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Brownian parametric oscillators
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We discuss the stochastic dynamics of dissipative, white-noise-driven Floquet oscillators, character-
ized by a time-periodic stiffness. Thus far, little attention has been paid to these exactly solvable nonsta-
tionary systems, although they carry a rich potential for several experimental applications. Here, we cal-
culate and discuss the mean values and variances, as well as the correlation functions and the Floquet
spectrum. As one main result, we find for certain parameter values that the Auctuations of the position
coordinate are suppressed as compared to the equilibrium value of a harmonic oscillator E,'parametric
squeezing).

PACS number(s): 05.40.+j

I. INTRODUCTION

Parametric phenomena are ubiquitous in physics. An
early example is Faraday's experiment in 1831 when he
excited —via vertical vibrations —surface waves in
water-filled columns. Other familiar parametric systems
are, e.g., electric circuits with a periodic capacitance, or
pendulums with a moving support. One of the more
modern parametric systems occurring in physics is the
quadrupole ion trap, also termed the Paul trap [1]. This
system is also interesting with regard to quantum-
mechanical applications [2]. In nonlinear systems, para-
metric perturbations are discussed in the context of
suppression of chaos [3]. All these systems have in com-
mon that they can be described in terms of equations con-
taining parameters which vary periodically in time. The
simplest example of such an equation is the Mathieu
equation [4]. Up to the present day most of the applica-
tions involving the Mathieu equation have been of a
deterministic nature. The objective of this work is the
study of the Brownian motion of the damped Mathieu
equation driven by additive white Gaussian noise. A
treatment of this nonstationary stochastic process must
be ranked in view of diSculty right after the additively
driven Ornstein-Uhlenbeck process [5]; although com-
plex, this system can —due to its inherent linear
structure —still be solved exactly. However, not much
prior stochastic work exists on this Brownian parametric
oscillator. In the absence of friction, the covariance ma-
trix has been studied by Gitterman, Shrager, and Weiss
[6]. Work by Mazo [7] on the damped parametric oscilla-
tor focused on a formal discussion of the covariance ma-
trix in terms of the corresponding time-inhomogeneous
Green's function. Very recently interesting experiments
on a microparticle in a Paul trap have been performed by
Arnold, Folan, and Korn [8]: They detected a distinct
minimum in the behavior of the coordinate variance (see
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below). Their surprising findings motivated the present
analytical work wherein we investigate in detail the dy-
namics of the Brownian parametric oscillator.

The paper is organized as follows. In Sec. II, we
present our model together with some background
knowledge of nonstationary Fokker-Planck processes. In
Sec. III, we discuss the mean values and the covariance
matrix. The Floquet spectrum of the corresponding
Fokker-Planck operator is studied analytically in Sec. IV.
Section V addresses the evaluation of the position auto-
correlation function.

II. MODEL AND BASIC EQUATIONS

The Langevin equation for a Brownian particle in a
harmonic potential with time-dependent frequency
U(x, t;tp)= ,'[coo+@—cos(Qt+y)]x reads

2+yx+ [too+ Fcos(Qt +y)]x =&yD g(t) .

The parametric modulation is characterized by the am-
plitude e, the frequency 0, and an initial phase y. We as-
sume that the phase is not known, i.e., it is equally distri-
buted between 0 and 2m. . The perturbation g(t) denotes
Gaussian white noise with zero mean and correlation

(g(t)g(t')) =2&(t —t') .

When @=0,Eq. (1) reduces to the standard problem of a
damped harmonic oscillator driven by Gaussian white
noise [9]. The introduction of the scaled variables
t =Qt /2, coo =4coo/Q, c =2@/Q, y =2y/Q, and
D=4D/0 yields the normalized equation of motion,

x+yx+[coo+2Ãcos(2t+y)]x =+yD g(t) .

From here on we shall exclusively use the normalized
form (3), and shall drop the overbars for the sake of con-
venience.

The rate of change of the probability P (x, v, t;g) corre-
sponding to the nonstationary process in (3) is given by
the Fokker-Planck equation
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—P(x, v, t;p)=Xpp(t)P(x v, t;y),t

with

(4a)
In the following all overbars denote an average over the
phase.

a a a a2
Xpp(t)= — u+y u+coo x+yD

Bx Bv Bv BU

+2ecos(2t+y) x .

