the minimal angle of repose qr„(the long-time
limit) for the model as a function of ys. Moreover, we
study the transient dynamics of qr(t) in the limit of small
ye and Snd a transient ln(t)-relaxation for p.
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0.6II.CHANGE OF yg DUE TO VERTICAL
VIBRATIONS

0.4Here, we want to demonstrate that vertical vibrations
can reduce the magnitude of the static limit of the fric-
tion coeScient ho=kgb(v~O). Vibration dilatates the
surface layer of the pile, and therefore the grains undergo
nonfrictional motion for part of the time. This in turn
reduces the effective friction in our model (1}. Although
this seems to be intuitively clear, a mathematical descrip-
tion is rather difBcult. To gain insight into this, we con-
sider a simple, very restricted mechanical one-grain mod-
el that is a variant of the inelastic bouncing baH problem
[13]. Suppose a single (pointlike} grain is situated on a
rough surface, which oscillates vertically with a vibration
amplitude b, and a vibration frequency ro. Scaling time
by t~~=cot, the position of the surface is given by
y (T)=boost. Suppose further that the grain hes on the
surface only because of its weight (no other interactions)
and that possible collisions of the grain with the rough
surface are completely inelastic. At ~=0, the surface
and the grain are in their maximal position. Depending
on the strength and frequency of the vibrating surface,
two types of dynamics for the grain are possible: (i) the
grain stays forever on the surface, i.e., ys(~)=b, cos~ or
(ii) it undergoes a free fall due to gravity until it reaches
the surface again, i.e., ys(r)=h (g/2' )H—. Then, the
grain stays at the surface [the constraint is y, (~)&ys(~) ]
until the maximum y, =y =6 is reached again. The
time 'py, when the grain hits the oscillating surface again,
is given by the solution of

0.2

0.50.30.20.1

FIG. 1. Changes of the static limit of the friction coefBcient
due to vibration: Ratio boe/bo as a function of p/2=g/2hco,
cf. Eq. (3}.

From (4), we see that in the limit of large vibration
strength and/or high vibration frequency, ye approaches
zero, proportional to t0 ' and 5 '/ . This supports our
earlier speculation in Ref. [10] on the effect of vibrations
on bo in granular systems.

In this simple picture, changes of bo can only appear if
P& 1. This is caused by the very restrictive assumptions
we use. In general, one has also to take into account
partly nonvertical and partly elastic bouncing of the
grains, as well as collision effects. This might reduce the
size of bo considerably, even if P& 1, as is likely the case
in the experiment of Jaeger, Liu, and Nagel [2]. Also,
other mechanisms are reasonable, e.g., successive desta-
bilization of neighboring grains (domino efFect). We note
that often bulk convection occurs in experiments [1] if
P& 1, which limits the applicability of the above scenario.
Nevertheless, it shows that dilatation of the surface layer
due to external vibration reduces the friction of an indivi-
dual grain at the surface.

cost/ 1 2Pdf (2)

with P=g/b, to~. Therefore, large b, and/or large to imply
small P. From (2) one immediately infers that a part-time
free fall can only occur if P& 1. For small P, one obtains
1/ —2n(1—v p). In the limit p~O, r/=2m During the.
interval [O,v/] the grain undergoes a free fall and there-
fore moves basically frictionless (we neglect here friction
due to the surrounding air), while during [~/, 2m] the
grain undergoes friction as in the nonvibrating case. The
effective static limit of the dynamic friction coefBcient bo
in this model is therefore given by the average over one
peIxod,

III. MINIMAL MODEL IN THE PRESENCE
OF VERTICAL VIBRATIONS

To investigate the dynamics of avalanches moving
down a pile of grains under the inliuence of vertical vi-
brations, we go back to the mesoscopic model (1). First,
Benza, Nori, and Pla (cf. Ref. [13])have shown that the
coupling parameter a in the drum geometry can be writ-
ten as a =& tang, with 8 independent of y. Therefore we
can approximate a by I tang&. Second, we suppose that
yz is drastically reduced by the external vibrations. We
emphasize that the discussion in this section only uses the
fact that yz « 1, independent of the physicaL scenario hotv
this can be explained. For the following, it proves useful
to introduce

bo =bo(1 r//2n) . — (3)

