
                                                       

Microscopic Reversibility and the Nonlinear
Einstein-Onsager Relation in Macroscopic Description
of Nucleation
V. A. Shneidman 1"2 and P. H~inggi I

                                                

We investigate the possibility of describing fluctuational decay of a metastable
phase macroscopically, without a detailed knowledge of the microscopic kinetics.
Using the ideas of microscopic reversibility, we construct a hydrodynamic-type
equation which describes the buildup of fluctuations in the region of subcritical
sizes. An equation of Ornstein-Uhlenbeck type is used to bridge this equation
with the one describing unstable growth of larger (overcritical) fluctuations. An
explicit time-dependent solution to the proposed system of equations is derived
in the spirit of the singular perturbation technique. It is shown that this solution
also accurately approximates the solution of the Farkas-Becker-D6ring master
equation, so that the macroscopic level of description is consistent with the
underlying models.

                                                                        
                                                           

1. INTRODUCTION

In  f u n d a m e n t a l  app l ica t ions  of the pr inciple  of microscopic  reversibil i ty
( M R )  there are two ma jo r  trends.  The  first is related to the u n d e r s t a n d i n g
of the or igin of macroscop ic  ( h y d r o d y n a m i c )  laws from the f irst-principle
reversible microscopic  kinet ics  (for a recent  review see ref. 1). The second
t rend  is to start  with macroscop ic  equa t ions  and  use M R  to (a) u n d e r s t a n d
their  symmet ry  and  (b) inc lude  f luc tua t ions  as a first step b e y o n d  the
h y d r o d y n a m i c  descr ipt ion.  I t  is this t rend where some of the mos t
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impressive results of Lars Onsager were obtained, tz'3) What remained
unsolved after Onsager is mainly related to large fluctuations; a relatively
recent review can be found in ref. 4.

In the present study we apply the principle of microscopic reversibility
to describe fluctuation-induced onset of a new phase (nucleation). Fluctua-
tions here are not only large (they have to exceed some critical size in order
to become unstable), but they are also crucial, as without them the
metastable phase would never decay. We are going to construct macro-
scopic equations which correctly describe either the decay or the buildup of
fluctuations (Section 2). Further, in Section 3 we derive an explicit time-
dependent solution to these equations for an arbitrary distribution of sub-
critical fluctuations. An important point is that this macroscopic solution
turns out to be consistent with the solution of a master equation tS' 6~ which
models nucleation on a mesoscopic level. This is discussed in Section 4.
Another, more formal aspect of the problem considered is that up to the
form of the boundary conditions the mentioned master equation describes
a typical random walk problem. In this sense the macroscopic level of
description is related to "continuous approximation of a random walk"- -a
well-known topic since the classical papers of Kramers and Moyal. t7) This
problem still attracts much. attention--see, e.g., ref. 8 and references there-
in--and several approximation schemes were proposed, t9' ~o) Remarkably
enough, for the specific problem considered, the ideas of MR allow one
to approximate the time-dependent solution of the master equation
directly, without an intermediate Fokker-Planck approximation, although
identification with an appropriate approximation scheme can be performed
a posteriori. This is briefly discussed in Section 5, while a more detailed
study of the relation between the nucleation and the random walk problem
is contained in ref. 1 i.

2. MACROSCOPI C  DESCRI PT I ON OF NUCLEATI ON

Consider the entropy reduction AS(n) associated with the reversible for-
mation of a spherical "droplet" of a new phase which contains n molecules.
In a metastable system this entropy will have a characteristic minimum at
some value n , ,  known as the "critical size." If the droplets are to be treated
as fluctuations, one can formally introduce their (unnormalized) "equi-
librium" distribution feq ~ exp{AS(n)}, which is the well-known Einstein
probability formula. Of course, this distribution is unphysical at n > n . ,
where AS(n) increases unboundedly. Nevertheless, one may suspect that
well below the critical size, fluctuations are "unaware" of their potential
instability and are in local equilibrium with monomers. As the equilibrium
distribution is defined up to a prefactor, one can require f ]q  = f  l, where f l
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is the number of monomers in the system. On a macroscopic level the
decay rate (or growth rate for n > n , )  of a dropletlike fluctuation is given
by a phenomenological expression h(n) which changes its sign at the criti-
cal size. Decay of a distribution of such fluctuationsf(n, t) can be described
by a continuity equation

