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Nucleation and growth with periodic modulation: Asymptotic versus exact results
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We consider the nucleation and growth of cavities in a metastable viscous liquid with a periodically
modulated pressure. Growth is described from the continuity equation with a source of supercritical nu-
clei. The solution is matched in an asymptotically smooth manner with the solution of the time-
dependent Fokker-Planck equation describing nucleation. It is shown that as a function of the driving
frequency the time-dependent Aux of nuclei undergoes a characteristic transition. The transition marks
the abrupt breakaway from the adiabatic regime. An exactly solvable model of nucleation and growth is
introduced which confirms the asymptotic analysis.

PACS number(s): 64.60.Qb

I. INTRODUCTION

Noisy nonlinear systems which are being perturbed
periodically have recently been in the limelight of both
theoretical and experimental studies [1]. Usually, the
focus has mainly been on bistable and multistable sys-
tems. However, equally important effects can be expect-
ed for nucleating systems possessing only one metastable
well. In clear contrast to bistable systems, nucleation is
characterized by the fact that particles can proceed to
infinity. Naturally, the growth to large sizes assumes
large time scales. This means that even for arbitrary slow
modulation of the barrier there will always exist sizes
where at least the effects of retardation will become cru-
cial.

In experimental studies of nucleation and related
phase-transformation processes modulation effects can be
induced by ultrasonic waves in a metastable liquid [2],
can result due to a modulated microwave field affecting
condensation of an electron-hole liquid [3], or are being
induced by sound waves which periodically change the
temperature of a binary mixture [4]. A single or double
quench, which by now has become almost a standard tool
in various studies of nucleation [5], can also be con-
sidered as a corresponding limit of the driving process if
the time after the switch on is smaller than the period of
modulation.
The main purpose of this work is the determination of

the flux of growing particles and their distribution over
sizes under periodic modulation of the parameters
describing nucleation and growth. In Secs. II—IV we
present the asymptotic analysis of the problem with the
large parameters being the nucleation barrier and the size
of the particles.

Another objective of this work is the exactly solvable
"imitation" of the modulated nucleation-growth prob-
lem. This is presented in Sec. V. It is known that for an
analytic form of the barrier exact consideration is possi-
ble only in the parabolic case corresponding to the time-
dependent Ornstein-Uhlenbeck equation [6]. The main
difficulty here is that any attempt to construct a bound-
ary which would prevent the size of particles from

becoming negative ruins the exact solvability [7]. In-
stead, we introduce a permanent source of particles of the
smallest size, making the formulation of the problem
somewhat similar to a scattering problem. Remarkably
enough, in the physically related region of large sizes this
turns out to be an almost precise reproduction of the nu-
cleation situation. This allows us to verify and to refine
the asymptotic analysis. In addition, we expect that the
proposed model may be of independent interest as exact
results with nontrivial time dependence are in short sup-
ply in description of phase transitions and related pro-
cesses [8].

As a particular physical example we shall consider cav-
itation in a viscous fluid, first discussed in the nucleation
context in Ref. [9], and more recently in Ref. [10]. Com-
pared to other models which are often employed in the
description of nucleation, the cavitation model turns out
to be the closest one to the exactly solvable situation (see
Sec. V). We expect, however, that the main results will
hold (or require only minor modifications) for other mod-
els too. This is further addressed in more detail in Sec.
VI.

II. THE GROWTH MODEL
AND BASIC ASSUMPTIONS

Consider a liquid under a negative pressure P(t) The.
temperature T is assumed to be suSciently low so that
the equilibrium vapor pressure is negligibly small com-
pared to ~P~. In this case a "particle" of a new phase is
an empty bubble (cavity) of radius x. The negative pres-
sure tends to expand the cavity, while the surface tension
0. forces it to shrink. Neglecting inertial effects, which
we estimate later, the work produced by the difference of
these two forces equals the dissipation of energy due to
viscosity, ri. This gives [9]

x =[x—x~(t)]/r .
Here x (t)=2crl~P( is the critical radius and r=4rtl~P~
is the "relaxation time. " We consider a small sinusoidal
modulation of pressure around its average value P &0.
As mentioned in the Introduction, the latter can be pro-
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x(t )=xoexp

f x„(t')exp[(t t')/r]dt'—
n (3)

Here tp, obeying 0& t p & t is the time of nucleation of the
particle, so that x(t =to)=xo. Equation (3) relates three
quantities x, t, and tp. In principle, any pair of them can
be chosen as independent variables. We choose for such
a pair x and r, so that Eq. (3) is an equation for the nu-
cleation time to(x, t) Due to the. assumed condition
I(r, &0)=0, a negative value of to for a given pair of x, t
means that at time t there will still be no particles with
size x or larger.