In Fig. 1 we show the dependence of the ratio bo /bo as a
function of P/2. This ratio approaches zero for small P,
increases almost linearly for 0.2&P&0.8, and increases
for 0.8&P& 1 stronger than linear to unity. Above P= 1,
bo /bv equals unity in this simple model. The angle yz
corresponding to bo is given by pe =arctan(bo }. For
small P=g/b, ro, one Snds

ys=arctan +g/hto bo +g/hro ——tangs . (4)

E=slllpg/(1 S1Il Ipg)

implying that e is positive. Restricting the fallowing to
v &0, i.e., y= 1 in (1), combining (la) and (lb) to a single
equation in y, introducing the scaled deviation from y~,

0'(t)= [q)(t) qP~ ]/e, —
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where n =gb2/8 &0. Note that all information on the
dependence on yd is now contained in e. The velocity U

is related to the dynamics of 4 by U =—e%'. The con-
straint for the dynamics, u &0, then reads %(0. Equa-
tion (7) describes the evolution of the angle of the surface
of the pile until u(t)=0= —e4(t) is reached. Then the
avalanche stops, i.e., u (t)=0, and the angle %(t) remains
constant in time given by the minimal angle of repose
4„=(y„—yd )le. The effect of strong vertical vibrations
is given by the limit of very small "frequencies" v e in the
oscillator with quadratic friction, Eq. (7), since e=yd.

&. Constant of motion and minimal angle of repose

Equation (7) has an important and surprising property:
It is integrable. The constant ofmotion J can be calculat-
ed explicitly, reading

1J= —ql — (1+2n@) e
4 2 (8)

expanding the differential equation in powers of%(t), and
retaining only terms up to quadratic powers in 4, leads to

%—n%2+e% =0,

fr 0'd=
2n

(12}

which is independent of the initial velocity ~. The
minimum angle of repose, y„ is equal to qd only if e
equals zero. For small positive e, y, &yd holds.

In Fig. 2(b) we show the dependence of y„—yd for
0&e(0.3 and for difFerent initial velocities «=u (0)=0,
0.01, 0.02, and 0.03 and n =1. As discussed above, all
four curves begin at e=O and y,—qd =0. For zero initial
velocity [cf. curve (a) in Fig. 2(b)], q&„—gad decays mono-
tonically to a limit value —(q&, —(pd), corresponding to
y„=2yz qr, F—or n.onzero initial velocities [curves (P},

rameters we use in the following. (ii}For small moduli of
x, W(x)=x —x2+O(x3) holds. Naturally, (11) can also
be used to determine q, in the case without vertical vibra-
tions by substituting y& by yd.

Small e and zero initial velocity ~=O imply for the
constant of motion, J-(y, gd—)exp[ —2n(p —y" )/&].
For small e and nonzero initial velocity «%0, one obtains
J-(« /2e )exp[ 2n—(y, —yd )ie] In.both cases, the ex-
ponential factor in J leads to very small moduli of J and
J/e for small e T.herefore, the minimal angle of repose
y„approaches yd linearly in e as e~O according to

It is trivial to check that dJ/dt =—0 is fulfilled. A short,
constructiue proof of (8) goes as follows: First, add a term

e/2n —+e/2n =0 in (7), multiply the resulting equation
by 4'exp( —2n%'), and finally rearrange the terms in a
way that a time derivative can be put outside of the
brackets to obtain (8). In the Appendix, we discuss addi-
tional mathematical properties of (7) [12].

The Srst integral J is determined by the relevant initial
conditions 4, =%(0)=((p,—yd )ie and 4(0)=—«/e,
with a being the initial velocity, « —=u(0). Therefore, we
obtain

O.S'

0.4-i-

0,

-0.4 I

2 —2n+,J= — (1+2n+, ) e '=const,
2e 4n

(9) -0.8 &-

-0.5 0.5

exp(2n+„)=—e( 1+2n 4, }/4n J . (10)

This condition can be easily solved leading to an exact ex-
pression for the minimal angle of repose in (7),

as long as the avalanche moves. We can take advantage
of (8} and (9} to derive a relation for the minimum angle
of repose %,=((p,—yd )le, given by the condition that
the velocity U equals zero, and setting therefore 4=0.
From (8}one obtains the condition

0.