Of/Ot= -Oj/On ( la)

j = h f ( lb)

Every subcritical fluctuation of size n will vanish after a characteristic decay
time td,c(n)= -Sg dn/h. We deliberately do not distinguish between n = 1
and n = 0 on the lower limit of integration, "as such differences must not
affect the macroscopic picture. Naturally, the integral in the above expres-
sion for the decay time is expected to converge on this limit. This really
turns out to be the case for typical nucleation models, where due to surface
tension effects, small fluctuations rapidly decay. From the principle of MR
one would expect that the same time tdec(n) is required to build up a
fluctuation of size n. In this case the only possible first-order differential
equation which would be automatically satisfied by the equilibrium distri-
bution is given by

Ov/Ot = h Or~On" (2)

with v(n, t) being the ratio of the kinetic distribution f to the equilibrium
distribution f~q. Note that unlike f,~q ~exp(AS) (and f in the region of
buildup of equilibrium), which may change on a microscopic scale due to
large values of AS(n), the function v(n, t) is expected to be smooth. ~12) The
latter property allows a hydrodynamic-type description given by Eq. (2).
Alternatively, the standard equation (1) which will be used later for
description of deterministic growth of fluctuations at n>n .  assumes a
smooth function f(n, t).

Both Eqs. (1) and (2) fail near the critical size n .  in a region charac-
terized by the width 6 = [(1/2)O2AS/On 2] -1/2. In this region fluctuational
corrections to the deterministic growth rate become important. Since in the
macroscopic limit the barrier -AS(n , )  increases slower than n,  (like ..,,,2/3
in classical nucleation theory), the value of 6 remains large, i.e., 1 ,~ 6 ,~ n , .
On the other hand, the change of entropy in this region is of the order of
unity, so that all the functions can be treated as smooth, and the conven-
tional Fokker-Planck description is valid. The latter is given by Eq. (la)
with the diffusional correction - D  Of/On added to the flux j in Eq. (lb).
The coefficient D can be determined from the conventional Einstein-
Onsager relation ~ . ~ D  OAS/On. (6) One can show that the change of the
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diffusion coefficient in the near-critical region is negligible, which leads to
the Ornstein-Uhlenbeck equation

a f _ f 2  d2f 3 ( n - n , ) f ,  ~ - ~ - - ~  ,= (3)
3t 2 On 2 017 ,,

Equations (1)-(3) describe the problem in the singular perturbation sense.
Below we will illustrate the technique of solution more explicitly after
specifying the initial and boundary conditions. Note that when obtaining
these equations, unlike previous treatments, ~z ~3~ we did not assume any
specific form of the underlying microscopic kinetics. Also, the conventional
Einstein-Onsager relation was employed solely near the equilibrium point
where it is guaranteed to be valid. Otherwise--if one would wish to relate
Ji to microscopic properties at any values of n--this relation may have a
completely different form (see Section 4).

3. SOLUT I ON OF THE MACROSCOPI C  EQUATI ONS

Consider the following initial conditions: f(n, O)= Nf(n -n~), n~ < n , .
Physically, this means that initially there are no large size fluctuations,
except for N artificially inserted droplets of a subcritical size n~. We switch
to Laplace transforms of Eqs. (1) and (2) with respect to time (luckily,
the resulting expression can be inverted) and obtain, at n l < n < n , ,
V(n, p),~exp{-ptder Here V(n, p) is the transform of v(0, t), and the
prefactor can be obtained from the standard boundary condition v(0, t) - 1
[i.e., V(0, p ) =  1/p], which means that small fluctuations have an equi-
librium distribution. In the direct vicinity of n ,  the decay time diverges.
Here the second-order equation--the Laplace transform of Eq. (3)- -
should be incorporated. The inner solution is given by V~~ ,.~
i ' e r f c [ ( n - n , ) / A ]  with m - p r  and imerfc(z) being the repeated error
integral. ~14~ The proportionality coefficient is derived in a standard manner
by matching the inner and outer solutions. ~2~ To the other side of the
barrier the dropletlike fluctuations grow deterministically and can be
described by Eq. (1). Up to an n-independent factor, one has here for the
Laplace transform of the flux J(n, p)~exp[-ptgr(no, n)], where tgr(no, n)
is the time of deterministic (macroscopic) growth from some value no > n ,
to n. This value no, as well as the proportionality coefficient, can be derived
from matching with the right-hand asymptote of the inner solution. The
result reads
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Here j~, is the steady-state flux over the barrier (6~

6
J~t - z -  f ,  exp[AS(n,)]

2r

and ti(n) is the "incubation time ''c15~

ti(n) = tdec(n, - 6/x/~) + tg~(n, + 6/x//2, n)

= 2 ~ l o g n * ~  2z dn---7-- n--n.

