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Abstract. - A periodically driven bistable system is considered in the region of validity of a
two-state hopping approximation. In the limit of weak noise the hopping process becomes
discrete not only in space but also in time so that an explicit evaluation of the autocorrelation
function becomes possible. This function turns out to be a non-analytic function of time leading to
a rather peculiar structure of the power spectrum. Results are compared with numerical and
experimental data.

A periodically driven bistable system (DBS) serves as an archetype model for a variety of
physical processes where non-linearity, noise and deterministic external perturbations are to
be accounted for simultaneously. Such processes can include isomerization reactions catalized
by light [l], propagation of signals in sensory neurons [2], operation of a ring laser [3], to
name only a few. Although the properties of a DBS are presently discussed mainly in the
context of a phenomenon named stochastic resonance [4], it definitely has much broader
application. The attractive feature of a bistable system as a model of a real process is the
presence of two essentially different time scales. The first time scale is of dynamical origin
and is related to relaxation of the system around the stable minima. The second time scale,
being much larger, is due to hopping between the minima and is determined by the intensity
of the noise. The two mentioned time scales are well separated only in case the noise is weak.
This separation ensures the <<universality>> of the model: most of its properties become
insensitive to the details of the stochastic dynamics (such as the shape of the bistable
potential), but depend only on the hopping intensity. In addition, in this case one can hope to
obtain explicit (often elementary) expressions for the main characteristics of the stochastic
process, being an important perspective for a problem that in general case cannot be solved
exactly.

Another aspect of the separation of the time scales in the weak-noise limit is the extremely
sharp sensitivity of the hopping process to the momentary (time-dependent) shape of the
bistable potential. Here one can expect that some results may exhibit discontinuities, cusps
and other non-analytic features. This contrasts with other approaches (e.g., the linear-
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response treatment [ 5 ] )  where a smooth dependence on time and other parameters is usually
observed. As a non-trivial example of such non-analytic behaviour, one can mention the
decay of a driven metastable state[6]. Here, instead of an intuitively assumed smooth
deviation from a quasi-adiabatic regime with the increase of the driving frequency, one
observes an abrupt breakaway from this regime when the frequency reaches some threshold
value. In the present study of a DBS we will show that the non-analyticity of the
autocorrelation function in the limit of weak noise provides an understanding of certain
peculiarities (dips or peaks) in the power spectrum. These characteristic features have
previously been observed in some of the analogous simulations in the presence of weak
noise [2a,7] and were described therein as <<unexplained,, or &range. [2a, 7b-dl.

Consider a Langevin equation with a Gaussian white-noise source

k ( t )  = - 3U'O'(x)/& + A sinfit + E(t), ( f ( t )  f ( t ' ) )  = 2D8(t - t ' ) .  (1)

The unmodulated potential U(O)(x) is assumed to be symmetric and to have two minima at
xio) ,  respectively. The modulation amplitude A is expected to be sufficiently small to ensure
the bistability of the time-dependent potential U(x; t )  = U'') (x) - Ax sinQt possessing
minima, respectively, at x+ ( t ) .  In the limit of weak noise the particle has the best chance to
escape to the neighbouring minimum at the instant when the corresponding barrier is the
smallest, and otherwise it may be located in the direct vicinity of x+ ( t )  or x -  (t). Thus, to a
very good approximation (we discuss the limitations of such an approximation below) one has
a hopping process which is discrete both in space and in time, i.e.

with

W,( t )  = a8 t - m * - , Iml = 0, 1, ... i (3)

(time is measured in the units of the modulation period). Here n,  ( t )  denote the probability to
occupy the corresponding site, while W+ ( t )  are the escape rates which can be obtained as the
Kramers rate for the instantaneous configuration of the potential U(%; t )  [8]. In this
approximation, also known as the quasi-adiabatic approximation, the values of a in eq. (3) can
be readily evaluated [9,10]. Introducing the maximal Kramers frequency wgBx
corresponding to the most shallow well and neglecting the slight modulations of the
equilibrium positions, one estimates a to be ( D / A X $ ~ ' ) ~ / ~ ~ ~ " / S ~ .  Mostly, we will be
interested in Sa > in which case a is small and has the meaning of the hopping
probability. Nevertheless, the results are expected to be applicable for a - 1 as well. The
breakdown of the approach is anticipated only for exponentially large values of a when the
driving frequency is comparable with the unmodulated Kramers frequency corresponding to
A = 0. In such cases there exists a finite probability that the particle will hop to another
minimum during the intermediate stages of modulation, not <<waiting>> for the shallowing of
the corresponding well. For such small frequencies-which will not be discussed in the
present study-eq. (3) is to be replaced by a smooth (analytic) function of time which would
bring the problem closer to the treatment of McNamara and Wiesenfeld [5a]. The opposite,
large-frequency limitation of our treatment comes from the restricted validity of the
quasi-adiabatic approximation in eq. (2). The frequencies considered should be small
compared with the intrawell frequencies, - a2U/3x2 at x = xio).  Nevertheless, we note that
the region of validity of the forthcoming consideration is asymptotically large in the
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weak-noise limit. In practice it covers several orders of magnitude above the Kramers
frequency.