-0.01.

-0.02'

-0.03-

(~)
1

4„=—((p„—gad }=— W +1
e " " 2n 68

Here, W(x) is Lambert's function, i.e., the solution of the
functional relation W(x)exp[ W(x) ]=x. A numerical
plot of W(x) is shown in Fig. 2(a). We note two proper-
ties of W(x). (i) A solution of the functional equation for
W(x) only exists if x &x~ =1/e =—0.36788. There-
fore, a minimal angle of repose exists if the initial condi-
tions %(0) and ql(0), as well as the model parameters n
and e, fu1511 4n J/ee)x;„. This is fu16lled for the pa-

-0.04
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0.05 0.15 0.2 0.25

FIG. 2. {a) Solution 8'{x) of the functional relation
W(x)exp[ IV(x)]=x. (b) Dependence of y, —yd on e for a Sxed
n = 1, y, =0.48, and initial velocities (a) «=0, (P) «=0.01, (y)
x=0.02, and {5)a=0.03.
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(y ), and (5) in Fig. 2(b}],the decay of y,—(pd is linear for
@&0.002. Above this value, y,—yd decays strongly to
reach a minimum and subsequently slowly increases
again. The larger the initial velocity, the more pro-
nounced is this behavior.

%(t)=%o(r)+a%, (r)+O(e'), (13)

in (4), the first two orders read

for small e, i.e., small yz. Inserting an expansion of %(t)
in powers of e,

B. Perturbation theory for small e
~ 0 0

%'p=n4p, (14a)

To investigate the transient dynamics of avalanches
when they approach the minimum angle of repose y,
given by (11), we perform a perturbation analysis of (7)

I

%,=2n+p%, —'kp . (14b)

The solutions corresponding to the initial conditions
'Ilo(0)=4, tPo(0)=—sc/e, V,(0)=0, and 4,(0)=0 read

%o(t)=4„——ln(1+ net /e),1
(15a)

%,(t)= (a'+nat) ln(1+net/s')+ f(t),1
6n3

6e ~nt +(18n+„+15}s(~nt)+(~nt) (6n+„+5)(r)=-
36n d(e+n~t)

(15b)

(15c)

Note that the perturbation expansion (13,15) is nonuni-
form in time and only valid as long as t &0 (1/e) This,.
however, is suScient to discuss the transient relaxation.
As an initial angle we used here 4„,since in the presence
of vibrations the pile can be unstable even at angles
smaller than 4, [2], the maximum angle of repose
without vibrations.

The lowest-order solution, Eq. (15a), is of the same
form as the decay law of Jaeger, Liu, and Nagel [2] found
by fitting their experimental data. Note that (15a) decays
monotonically. Incorporating the next order, Eq. (15b),
shows that 4 must have a minimum at Snite times since
%'& diverges, proportional to t lnt, in the long-time limit.
A minimum of 4, however, implies v =0 and thus a halt
of the avalanche. This minimum is also an indication of
the breakdown of the perturbation expansion.

In Fig. 3 we show as a representative example plots of
E'%p and e%' as functions of lnt. One can see that 4p as
well as 4 decay logarithmically over a wide range of
time. %p and 4 agree within a linewidth for lnt &2, im-
plying that already %p is a reasonable approximation for
not too large times. The numerical solution shows simi-
lar behavior; it saturates, however, in the minimal angle
of repose y, =y„(%'„,v, s, n} given by Eq. (11). In gen-
eral, the minimum angle of repose is nonzero; for small
yd, however, the minimum angle is close to zero, corre-
sponding to an almost horizontal surface of the pile.