The periodicity of the Fokker-Planck operator Xpp,
i.e., X„p(t +m )=X„p(t) implies Floquet-type solutions
[10,11]:

III. MEAN VALUES AND VARIANCKS

A. Mean values

We first address the evaluation of the mean values of
the state variables occurring in (4). From the Langevin
equation (3) we see that the mean value (x (t;ip) ) obeys
the deterministic differential equation

P„(x,v, t;y)=e "'p„(x,u, t;q), (5)
2 d(x )+y—(x )+[tvo+2ecos(2t+ip)](x ) =0 . (9)dt' dt

where p„ is a periodic function of the time, i e.,
p„(x,u, t +m , ip) ="p„(x,u, t; ip). Inserting (5) into the
Fokker-Planck equation yields the non-Hermitian eigen-
value problem, i.e.,

With the substitution (x ) =(y)exp( —yt/2), one re-
moves the damping contribution such that Eq. (9) can be
cast into the standard form of a Mathieu equation of an
undamped parametric oscillator [4], i.e.,

Xpp p„(x,v, t;p) =—]up„(x,v, t;p)dt
d2

dt
(y ) + coo — +2e cos(2t +ip) (y ) =0 .0 4 (10)

with generally complex-valued Floquet eigenvalues p.
The splitting of the Floquet solution into a product of a
periodic function and an exponential is not unique; i.e.,
with@&(x, u, t; p)i=p„(x,u, t;ip)e '"', we have

e "'p„(x,v, t;gr)=e '"+2'""p„(x,u, t;qr), (7)

where k =0,&1,+2, . . . . Therefore the eigenvalues iu
are defined modulo 2ik. Further on, we choose the set of
Floquet solutions with Im(]M) E [—1,1].

Within the stability zones of the deterministic paramet-
ric oscillator [see Eq. (14) below] it can be shown [11]
that P (x, v, t;qr) for large times approaches an asymptotic
periodic probability density P„(x,v, t;p), being the
Floquet-type solution for the vanishing Floquet eigenval-
ue p, =0. Considering the intrinsic dynamical symmetry
of the problem in (4} the asymptotic probability must be
invariant under the parity symmetry transformation
"T:x~—x, u ~—u [10,11]. This implies that
P„(x,v, t; q& ) is symmetric at all times t, i.e.,
P„(x,u, t;ip) =P ( —x, t;up)—.iThe bounded asymp-
totic long-time mean values defined by

(f(x, v, t;ip))„=fP„(x,v, t;ip)f(x, u, t;ip)dx dv (8)

are therefore periodic in time for all functions f that are
invariant under 7; and identical zero for functions f that
change sign with respect to the transformation V;

A common experimental situation is that the phase y is
not controlled explicitly. Experimentally one usually
averages over the phase by taking the average over exper-
imentally obtained time series. With y being uniformly
distributed, this procedure becomes equivalent with an
average over the phase [5]. Using this procedure, one
measures the time-independent phase-averaged asymptot-
ic probability and mean values, respectively, i.e.,

2mP(x, v) = P„(x,u, t;p}dy,2& 0

(f(x,v)) = f (f (x, v, t;ip))„dy .2' 0

This equation cannot be solved in explicit form. From
the Floquet theory for an ordinary second-order
differential equation, we know that the two independent
solutions of (10) are given by

eiv[t+(q&/2)]p t+
2

f2(t tp)=fi( t tp»— —

where p (t) is a periodic function of time, i.e.,
p (t +n ) =p (t).

We see that the Floquet parameter v governs the global
behavior of the deterministic solution. In regions of the
parameter space where v is real, but not a whole number,
both fundamental solutions are bounded. If v becomes
complex, one of the solutions grows exponentially. In the
special case when v is a whole number, one of the solu-
tions is a periodic function with period n or 2m; the
second independent solution is then found to be unstable
[4].