Due to the assumed condition co~&& l, at large times
t—to »~ the main input to the integral in Eq. (3) is
dominated by the lower limit of integration, so that

(r)x[xp x (ro)]exp[(t —to)/r]

Note that the mentioned restriction xo—x, »r~x, ~

al-
lows us to neglect the higher-order terms in the expan-
sion of (3). Once, however, Eq. (3) is obtained, one can,
at least formally, discuss the limit xp~x, . In this limit
tp(x, t ) exhibits a singularity —an important feature
which crucially determines the method of matching with

duced by ultrasonic waves. In this case one has

x, (t)=x„[1 p—(t )], qr(t) = 3 sin(cot+Co) & 1, (2)

with x„=2o/~P~. Throughout this work, unless men-
tioned otherwise, we restrict the modulating frequencies
to a regime mw«1. This does not mean, however, that
the time-dependent effects considered are weak, as the
system turns out to be extremely sensitive to the values of
the time derivative of the critical size, x, (t). On the oth-
er hand, the possible effects of the time dependence of v.

in Equation (1) can be shown to be minor, and in what
follows we shall treat it as a constant.

Now suppose that particles are produced with intensity
I(t) ("nucleation rate") by a source of nuclei at some su-
percritical size xp. We assume that the source is switched
on at t =0, i.e., I(t &0)=0. An explicit expression for
I(t) will be derived in Sec. IV after considering nu-
cleation. For the purposes of matching of the solution of
Eq. (1) with the nucleation solution, it is reasonable to
select the value of xp as close to x, as possible. There
are, however, two restrictions: First, Auctuational correc-
tions to the deterministic growth rate (1) should still be
negligible. We discuss this in more detail after incor-
porating Auctuations in the nucleation picture. Second,
the initial growth rate should be much larger than x, , so
that the nucleated particle is not consumed by the critical
size. This implies xo—x, »~x„~r. In Sec. IV we show
that both restrictions lead to a microscopic length scale
which separates xp and x, and which does not enter the
deterministic growth equation (1). Thus on certain stages
of the derivation of the growth solution we will be able to
consider the limit xp~x, .

Equation (1) can be integrated explicitly, giving

the nucleation solution (Sec. IV).
The distribution of nuclei over sizes, f(x, t), in the

growth region satisfies the continuity equation Bf /
Bt=—Bj&,/Bx with jz, =xf being the deterministic
(drift) flux. At x =xo the flux jz, (x, t) coincides with the
nucleation rate I(t) T. his serves as the boundary condi-
tion for the continuity equation. Integration of this equa-
tion along the growth trajectory x =x(t) gives

, Blnxj„,(x, r )=I(to )exp — dt' (4)

From Eq. (3') one can see that the integral in Eq. (4) con-
verges as t~ oo. Thus, with the integrand being propor-
tional to ~~, this integral remains small at all times.
Hence, Eq. (4) can be replaced by the simpler relation

which resembles the standard relation for time-
independent growth.

Equation (5) determines the flux j (x, t) via determina-
tion of the initial time to from Eq. (3 ). Due to the men-
tioned singularity of tp, one still has to ensure that the ex-
pression I(to), with I(t) determined by the nucleation
equation, remains nonsingular as xp~x, .

III. NUCLEATION

In the above description of deterministic growth we
neglected the diffusion component of the flux DBf /Bx-
with D being the diffusion coefficient. This component,
however, becomes crucial at small sizes where it accounts
for nucleation, i.e., the "uphill" motion of particles at
x &x, . In this case one has to consider the general
Fokker-Planck equation [9]

Bf Bg . Bf
Bt ax' ' Bx

Here x is the abbreviated notation for the deterministic
growth rate given by Eq. (1), although in the present sec-
tion we will not use its specific form but only the fact that
x changes its sign at the critical size. The inverse of the
relaxation time, ~ ', should thus be understood as Bx /Bx
at x =-x, . The value of f(x =0), the distribution at the
smallest sizes, is assumed to be known in nucleation
theory and can be considered as the left-hand boundary
condition. The right-hand boundary condition can be
written as j( , x)~rj~„(x,t), approaching the determinis-
tic growth of nucleated particles. The values of x at
which this boundary condition should be considered can
have arbitrary large values. However, it is absolutely im-
practical to extend Eq. (6) into the region of large sizes
where the incomparably simpler continuity equation can
be applied. Thus we shall restrict the region of overcriti-
cal sizes by the condition x—x, «x, , which turns out
to be sufficient for matching with the growth solution ob-
tained in Sec. II.