(5)

(6)

(the principal value of the integral is assumed).
Asymptotically (i.e., 6In. --* 0), the inversion of the Laplace transform

given by Eq. (4) can be performed through summation of residues located
in the finite part of the complex p-plane. This gives t~JI

N 0 o n,J(n, t )=j~ h,fcqfft  j ( t+tdec(n'))

(7)
with

j~ t) =Jst exp{ -exp[-(ti(n) - t)/r ] }

corresponding to the flux of nucleated particles in the absence of pre-
existing dropletsJ ~2" ~51

Strictly speaking, description of nucleation given by Eqs. (5)-(7) is not
completely macroscopic, since, in principle, mesoscopic corrections to
AS(n.) may be important. Though one can expect that relative values of
such corrections (and their derivatives) to be small, their absolute values
may not be, leading to dramatic changes in the values of Jst. Consider,
e.g., the logarithmic term discussed in ref. 16, or the "Lothe-Pound"
correction, liT) Nevertheless, the expression for the reduced flux, j(n, t)/js t, is
completely macroscopic: It is determined by the kinetics h(n) and by the
thermodynamics--the second derivative of the entropy, which enters
through 6, being insensitive to the details of the microscopic behavior. We
will now illustrate this by choosing a specific type of microscopic kinetics
and demonstrating that Eq. (7) approximates the solution of the corre-
sponding master equation.

4. NUCLEATION FROM A MASTER EQUATION

The classical model .5' 61 assumes the following master equation:

Of,,/Ot=j, ,-j ,+,,  j ,=fl , ,_ , f , ,_ ,--a, , f , ,  (8)
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Here the gain fl,, is usually taken from simple kinetic model of collisions
of molecules with the surface of the nucleus. The loss coefficient ~,, is

eq eqconstructed from the detailed balance condition f l , , - l f , -~  =ct,,f,, with
supposedly known equilibrium distribution f~q. The left-hand boundary
condition of the same type as discussed above is assumed:f~-----f~q= cons t .
This condition can be considered for time scales which are smaller than the
lifetime of the metastable state. Otherwise, the depletion of monomers is to
be taken into account. ~8~ In the leading approximation the deterministic
growth rate h can be associated with the difference of the gain and loss
coefficients f l , , -  ct,,. The objective is, however, to obtain a macroscopiclike
expression which would not contain any kind of finite differences. This can
be done if one notes that the functions fl,,, AS(n), etc. (but not f,~q !) are
expected to be smooth. Thus, from the detailed balance condition one
obtains "3~

h ~/~,,{ 1 - e x p ( -  OAS/On)} (9)

The latter can be considered as a nonlinear (or maybe more accurately,
discrete) form of the Einstein-Onsager relation with/%, associated with the
diffusion coefficient D (see also ref. 19). Note that despite the smoothness
of the entropy as a function of n, its derivative is not necessarily small,
as the values of AS(n) are large (macroscopic), so that in a general
case Eq. (9) cannot be linearized. More explicitly, consider the standard
expression

AS(n)=a . n - l . n  2/3, a= Al.i/kT (10)

with A/~ being the difference of chemical potentials between phases and l
the reduced "surface tension." Substituting this in Eq. (9), one obtains
h = / 3 , { 1 - e x p [ a ( ( n . / n )  1/3- 1)]}. The parameter a describes the effect of
discreteness of sizes n. I~z'2~ The conventional Einstein-Onsager relation,
which would have the form h =/%,al-1 - ( n . / n ) l / 3 ] ,  is recovered at all sizes
only for a,~ 1. However, physically one typically encounters larger values
of a unless nucleation is observed very close to the critical temperature.