As a consequence of (13) and (15), one obtains in
lowest-order approximation that the velocity decays alge-
braically in time, i.e.,

C. The role of nonaero initial velocity due to vibrations

0.1

-12 -40 -8 -6 -4 -2

From (15a) one can see that a nonzero initial velocity
u (0)=~ is required to obtain the logarithmic decay of 4'
in t. A physical explanation of that goes as follows:
Turning on vibration jump starts the evolution of
avalanches already at angles where, without vibration,
the inclined pile is stable. In a more microscopic picture,
vibration induces dilatation of the grains at the surface of
the pile, leading to a destabilization of the system. This is
re6ected in our model by a characteristic initial velocity
u (0)=z. v (0) is basically a function of the vibration am-
plitude and frequency [and also of other control parame-
ters like n, e, and the initial angle %(0)]; it is, however,
characteristic of a given experimental setup.

v (0) (16)1+v (0)nr/e

If e«u(0)nt, then v(t)=(e/n)t ' holds. This might
serve as a simple way to determine the ratio e/n of the
model experimentally.

FIG. 3. Transient evolution of the angle on a logarithmic
time scale. Parameters are @=0.001, n =1, %,=0.14/e, and
K=10 e. The curves represent the lowest order approximation
e%'0, Eq. (15a), and the next higher approximation
s+=e(%0+e%, ), Eq. (15). They agree within linewidth for
1nt &2.
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IV. CONCLUSION AND DISCUSSION

We have studied the impact of vertical vibrations in a
one-dimensional model for avalanches on the surface of
granular piles. Our focus is the mathematical description
of a quasi-two-dimensional system like the drum
geometry. A simple inelastic bouncing ball argument has
been given to explain why the static limit of the friction
coefBcient might be drastically diminished. This argu-
ment is idealized; it does not take into account partly
elastic bouncing of the grains as well as possible collisions
of the grains. These effects can change the value where
deviations of b« from bo become significant. We have
calculated an exact expression for the minimal angle of
repose, y„of (7), i.e., the angle where the system comes to
rest again. Finally, we have studied the transient ap-
proach to the minimal angle of repose using perturbation
methods. We could recover the logarithmic decay law
for q(t) [2] whenever vibration-induced reduction of the
static limit of the friction coeScient bo occurs, i.e., e && 1.
There are three difFerent prior explanations of the loga-
rithmic decay law: Jaeger, Liu, and Nagel [2] have
drawn an analogy to activated hopping over a barrier
where vibrations mimic an efFective temperature. Duke,
Barker, and Mehta [14], using Monte Carlo simulations,
attributed it to the cumulative effect of small changes in
the network of contacts within the pile (cf. also Ref. [1]).
Finally, Mehta, Needs, and Dattagupta [15] have dis-
cussed a coupled set of Langevin equations for the mac-
roscopic angle of tilt and its local variation. In their sta-
tistical treatment they found within some limits an al-
most logarithmic relaxation in time.

Our present argument is purely mechanical; the in-
gredients are a strongly reduced dynamic friction due to
external vibration and a nonzero initial velocity produced
by vibrations. Otherwise, our approach allows for a
deterministic description of the dynamics of avalanches
under vertical vibration. We hope that our study stimu-
lates further experiments on "mesoscopic" modeling of
avalanches.
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T(4 4)=—'e " 4, V(%)=— (1+2n+)e7 2 4n

(A2)

being the kinetic and potential energy, respectively. This
implies that (Al) can be derived from Hamilton's princi-
ple using the Lagrangian function L(%,4}
=T(%,%) V(%).—One can easily check that L(%,%}
fu1611s indeed the Euler-Lagrange equation

d dL
dr Qlp

dL

The canonically conjugate momentum to 4 is given by

(A3)

implying that the Hamiltonian function belonging to Eq.
(Al) reads

e «'sll +V (A4)

and fu161ls the Hamiltonian equations k=t}H/BII and
II=—BH/8%. Using (A2) one can interpret (Al) as the
motion of an undamped pendulum with angle-dependent
"mass" in a nonsymmetric potential V(%). If e)0
(@&0), V(%) has a minimum (maximum) at 4=0 with
V(0)=—e/4n, For small 4 one obtains a quadratic po-
tential V(%)=—(e/4n )(1—2n 4 ), with e being the
curvature. Therefore, small e corresponds to a fiat poten-
tial V(%) close to the origin 4=0. We note that (Al)
can have two difFerent types of dynamics for positive e.
If —1 &4n E/@&0 holds, the system shows periodic
solution; if 4n E/e &0, the solutions diverge in time.