The diff'usion coefficient of Eq. (6), being both size and
time dependent, can be obtained from the Einstein rela-
tion x =—{D/kT)08'/Bx. Here 8'is the minimal work
required to create a cavity of a given size under the
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1 B W
2kT Bx2 z=z, (8)

The quantity 5 related to the curvature of the barrier
near its top naturally arises in the Kramers-type barrier
crossing problems. It also determines the region around
the critical size where fluctuational corrections to the
deterministic growth Eq. (1) are important.

One may expect that for sufficiently slow, adiabatic
processes the flux wil1 be almost the same as given by Eq.
(8) with the parameters in this equation having their
current time-dependent values. Here, however, one re-
covers an essential drawback of the steady-state solution.
The flux (8) is size independent and one cannot expect
that it can be matched with the size-dependent flux given
by Eq. (5) which exhibits a singularity. Thus one has to
take into account the explicit time dependence of the nu-
cleation process.

We shall treat Eq. (6) asymptotically in the spirit of
matched asymptotic expansions [11], although the fact
that it is a partial differential equation adds, of course,
additional complications. The small parameter is
e=b/x, -(W, /kT)

By switching to the reduced variable y=x/x, and
function v(y, t )=f(x, t ) /N(x; t) one can cast Eq. (6) in
the form a+ay —nvy +O—(ne ) .Bv 1 B D Bv . Bv
Bt 2 ByD, By By

Here D, =D(y= 1), y =—xlx, and we introduced a di-
mensionless parameter n to characterize the rate of the
barrier change, i.e.,

8',
n =—r— =n, „cos(tot+40),dt kT

with

(10)

n, „=2AcorW, /kT, W, =(4m/3)x, tr .
Note that despite the assumed condition co~&&1, the
value ofn,„ is not necessarily small as it contains a large
factor 8'~/kT. We, nevertheless, assume that n,„has
moderate (nonasymptotic) values so that the term O(no )

current pressure P(t) (0, i.e.,
W(x;t)=4nx o+(4~/3)x P(t) .

The value of the nucleation barrier W, (t)=(4n/3)x, o.
is assumed to be always larger than the thermal energy
kT. Formally, an equilibrium distribution N(x; t )
=f(x=0, t)expI —W/kT] which corresponds to zero
values of the flux in Eq. (6) can be introduced. This dis-
tribution, however, does not satisfy the right-hand
boundary conditions and will be used only for auxiliary
purposes.
For a time-independent potential the steady-state solu-

tion of Eq. (6) corresponds to a size-independent adiabat-
ic flux j (x, t )=j,d (see Ref. [9])with

r

8',j,d = —f(x =0}exp27-

in Eq. (9) which contains only first-order derivatives in y
[12] can be neglected. The boundary conditions for Eq.
(9) have the form v(0, t )= 1, and B lnv /By~—2(y —1)/e for y —1»e. The left-hand boundary
condition is completely time independent, and for the sit-
uation considered with co~&&1, the right-hand boundary
condition depends on time very weakly. The latter is also
true for the coefficients of Eq. (9). Thus it may seem
reasonable to neglect the time derivative in this equation
once it is applied only for moderate sizes y 1. In this
case the process can be described as a "quasi-steady-
state" process with deviation from the true steady state
determined by the parameter n [12). It turns out, howev-
er, that neglecting the time derivative may fail for
sufficiently large negative values of n which are inevitably
encountered for n,„&1. To account for such situations
a more general treatment is required.

Consider the switch on of the process at t=0. The
coefficients of Eq. (9) at that instant have well-defined
values. Moreover, these values will not change notice-
ably during time intervals which are small compared to
the modulation period. On the other hand, due to the as-
sumed condition co~&&1 such intervals can still be. large
compared to ~. For such coefficients one can perform the
Laplace transformation of Eq. (9}with respect to time:

+ry =(m+ny )V,1 2d D dV . dV
2 dy D, dy dy

(12)

with

1- —(1—y ) +"exp(rnC'+ nC ),y~] p
(13)

c=f du y —,c'= f dy
y3 1 1

0 zy y 1 0 zy y 1

(14)

Note that from the definition of v. one has wy ~y —1, as
y ~1, so that the integrals in Eq. (14) converge.