In addition to an ambiguity in the definition of the Flo-
quet parameter v analogous to that addressed in (7), there
exists a second one with regard to the sign of v: Because
of the structure of the solutions, we cannot decide wheth-
er v or —v is the true Floquet parameter. Therefore we
introduce the following convention to determine the Flo-
quet parameter unequivocally: If v is a real number, we
first select the set of Floquet solutions with
Re(v) E [—1,1]. Through the additional freedom of
choice between v and —v we can then always obtain a
positive value of the Floquet parameter lying in [0,1]. In
the case that v is a purely imaginary number we select the
v value with a positive imaginary part. If v is a complex
number we select, as in the case above, a positive imagi-
nary part. The real part is always an odd integer number,
i.e., Re(v}=2k+1 with k =0,+1,+2, . . . [see formula
(12) below], and we subtract 2k to obtain Re(v) = 1.
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To calculate the Floquet coefficient v for (10), we use
the formula [4]

cos7rv=f2 t =77

where p, and p2 are solutions of (10) with the initial
values $,(0;p)=0, i](2(0;p)=1, P, (0;ip)=1, and
$2(0;qr) =0. p, and p2 are calculated via a numerical in-
tegration of the dilferential equation (10}. One distin-
guishes between three different cases:

l
vr —;ip & 1: v= —arcoshiI)2 m.—;q v purely imaginary, (13a)

l—1&i))2 2t +—;y &1: v= —arccosg2 m —+;y v real,2' m
' 2' (13b)

—1& P n+.;—(p: v= —arcosh P n+—;ip +1 v complex valued .2 2' 2 2' (13c)

Calculating v for different points in the parameter
space leads to the diagram in Fig. 1(a) that depicts the
stable [white areas in Fig. 1(a)] and unstable regions
(shaded areas) of the Mathieu equation (10). Changing
the sign of e is equivalent to a phase shift y~y'=y+m. .
This phase, however, has no inhuence on the stability of
the solutions. The diagram is therefore symmetric to the
(coo—y /4) axis. In Fig. 1(a), the Floquet parameter v
equals 1 on the boundaries denoted by az„+,and b2„+,.
On the remaining boundaries v equals zero.

The full solution of the damped parametric oscillator
in (9) reads

10-

( ( t . }) C e [iv —(y/2)]t + iv(y/2)p
21

0
I

4

—[i v (y+)/]t2—i v(p/2) t + (14)c2e 2

Here c, and cz are determined through the initial values
of (x (t;p)) and (x(t;p)). We can —dependent on the
parameter values —distinguish between three different
kinds of asymptotic (i.e., t v oo } solutions. If v is real or
complex with Im(v) &y/2, then ( x(t;y))„=0. The
mean (x(t; )ip)„socill teas with period ~ or 2~, if
Im(v)=y/2. If Im(v)&y/2 the mean value (x(t;(p))„
grows exponentially. Figure 1(b) shows the stability dia-
gram for y =0 and 0.4. The solid lines form the stability
diagram for zero friction, while the dotted lines give new
stability zones at finite friction y =0.4. The unstable re-
gions are reduced to the shaded areas. The effect of
damping results in two e6'ects: {i) It increases the regions
of bounded solutions; the zones of unbounded solutions
no longer reach the coo axis. (ii) The zones of stability are
shifted through the damping to higher values of ~~. This
is especially visible for larger values of e; it stems from
the fact that we calculated v for the shifted Mathieu
equation (10) with coo~coo —y /4. The behavior of the
lowest boundary line is di8'erent. Independent of the
value of y it always starts at coo=&=0. With increasing
friction y the lowest stability zone reaches asymptotically
the e axis; in particular, for y ~~ the solutions are al-
ways stable if mo + 0, and unstable otherwise.

0.5 1.0 2.0

FIG. 1. (a) Stability chart for the Mathieu equation (10) with
shifted angular frequency coo~coo —y /4. The shaded areas, be-
ing bounded by the lines a„andb„,denote the regions of unsta-
ble solutions. The diagram is symmetrical about the ordinate
axis. (b) Stability diagram for the damped parametric oscillator,
Eq. (9), for the values y =0 and 0.4. The solid lines denote the
boundaries for stability for y=0. With finite friction, i.e.,
y=0.4, the regions of bounded solutions become extended as
characterized by the dotted lines. The shaded areas denote the
corresponding regions of instability.
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B. Covariance matrix

Next we study the covariance matrix o of the Brownian dynamics in (4), i.e.,

o(t;q) }=
o„„(t;y}o„,(t;qr)
cr,„(t;y) o„„(t;q))
(x') —(x)'

(xv) —(x)(u)
(xv &

—(x)(v)
(v') —(v &' (15)

Because we are dealing with a linear problem, the conditional probability solution of (4) is of Gaussian form [12],i.e.,

P(x, v, t~x', v', 0;p)= exp — (x —( ) )
1 1 VV

2m deto 2 deto.