We now expect that the time-dependent solution of the master equa-
tion (8) can be approximated by Eq. (7) with the growth rate given by the
above expression. In Fig. 1 we illustrate this by comparing Eq. (7) with the
numerical solution of the master equation for fl,, ~ n 2/3. We consider that
the accuracy is quite good (no matching parameters were used )--recall
that the master equation has nonlinear coefficients and that the discreteness
parameter in the example considered was larger than unity--i.e., a ~ 1.2.
For example, the standard Kramers-Moyal  truncation procedure in this
case would lead to an exponentially large error even for the steady-state
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Fig. 1. Time dependence of the reduced nucleation flux j (n ,  t ) / j s  t at different sizes n and for
different values of the ratio R-~  N / f ~  q, ( N  is the number of dropletlike fluctuations with size
n 1 = 2 0  created at t = 0 ,  and f~q is their equilibrium concentration). Lines: macroscopic
solution (7) with the growth rate (9); symbols: numerical results from the master equation (8).
Other parameters: z =  7.96 (when measured in the same units as " t i m e " ) ,  - - A S ( n , ) = 2 9 . 9 ,
n ,  = 50.1.

flux Jst, not to mention the more delicate time-dependent behavior. At
present we cannot prove in a general form that Eq. (7) approximates the
time-dependent solution of the master equation with asymptotic accuracy
for &/n, --* 0, although we suspect that this is the case. Nevertheless, we can
demonstrate that this solution is accurate in a sense of a specific criterion,
namely the so-called time lag, being defined as

tL(n) = dt {1 - j ( n ,  t)/jst} (11)

The mathematical convenience of this criterion is due to the possibility of
its direct derivation from the master equation both exactly and asymptoti-
cally. 12~ Physically, it can be directly measured in an experiment (2~) and is
often the on ly  observable indicator of time-dependent effects. From the
macroscopic solution--Eq. (7 ) - -one  has

tL(n ) = ti(n ) + yz + N/(f~qhl) (12)
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where ~, = 0.5772... is the Euler constant. An asymptotic study of the exact
expression for the time lag from the master equation in the absence of
preexisting droplets (N=  0) was performed in ref. 20, and its extension to
account for such droplets ~ gave precisely Eq. (12). This proves that at
least for the mentioned criterion (the time lag) the macroscopic description
is asymptotically equivalent to the one given by the master equation. Note
that the expression for the time lag contains, in fact, three free parameters,
namely n~ (the size of inserted subcritical droplets), N (their number), and
n (the overcritical size at which the flux is observed). Thus, the level of
comparison is rather detailed.

5. THE F O K K E R - P L A N C K  EQUATION A N D
HIGHER A P P R O X I M A T I O N S

It is possible to construct a unique Fokker-Planck equation with
correct outer branches given by Eqs. (1) and (2), which has been done in
ref. 11. Such an equation accurately approximates the underlying micro-
scopic kinetics, which in reality may not have a Fokker-Planck form--recall
the master equation of Section 4. For the master equation (8) this Fokker-
Planck equation can be also obtained in the leading order of the general
approximation scheme proposed by H~inggi et aL ~~ With asymptotic
accuracy such an equation will be satisfied by the same solution (7), which
means that in the sense of the mentioned criterion of comparison--the
time lag--it provides an accurate approximation to the random walk
master equation (8). On a less formal level, however, a Fokker-Planck
equation will hardly be an advantage compared to macroscopic equations
of Section 2, which are incomparably simpler for solution.

In case one would wish to improve the accuracy beyond the macro-
scopic level of description, one simply has to replace carefully the finite
differences in Eq. (8) by derivatives, up to the second order, and treat the
"extra" terms as corrections. An important point, however, is that when
considering subcritical sizes--this is required to refine the constants in
Eq. (7)--one has first to switch from Eq. (8) to an equation for the
reduced distribution v(n, t), ~2~ as it is this function [and not f (n ,  t)!]
which is a smooth with respect to n in this region.

6. C O N C L U S I O N

The principle of microscopic reversibility allows one to describe the
fluctuation-induced nucleation by hydrodynamic-type equations without a
detailed knowledge of the underlying microscopic kinetics. As shown both
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numerically and analytically, the solution of these macroscopic equations is
consistent with predictions of the Farkas-Becker-D6ring master equation
which models nucleation on a mesoscopic level.
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