In the direct vicinity of y =1 we switch to the inner
variable z =(y —1)/e In the leading . order in e one thus
obtains from Eq. (12) a standard equation for repeated er-
ror functions defined by i +"erfc(z) (see Ref. [13(a)]).
Thus the inner solution is given by

Vin(z p ) r&m+nemC +nCez1 I 2

2m

XI (m +n +1)i +"erfc(z),
where the proportionality coefficient is obtained through

with V(y, p) being the Laplace transform of v(y, t), and
m =—p~. The above equation has a boundary layer near
y=1 where the deterministic growth rate y changes its
sign. Being an ordinary differential equation, it can be
solved by standard methods [12]. The left-hand bound-
ary condition is now given by V(0,p)=1/p, so that the
outer solution at 0 y & 1 takes the form

Vppi( )
1 Jdy(m+ny3)

y,p =—exp
p 0
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matching of asymptotes of the inner and outer solutions
[12]. To derive the nucleation rate one needs the flux.
From its definition in Eq. (6) one has in the inner region
j'"(z,t)= —j,d(t)&ne' Bv/Bz. On the other hand, from
the definition of n in Eq. (10) one has for the time inter-
vals considered j,d(t )=j,d(0)exp(nt /~). This shifts the
Laplace index m by the value n. Thus one obtains for the
Laplace transform of the flux J

J'"(z,p) = j,d(—0)&ne' V'"(z,p n—lr)

j(0)r erne mc'+n(c —c')ez
2(m n)—

X I'(m + 1}i 'erfc(z) .

j(x, t )=j,d(t —t, (x ) )I (n + 1)exp[(C—C')n ],
n & —1, (19)

t —t;(x )
J(x, t } exp ' n& —1. (20)

The former corresponds to the quasi-steady-state regime
of Refs. [10,12]; the latter describes a qualitatively new
regime of exponential decay. The reason for this decay is
that the flux cannot drop off more rapidly than
exp( —t/r) and it stops tracing the adiabatic flux as soon
as the latter requires faster changes. We also note here
that the asymptotic dependencies (19) and (20) can be ex-
tracted directly from consideration of the right-hand
singularity of the Laplace transform (16) avoiding its in-
version.

Further, we need the asymptote of this expression at
large z which after inversion can be matched with the
equations describing the growth (Sec. IV). Using the ex-
pansion of the repeated error function [13(a)]one obtains

J'"(z ))l,p) =j,d(0) 1 (m + 1)
m —n

Xexptn( C—C')—mt;(z)j .

Here t, (z) denotes the "incubation time" [12]

(16)

2Zt;(z)=r ln —C' . ,
E'

(17)

which has the meaning of the time when the unmodulat-
ed flux (n =—0) acquires 1/e of its steady-state value.

In derivation of Eq. (16) we used asymptotic methods
which implied finite values of p. This restricts the region
of validity of this equation to the finite part of the com-
plex p plane. If, however, one is not concerned with an
asymptotically short time interval after the switch on,
one can invert Eq. (16) considering the residues solely at
finite values ofp. This leads to

j (x, t)=j,d(t t;(x))—
t t,(x)—

X I n (0)+1,exp

Xexp[n(0)(C —C') ], (18)

with I ( a, x ) being the incomplete " gamma " function
[13]. The above expression is valid during a time interval
r& t «co '. Note that the values of n(0) can be re-
placed by n (t), because during such time intervals this
value does not change noticeably. The particular form of
Eq. (18) crucially depends on the fact that we started
from the instant of the switch on—there are no particles
at t &0. On the other hand, one may suspect that at rela-
tively large times t—t, (x)»r the system "forgets" the
initial distribution. Thus the large time asymptote of Eq.
( 18}with n ( t) substituted instead of n (0) can be used to
evaluate the flux j(x, t) at arbitrary times. Depending on
the current value of n (t) two situations can arise, i.e.,

IV. MATCHING OF THE NUCLEATION
AND GROWTH SOLUTIONS:
RESULTS AND DISCUSSION

jd„(x,t)=j,d(to)I [n(to)+1], n(to)) —1,
jd„(x,t ) -exp( to /r), n —(to) & —1 .