Xexp "" (x —(x))(u —(v))- ""
(v —(v))

deto 2 deto. (16)

with the initial condition

P(x, v, 0;tp) =5(x —x')5(u —u') .
This initial condition implies that Lr(0) =0.

Taking the phase p explicitly into account, as a generalization of [7] for the Green's function we write

G(t, s;y}=P,(t;q&)$2(s;y) P&(s;q)$—2(t;y) .
In terms of the Green's function, a formal solution of (1) with x (t =0)=x (0) and x (0}reads

(17)

x(t;y)=&yD f dsG(t, s;gr)g(s)e'r~ "' "+x(0)p&(t;y)e 'r "+x(0) $2(t;gr)++/&(t;y) e
0

(18)

This in turn yields for the elements of the covariance matrix:

o„„(t;qr)=2yDf ds G (t,s;qr)er'
0

(19a)

o„,(t;p)='2yD f ds G(t, s;y)—G(t, s;p) ,'yG (t,s;p—) —er~'
0

(19b)

o„„(t;y)=2yDf ds —G(t, s;qr) yG(t, s;y) G(t, s—;tp)+—,'y G (t,—s;y) er'
0

(19c)

(f(x(t), u (t)) )= (XFpf(x (t), u (t))),d
dt (20)

we obtain a closed system of differential equations for the
elements of the covariance matrix, i.e.,

The covariance matrix remains bounded for parameter
values that are located within the zones of stability for
the damped deterministic equation (9). This can be seen
if we take for P, 2 linear combinations of the Floquet
solutions f, z in (11). Inspection of the exponential terms
in (19) then shows that cr is bounded and asymptotically
periodic if v is real or Im(v)(y/2 [7]. If Im(v)=y/2
the covariance matrix diverges linearly in t, modulated by
a periodic function. Within the zones of instability the
covariance matrix elements consist of an exponentially
growing function with a superimposed periodic modula-
tion.

For our numerical calculations of o., it is advantageous
to follow a different approach. With the relation [13]

Oxx =20xv
o' „=yo „[cou+2ecos(2t+p)]o' +o'„„

(21a)

(21b)

o„,= —2yo „„2[coo+2@—cos(2t +qr)]o'„„+2yD. (21c)

This system of coupled first-order ordinary differential
equations has been solved numerically for different values
of e. The results are plotted in Figs. 2(a) and 2(b), respec-
tively. As predicted from (8) we infer from Figs. 2 that
the variance o„oscillates with period ~ if 0&a&a„.
Here, e„is the value of the driving strength at which the
motion becomes unbounded. For the chosen parameter
values the critical e value equals e„=1.05. . . . The am-
plitude of the variance increases if e increases. Fore)e„,ir„„growsexponentially in time. For reasons of
comparison we depict all three covariance elements in
Fig. 2(b).

Next we average over the uniformly distributed phase.
The phase-averaged asymptotic long-time values of the
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2t+g
pf = 00

(23)

We consider only parameter values that lead to a real
Floquet coeScient v or to Im(v)&y/2. Then cr„„is
periodic in the asymptotic regime t —+00. Setting in
terms of a Fourier series

where

A„=4i{2n —1)+4y,
A„= 8—in —12yn +(4coo+2y )2in+4ycoo2,

A„+=4i{2n+1)+4y.

(24b)

(24c)

(24d}

eA„a„,+A„a„+eA„+a„+,=4yD5 o, (24a)

one obtains upon insertion of (23} into (22) the inhomo-
geneous tridiagonal recurrence relation This system of recurrence relations can be solved in terms

of continued fractions [14]. Expanding the continued
fraction in powers of e yields up to order e, with coo%0:

Ap A+& g)e —2e 2 Re
A —] cop

1 2A A
2 e cos(4t +2y) —Im

cr„"„(t;y)=2+ 4 Re
cop 2/cop

r

co
1

A) A2
sin(4t +2y)A(A2

A) A)s(2t +p) —Im
Ai

sin(2t +gr)

(25)

After averaging over the uniformly distributed phase, the
asymptotic position variance equals

N +3N 1D 2D 'Y o 'Y o p ( 4
coo coo (cooy 3y) +—(2—2coo —y )

+b„„e+O(e ) .
o

(26)

We recall that the driving strength e in (26) cannot be
varied at will because it is restricted to belong to a zone
of stability; note the stability diagram in Fig. 1(b).