Having stated the expected region of validity of eqs. (2) and (3), we proceed to our main
concern-the autocorrelation function

S( t ,  7) = ( M t  + z> - ( x ( t  + d ) l [ x ( t )  - (x(t>)l). (4)
From this definition and eqs. (21, (3) one obtains

S( t ,  7) = [x, ( t )  - x- (t)I[x+ ( t  + z) - x- ( t  + z)I[ 1 + exp [ - exp [ - 2a(z  + 1/21]

*exp[a ( [ t+  $ ] - [ t + z +  : ] + i t -  + ) - [ t + r - +])I, (5)

where { ...} denotes the fractional part of a real-value number. One can see that as a function
of z the autocorrelation function has factorised into an exponentially decaying part, and a
periodic part. In such cases one would normally expect the corresponding spectral density to
consist of a set of Lorentzian-type peaks and a monotonously decaying background. The
non-trivial point, however, is that the periodic part containing the fractional parts is a
non-analytic function of z, i.e. it cannot be represented by any finite number of Fourier
harmonics. Thus, a rather peculiar structure of the spectrum is anticipated. To demonstrate
this more explicitly we, for the moment, replace the analytic part of the periodic factor, i e .  the
product of the distances between the equilibrium positions in eq. (5), by a constant (x+ - x - ) ~ .
The contribution of the time dependence of this factor which becomes important at  large
frequencies will be discussed below later. Upon averaging the resulting expression of S( t ,  z)
over time t ,  one ends up with

-S(z) = exp [ - a ( 2 z  + l)]
(1 + exp[-a1)2 (x, - x - ) ~  exp [a{ 2z}](1 - { 22}( 1 - exp [ - a ] ) ) .  ( 6 )

Note that, although the averaging removed the discontinuities of eq. (5), eq. (6)  is still
((weakly non-analytic)), having a cusp at each integer value of 27. This is clearly seen from

Fig. 1. - The <<non-analytic,, shape of the phase-averaged autocorrelation function (solid line), eq. (6),
with x+ - x- = 1 and a = ln2. The smooth dashed line is a guide for the eye.
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fig. 1. We next consider the spectral density &U). When performing the Fourier
transformation of eq. (6) one can integrate within a period with subsequent summation of a
geometric progression. One thus obtains after some manipulations

D exp [ - a ]  tgh ( 4 2 )  1 - cos(7rw/D) S(w) = (x, - x-)2 9 (7)
xw2 1 - 2 exp [ - a ]  cos (xw/D) + exp [ - 2al

where we explicitly restored the driving frequency 0, instead of the previously used valueD = 2 x .  This result is general and is valid for any system whose dynamics can be reduced t o
eqs. (1)-(3) with a negligible time dependence for the difference xk ( t ) .  Specific properties of a
system are contained solely in the parameter a. For small a, on average the spectral density
decays proportional to U - 2 ,  with the values of the constant being independent of the driving
frequency Q. In the extreme situation, a+O, eq. (7) describes, accurate to a factor, a
delta-function of U. Evidently, when hopping is completely forbidden, the system never
equilibrates. In this case, in neglect of a slight modulation of the equilibrium positions, the
autocorrelation function remains constant-see eq. (6)-leading to the afore-mentioned
Celta-shaped spectral density. Alternatively, in case of a fast equilibration (large a)  one has
S(w) - exp [ - a ] ( l  - cos (7rw/D))/w2. The system completely equilibrates after the first
hopping, i .e. after one-half of the modulation period the autocorrelation function has
practically relaxed to zero already. This sharp cut-off explains the dependence on w.
Non-zero contributions to S(t ,  z) as defined by eq. (5) come from those initial conditions at
z = 0 when the particle is placed in the wrong>> (shallow) well-otherwise the system is in
equilibrium from the start. The probability of such a-wrong placement is, however,
exponentially small, which explains the factor exp [ - a ]  in S(o). For arbitrary values of a a
general property of a driven bistable system, which is given explicitly by the main result (71,
is that the spectral density has zero values at even multiples of the driving frequency. These

loo1
frequency

Fig. 2. - Spectral density S(W) for two different values of the driving frequency Q and the driving
amplitude A = 0.121. The noise intensity D equals 1/70. Solid line: eq. (7) for Q = dashed line:
eq. (7) for Sa = symbols: numerically exact data for a modulated quartic potential. Arrows
indicate small dips at w = 40. Note the overlap of numerical data for Q = (diamonds) and Q = 1O-O
(crosses) around w = 5 * where, in agreement with the theory, the data do not depend on the driving
frequency. The finite size of the dips, which from eq. (7) are infinitely deep, is a plotting artifact.
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zeros imply unlimitedly deep dips in the logarithmic scale. This property is a direct
consequence of the mentioned non-analyticity of the autocorrelation function. Below we will
assess the applicability of our conclusion to realistic situations with small but finite noise. At
the moment we wish to compare eq. (7)-which is surprisingly simple takjng into account the
general complexity of the problem-with numerically exact data for S( 0).