Here

(22)

—r ln +C (23)

can be treated as the (nonsingular) time of nucleation of a
particle which grows to size x at the time t. The constant
C defined by Eq. (14) equals —", . Note that for sufficiently
small frequencies the values of n & —1 will not be en-
countered at all, so that the flux at any instant is deter-

As discussed in Sec. II, the initial size xo from which
one starts the deterministic growth of nucleated particles
should be large enough to (a) neglect fluctuations and (b)
ensure that the initial growth rate is much larger than
~x„~. The former requirement leads to xo—x, )&h. The
latter, (b), is satisfied for a much weaker condition
xo—x, &) ~n ~eb. This follows from the relation between
x, and W, and the definition of n. If, on the other hand,
this initial size xo is still sufficiently close to the critical
size x, , i.e., xo—x, «x, , one can apply the nucleation
solution derived in the preceding section. In the region
6«xo—x, «x„ the value of the flux j(x, t) in Eqs.
(19), (20) with x =xo and t =to can be associated with the
nucleation rate 1(to) in Eq. (5). Due to the mentioned re-
striction on xo the time interval t;(xo) is small compared
to the modulation period. Thus, the values of n in Eqs.
(19), (20) can be evaluated at to t, (xo), which—is at the
same instant at which one evaluates the adiabatic flux.
This makes the result a function of a unique combination
of t and x given by the above diff'erence to —t, (xo). Note
that the latter is nonsingular with respect to xo, as the
singularities encountered in expressions for to [Eq. (4)]
and t, (xo) [Eq. (17)] compensate each other. The final re-
sult for the flux of particles at any size in the growth re-
gion takes the form
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jd„(x,t)=j,d(to)I [n(0) +l, e ' ' ], (24)

with n(0)=n, „costa. If one starts with n(0)~0, the
first peak will have the same height as the other ones,
otherwise it will be smaller. Note that for sufficiently
small times, or large sizes, the values of to(t, x) are nega-
tive. No particles were nucleated at negative times,
which is signified by the asymptotically small values of
the incomplete I' function in Eq. (24). The condition
to(t, x )=0 determines the position of the front part of the
first peak, x,„(t),while Eq. (24) determines the shape of
this front.

We now consider the distribution of particles over sizes
given in the growth region by f(x, t)=jd, (x, t)/x. As
seen from Eqs. (21) and (23), in the quasiadiabatic regime
the distribution is a monotonously decaying function of x
for any permissible driving amplitude. This is a direct
consequence of the specific growth rate (1), and we shall
discuss alternative possibilities which lead to a nonmono-
tonous distribution with "humps" later. The distribution
which corresponds to the exponential decay turns out to
be size independent for large x, as seen from Eqs. (22) and
(23}. In Fig. 1 we qualitatively verify the above con-
clusions by plotting the distribution from an exactly solv-
able model which we describe in the next section. Actu-
ally, this model leads to a different constant C in Eq. (23),

mined by Eq. (21). We call this the "quasiadiabatic" re-
gime: Except for the factor given by the I function the
flux follows the periodic modulation of the barrier al-
though with a time shift, t—to. The shift can be arbi-
trarily large for large x. For larger frequencies leading to
n „)1, the system switches to exponential decay during
a part of the period. Formally, the inapplicability of the
quasiadiabatic description at this stage is indicated by the
singularity of the I function in Eq. (21). A detailed dis-
cussion and illustration of such "nonanalytic" effects will
be given in the next section. At present we note that the
flux consists of asymmetric peaks which are nonuniform-
ly distributed along the size axis, each peak moving with
its own rate x (of course, these peaks are periodic in
time). The maxima of all the peaks (except, possibly, the
first one) are given by j,d'", which corresponds to the
minimal value of the nucleation barrier. The number of
particles per modulation period will be evaluated in Sec.
V. For amplitudes which are larger than (W, /kT)
the peaks are very well separated from each other. Oth-
erwise, they overlap, forming in the limit A —+0 a size-
independent constant given by Eq. (8) with a cutoff
("front") at some value x,„(t) which is the root of the
equation to(t,x)=0. The shape of this front was de-
scribed previously [12] and in the limit n ~0 it also fol-
lows from the more general expression for the first peak
which we derive below.