APPENDIX

Here, we discuss brie6y, the mathematical structure of
the (nonlinear) oscillator with quadratic friction,

(Al)

discarding the additional restriction 4&0 required in our
physical problem O. bviously, (Al) possesses inuariance
under time reuersal, t~—t being the underlying reason
for the existence of the constant of motion J, Eq. (8).
Therefore, one can interpret J as a (nondimensionalized}
energy, E=J=T(4,%}+V(%), with

[1]For a recent review see H. M. Jaeger and S.R. Nagel, Sci-
ence 255, 1523 (1992); S. R. Nagel, Rev. Mod. Phys. 64,
321 (1992); P. Evesque, Contemp. Phys. 33, 245 (1992);
Granular Matter —An Interdisciplinary Approach, edited
by A. Mehta (Springer-Verlag, New York, 1994);A. Meh-
ta and G. C. Barker, Rep. Prog. Phys. 56, 383 (1994); and
references cited therein.

[2]H. M. Jaeger, C. Liu, and S.R. Nagel, Phys. Rev. Lett. 62,
40 (1989).

[3]M. Caponeri, S. Douady, S. Fauve, and C. Larouche (un-
published).

[4]P. Evesque, phys. Rev. A 43, 2720 (1993) and references
cited therein.

[5]S. Douady, S. Fauve, and C. Laroche, Europhys. Lett. 8,
621 (1989); P. Evesque and J. Ragchenbach, Phys. Rev.
Lett. 62, 44 (1989); G. W. Baxter, R. P. Behringer, T.
Fagert, and G.A. Johnson, ibid. 62, 2825 (1989)and refer-
ences cited therein.

[6]H. K. Pak and R. P. Behringer, Phys. Rev. Lett. 71, 1832
(1993)and references cited therein.

[7] J. B. Knight, H. M. Jaeger, and S. R. Nagel, Phys. Rev.
Lett. 70, 3728 (1993)and references cited therein.



50 EwwsCT OF VERTICAL VIBRATIONS ON AVALANCHES IN. . . 3469

[()]A. Rosato, K. J. Strandburg, F. Prinz, and R. H.
Swendsen, Phys. Rev. Lett. 58, 1038 (1987).

[9]P. A. Thompson and G. S. Grest, Phys. Rev. Lett. 67,
1751 (1991);T. Poschel and V. Buchholtz, ibid. 71, 3963
(1993);V. Buchholtz and T. Poschel, Physica A 202, 390
(1994) and references cited therein.

[10]S.J.Linz and P. Hiinggi (unpublished).
[11]This model is minimal in the sense that its friction

coeScient kd(v) is the simplest to fu1511 the physical lim-
its, in particular the quadratic increase with v for large v.
In particular, it difFers from related models [cf. H. M.
Jaeger, C. Liu, S. R. Nagel, and T.A. Witten, Europhys.
Lett. 18, 619 (1990), V. G. Benza, F. Nori, and O. Pla,
Phys. Rev. E 48, 4095 (1993), and also the model in Ref.
[3]]by assuming that kd(u) increases monotonically with

V.

[12]As in the case of a pendulum, one can reduce Eq. (7) to a
Srst order equation in 4,

4=++2l exp(2n+)+(e/2n )(I+2n%') .
Its forrnal, implicit solution reads

T ~2n f dy [e(1+2ny)+4n2J exp(2ay)] '~~+ t =const.

[13]A. Mehta and J.M. Luck, Phys. Rev. Lett. 65, 393 (1990).
[14]T. A. J. Duke, G. C. Barker, and A. Mehta, Europhys.

Lett. 13, 19 (1990).
[15]A. Mehta, R. J. Needs, and S. Dattagupta, J. Stat. Phys.

68, 1131(1992).