We consider a specific example of a quartic potential with U( ' ) ( x )  = - x2/2 + x4/4,
yielding xi') = +- 1. The corresponding Fokker-Planck equation was solved using the matrix
continued-fraction method [ 111. Numerical results are plotted against the analytical
expression in fig.2. The agreement is good both on the qualitative and the quantitative
levels, except fol. the fact that the dips are finite and are observed only for the two lowest
harmonics of the driving frequency. To understand this deviation recall that the infinite dips
arise due to the non-analyticity of S(z) which in turn is due to the discrete nature of the
hopping process in the limit of weak noise. Increasing of noise destroys the non-analyticity as
the &-peaks of the transition probability in eq. (3) acquire a finite width 6 t  - (A/D)-'l2f;d -'.
Nevertheless, the <<fingerprints>> of this non-analyticity-the rapid change of the derivative
of S(z) and hence the (fmite) dips in &w)-wiU still be detectable, provided one considers the
low-frequency part of the spectrum with w < < ( 8 t ) - ' .  On the other hand, for higher
frequencies the resolution of the spectral analysis will be too fine to notice the
<<non-analyticity. of the autocorrelation function so that no dips are expected. An elementary
estimation E121 gives the condition of existence of the m-th dip: AID >> (2m)2. In a realistic
experimental or computational situation one typically has AID - lo', or less; therefore not
more than two dips at w = 2(a and w = 4,Q may be observed. This finding is in accord with
experimental studies[2a] and[7b-d]. Moreover, to observe at  least one dip, one needs a
sufficiently large ratio of AID, which explains why the dips vanish with increasing of noise.
This behaviour was observed experimentally and was often considered as an indicator that
the dips are an artifact of the measurement technique [13].

We now briefly consider the modulation of the equilibrium positions. One can show that
after averaging this effect becomes very small, being proportional only to the fourth (!)
power of the driving amplitude [12]. Nevertheless, this modulation leads to a qualitatively
new effectipeaks at  even multiples of the driving frequency. The major peak at  w = 2 2  has a
width 6w - WF"(D/A)'/~ and a height - A4/8w. This peak will prevail over the
corresponding dip in the direct vicinity of 25;, in case the latter is sufficiently large, i.e.
Q > > w ~ ~ D ' / ~ A - ~ / ~ ,  but otherwise eq. (7) remains applicable. Note that the width of the
peak is extremely narrow since it is determined by the Arrhenius factor. Thus, in practice
they may be easily mistaken for the delta-peaks which, however, are forbidden by symmetry
rules [5c].

The numerical solution of the Fokker-Planck equation for a modulated quartic potential
discussed above exhibits peaks in the spectral density at the second multiple of the driving
frequency in complete accord with the analytical prediction. Peaks at  even harmonics were
observed experimentally in ref. [7dI, although these were associated exclusively with the
coloured noise therein. From the above treatment one can see that, in principle at least,
peaks may be present in the case of white noise as well. An explanation of why similar peaks
were not observed in other analogous simulations [2a, 7b,c] may be contained in the fact that
in contrast to ref. [7d] those studies employed the two-stage filtering technique [13]. Most likely,
two-stage filtering which records only the hopping events destroys the peaks which arise due to a
delicate correlation of hopping with the modulation of the equilibrium positions.

In the present work we have shown that for a periodically driven bistable system the
weak-noise consideration provides an accurate expression for the spectral density of the
autocorrelation function which in practice ranges over several decades of magnitude of the
driving frequency-see fig. 2. The weak-noise treatment also explained the atrange. dips
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and peaks at even harmonics, previously observed in experimental studies. The dips emerge
due to the non-analyticity of the autocorrelation function in the weak-noise limit-see fig. 1.
Traces of this non-analyticity can be detected even with increasing noise making the dips at
the lowest even harmonics rather realistic. However, there exists a threshold value for the
ratio of the noise intensity to the driving amplitude above which no dips are possible. On the
other hand, peaks occur due to correlation of the modulation in the equilibrium positions with
the hopping process. Thus, they represent a more .delicate. phenomenon compared to dips
which emerge exclusively due t o  hopping. In this sense, peaks are less universal than dips,
and are more vulnerable t o  the peculiarities of the measurement technique, such as the
two-stage filtering.
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