The first peak is of special interest as it provides the
earliest indication of the decay of the metastable state
and which can be the only peak that can be observed in
the system for very small m. In the same manner as we
derived Eqs. (21), (22) from Eqs. (19), (20) one can derive
the flux from the more detailed expression given by Eq.
(18), obtaining

}plO

A=O
A=0.08 o
A = 0.5 +
A = 0 8 0

000 0 0 0 0+++ + ~ 0
+ 0

+ 0 0 0 0 0 0 0 0 0 0 0 0 0 0+ QO0 Qo+ 0

10-10 I I I

100 1000 10000
REDUCED SIZE

I

100000

FIG. 1. Distribution of growing particles over reduced sizes,
x/X~ for diferent driving amplitudes. An exact solution of
Sec. V was used with the following parameters: W~/kT=10,
co&=0.8, t/&=20, 40=0.

but at the moment we use the exact results only for illus-
tration, postponing the more detailed comparison until
Sec. V. For small modulations (A =0.08 in Fig. 1} the
distribution is slightly modulated around its steady-state
value -1/(x —x, }. It, however, still remains a monoto-
nous function of size. With increasing amplitude the dis-
tribution becomes larger as more particles are produced
during the part of the period with the smallest barrier.
One also clearly detects regions with practically constant
distribution, which corresponds to exponential decay.

When considering the principal possibility of experi-
mental observation of the distribution of this kind, note
that the span of sizes which corresponds to one period of
modulation is given by exp(2m/cor). Even keeping in
mind the large difference between the size of the critical
bubble (of the order of nanometers in homogeneous nu-
cleation) and the size of the bubbles which are usually ob-
served, one has to admit that for small values of co~ only
particles produced within one modulation period can be
observed simultaneously. This conclusion is due to the
exponentially fast growth predicted by Eq. (1). To assess
limitation of this growth law recall that in Eq. (1) we
neglect the inertia of the liquid. Estimations can be made
from the fact that the kinetic energy of an incompressible
liquid around a growing cavity is given by 4mx px [14]
with p being the density of the liquid. Neglecting viscosi-
ty and surface tension effects for sufficiently large sizes,
this energy is due to the work of the negative external
pressure P. This gives x'"' -( P/p)' . The cr—ossover
from viscous growth described by Eq. (1) to growth limit-
ed by inertia takes place at x-x=rI( Pp) ' . Being, —
unlike Eq. (1), size independent, the inertia-limited
growth brings the problem much closer to typical models
of nucleation discussed, e.g., in connection with conden-
sation of vapor or in materials science [15]. The above
results for the drift flux to a large extent will hold with
to(x, t }in Eq. (23}replaced by to(x, t ) rx /X. The distri-—
bution, however, will qualitatively change. The steady-
state distribution in this case is constant for large x, and
upon modulation it will be a periodic function of size.
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V. EXACTLY SOLVABLE MODEL
OF NUCLEATION AND GROWTH

()f Q x xq (j~f
r)t Bx 7

(26)

Further, we extend the region of sizes to —~ and intro-
duce a source of unit intensity at x =0 (see Fig. 2). This
source is switched on at t =0. The overwhelming majori-
ty of the inserted particles will go to —~, but an ex-

I

Let us assume that instead of (7) the barrier is a para-
bolic function, i.e.,

W(x;t)= W, (t)—kT[[x—x, (t)]/b ]

with W, (t)/kT=[x, (t)/h], which implies W(0;t)—:0.
For simplicity, 5 will be treated as a constant. A time
dependence .'or 6 can be easily incorporated in the exact
expression for the Green's function [6] discussed below,
although the resulting e6'ects are minor compared to
those arising from the time dependencies of W, (t) and
x„(t), respectively. If one further assumes that D(x)

2=const=b /2r, one obtains, via the Einstein relation,
the correct growth rate (1), so that the model is still rath-
er realistic. Equation (6) now takes the following form:

ponentiaHy small fraction of them —via thermal
activation —will cross the barrier and grow to large sizes.
To treat this problem asymptotically, one should notice
that a distribution f(x, t)=—1/x is established at x ~0.
The limiting value f(x =O, t)=r/x, can be employed in
Eq. (8), as well as in all other asymptotic results presented
above. Minor difl'erences are that for the parabolic bar-
rier the cubic term in Eq. (9) is now replaced by a linear
term. This leads to a corresponding modification of Eq.
(14), giving C= l. The constant C' remains zero. Note
that the distribution at x =0 is unaffected (asymptotical-
ly) by the nucleation process in complete analogy with
the conventional nucleation problem where f(x =0) is as-
sumed to be determined solely by the concentration of
monomers [16].

We now note that the stated problem can be solved ex-
actly. The Fokker-Planck Eq. (26) is the well-known
Ornstein-Uhlenbeck equation for a time-dependent unsta-
ble overdamped oscillator. For the Green's function we
use Eq. (4.3) in Ref. [6]. This allows us to obtain the dis-
tribution f(x, t). The drift fiux xf(x, t) can be compared
with the asymptotic results of Sec. IV. Employing this
mentioned Green's function we end up obtaining the
main result of this section,

X X [(x—x„)u+x, x, p, (u,—t)]
jd„(x,t)= exp '—

Qv ~ exp( —t/r) QI—u 2 b(1—u) (27)

with

p(u, t)=—ue' ' dt'y(t')e
7 t+ 7. 1nP

+((or) +1

ters: tlr, (x—x, )/6, x, /A. For the case that the first
one is also large compared to the logarithms of the two
others, a periodic regime is established. By switching to
a new variable of integration y = ln[2u (x—x„)x,/6 ]
and neglecting the asymptotically small terms, one can
cast Eq. (27) into the form

X ]isn[co(t +rl nu)+4] —u sin[cot+ixi]],
and 4= arctan( cur )+4o.
To understand the analytical structure of the above re-

sult, we note that Eq. (25) depends on three large parame-

—8'~ /kT cc p( )jdr —e dy e
2x,&~ oc

with

2A 8'~
F(y)=y —e~+

kT1/I+(cur)
Xsintei[r(y —I)+to]+4] .

(28)

(29)
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FIG. 2. The modulated nucleation barrier W4,'x; t }/kT with a
source of particles at x =0.

Equations (28) and (29)—which do not include the as-
sumption co~ && 1—thereby generalize the analysis of
Secs. II—IV. In the Appendix we show that for small
values of co~ these equations predict the same type of
transition from quasiadiabatic regime to exponential de-
cay, which is expected from the asymptotic study.

The time-averaged flux j„, is easily found from
the above expression as (6 /2x, &vr )exp( —W, /
kT)Io(2A'~W, /kT) with A'~= A /V'(co~) +1. Here
Io is the modified Bessel function [13(b)] and we did not
include the asymptotically small terms which arise from
the time dependence of x, in the prefactor of Eq. (26).
The limiting behavior of jd„ is readily obtained. For
3~0 (or car~ ~ ) it is the standard fiux (8) over the
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FIG. 3. Deviation from the adiabatic regime for different
values of n,„. Diamonds —exact results from Eq. (27) for
10 jd, (x, t)/j, d(FO) (factor 10" is introduced for clarity of the
figure). Dotted—asymptotic result (the 1 -function expression)
from Eq. (21). From top to bottom: n,„=1.2 (k =2);n,„=0.8 (k =1);n,„=0.4 (k =0).

average (unmodulated) barrier. In the opposite limit of
large arguments of the Bessel function the average flux is
given by j d'"/+4m. A' W, /kT where j,d'" is to be
determined for the effective driving amplitude A' . For
co~&&1 which was assumed in the asymptotic analysis of
previous sections, this average flux can also be obtained
by the steepest-decent integration of the adiabatic expres-
sion. This implies that in the case of strong modulation
practically all particles are nucleated during the fraction
of the period when the barrier is the smallest so that the
flux is close to its maximum value.

A comparison between the exact result in Eq. (27), and
the asymptotic Eqs. (21) and (22) with the constant C ad-
justed for the parabolic barrier, is depicted in Figs. 3 and
4. In Fig. 3 we varied the modulating frequency co, ob-
taining different values of n,„, see Eq. (11). Other pa-
rameters were held constant at the following values:
W, /kT= (x„/b—, ) =20, A =0.5, (x—x, )/b =11,
=0. With n,„&1 the two lower curves in Fig. 3 depict
very high accuracy of the asymptotic evaluation of the
phase shift, as well as the correctness of the potentially
singular I -function factor. The discontinuity of the
latter for n,„)1, induced by higher frequencies
kT/W, &cod«1, corresponds to an extreme deviation
from the quasiadiabatic regime as is exhibited in the
upper curve. From the foregoing analysis one expects
here a transition to exponential decay which is clearly
shown in Fig. 4. In this figure are depicted the nonre-
duced values of the flux, as well as its adiabatic values,
for a modulation process with n „)1. In accordance
with the analytical prediction, the decrement of the ex-
ponential decay is given by —I/r, which is independent
of the driving parameters. Note the strong asymmetry of
the flux with respect to time despite the fact that the
modulation process itself is symmetric. This is explained
as follows: during the "uprising" phase of modulation
(n )0) the flux follows the quasiadiabatic values rather
closely —the factor I'(n+1) is nonsingular. On the oth-
er hand, during the "downfall" phase of modulation
(n &0) the flux stops tracing the modulation as soon as n
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d~l I &0 II I I\ I

&, 0 d ', 0 dI I II \ 0 I0 0 I I
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FIG. 4. Transition to exponential decay, n, „=2.4(co~=0.012); other parameters as in Fig. 3. Time is re-
duced by v.. The adiabatic flux is evaluated at the shifted time
tp.

becomes smaller than —1,which implies a loss of symme-
try.

VI. OTHER GROWTH MODELS
AND OTHER TYPES OF MODULATION

The exponentially fast growth predicted by Eq. (1) is
possible only for cavities whose growth is not limited by
mass exchange with the surrounding and by neglecting
inertial effects. Otherwise, as mentioned in Sec. IV, typi-
cal models exhibit a power-law growth of large particles.
Unfortunately, an exactly solvable imitation of nucleation
in such models is impossible in a general case. Neverthe-
less, in the direct vicinity of the critical size any model is
described by an equation in the form of (1). Hence the
asymptotic technique of matching of the nucleation and
growth solutions which is performed just in this region
and which allows us to get rid of all the singularities will
remain essentially the same. Thus we expect that the
main conclusion of transition to a "nonanalytic" regime
at n,„)1 will hold for such cases as well, as this con-
clusion was based on the asymptotic analysis and did not
rely on a particular growth model. The exactly solvable
model with the specific growth rate (1) was used only to
confirm the asymptotic results. The main effect of a
nonexponential growth results in a different phase shift.
As shown in Sec. IV, the logarithmic dependence on size
in Eq. (23) is replaced by some power law, making the
effects of retardation much stronger.

In a realistic situation the modulation of the barrier is
not necessarily sinusoidal. In this respect we note that
most of the results presented above, except for Eqs. (5)
and (29), did not specifically rely on the sinusoidal form
of qr(t); thus a generalization for other time dependencies
is straightforward.

VII. CONCLUSION

In the present work we considered nucleation and
growth of cavities under time-dependent modulation of
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the external pressure. The growth of the new phase
beyond some initial supercritical size xo has been de-
scribed within a deterministic time-dependent growth
model. In addition we also incorporate fluctuations when
the size becomes smaller than xo. The matching pro-
cedure, however, is asymptotically smooth, so that our
solution given by Eqs. (21) and (22) is explicitly indepen-
dent of xo.
For small frequencies of the modulation, co~

&(kT/W„, the flux of growing particles follows the
external modulation rather closely, apart from a typical
shift in time. Upon increasing the modulating frequency
we find an abrupt transition from the adiabaticlike
behavior to an exponential decay. The latter persists for
a part of the modulation period after which the system
switches to the quasiadiabatic regime.

In addition, we considered an exactly solvable model in
terms of a time-dependent inverted parabolic barrier.
This model —much to our own surprise —describes the
realistic physical situation rather accurately. We also
like to emphasize that this exactly solvable model can be
extended to multidimensional cases, e.g. , to a situation of
nucleation for which viscous and inertial effects are to be
accounted for simultaneously.
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APPENDIX: QUASIADIABATIC AND DECAY REGIMES
FROM THE EXACT EXPRESSION

It is instructive to understand how Eq. (28) can predict
two essentially diff'erent regimes, namely, the quasiadia-
batic regime and the exponential decay. A straightfor-
ward, though rather tedious analysis of the function F (y )

for ~~&&1 shows that there are two possible locations of
its highest maximum for n,„&1 depending on the
current value of time. There is always a maximum at
large negative values of y and, for n ( to ))—1, there is
also a maximum near y=0. The latter corresponds to
the quasiadiabatic regime described by Eq. (21) [17],
while the former means the exponential decay which gets
restarted with every period. It makes sense to discuss
only the largest input, so that the system "prefers" the re-
gime with the largest flux. The latter conclusion is an im-
portant addition to the previous asymptotic analysis and
it is clearly illustrated by Fig. 4.
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