For e=0 the variance takes on the value cr" =D/coo,
being in harmony with the equipartition theorem of the
undriven harmonic oscillator. The parametric frequency
yields a correction proportional to e . Most importantly,
we deduce from (26} that a minimum for cr" emerges if
h„„becomenegative, i.e., if

0' =0xu (30a)

In the foregoing discussion we studied 0„"„byvarying
the driving amplitude e, with all other parameters kept
fixed. Next we study the dependence of the damping y.
From (26) we see that if coo is within the range —', & coo & 1,
the variance o

„„

is smaller than D /coo2 fory') (1—3coo)/(coo —1). For y'=(1 —3cuo)/(coo —1), o„"„
assumes —up to order 0 (e )—the equilibrium value
D/coo. Figure 4 shows the numerical result together with
the approximation in (26). The extremal suppression
below the equilibrium value occurs near y =2.1.

Next we turn to the remaining variance elements in-
volving the velocity variable. Following the previous
procedure, the phase-averaged long-time variances 0'„'„
and o'„'„follow from (21) and (25) as

y2~2 y2+3~2 1 &0 . (27) 2.20

The condition for the existence of a minimum for cr'„'„
thus reads

0 %cop 4 1+
3+/ (28)

With e small, we indeed find good agreement between the
approximation in (26) and the numerical result [cf. Fig.
3(a)]. With y = 1 a minimum in o ~ exists for coo2 &0.5.

Due to the divergence occurring in (26) for coo=0, we
study this limit separately. From the set of recurrence re-
lations in (24}we find, for coo~0 and e && 1,

2.15-

2.10-
—as
~xx 2.05-

2.00-

1.95
0.2 1.0 1.8 2.6 3.4 4.2 5.0

cr =—(4+y2)—+O(e ) .
E'

(29)

In clear contrast to the case with coo+0, the leading term
is now proportional to e Figure 3(b) disp. lays the ap-
proximation in (29} together with the numerical results
for different values of the damping coeScient y.

FIG. 4. Phase-averaged coordinate variance cr"„asa func-
tion of the damping y at F0=0.5, D =1, and @=0.2. The nu-
merically computed value is depicted by a solid line. The
dashed line denotes the analytic approximation for small modu-
lation e [cf. Eq. {26)]. The value for the variance at vanishing
modulation e, i.e., o."„=D/mo,is depicted by the dotted line.
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1+ +w
coo (cooy —3y) +(2—2a)o —y ):D—+b,„e+O(e ) . (30b)

Setting @=0, we find the correct limiting results for the
unperturbed oscillator, i.e., o."„=0and o'„',=D. The
correction 6„,becomes negative for co&& —1 —y . In
this regime, however, no periodic stable solutions exist
for small e, i.e., the ansatz (23) is then invalid. In agree-
ment with our numerical findings we thus find that for
coo) 0, o'„',does not exhibit a minimum, cf. Fig. 3(c).

However, we wish also to point out that for parameter
values [coo,e, y ], corresponding to regions between zones
of instability, the variances o,", and 0'„'„trivially exhibit
minima, and subsequently grow toward infinity as the
boundaries of stability are reached.

The anomalous behavior of the averaged variance for
the position coordinate deserves further discussion. For
an unperturbed harmonic oscillator, equilibrium-
statistical mechanics yields for the variances the well-
known results given by the equipartition theorem, i.e.,
with D =k&T,

a)'(x'&=D, (u') =D . (31)

Our finding that, with covWO, the variance for the posi-
tion coordinate of a Brownian-damped parametric oscil-
lator can be suppressed compared to the equilibrium
value reveals future interesting physical and technical ap-
plications. With the parameters obeying the condition
specified in (28), the average mean squared-position Puc
tuations can be suppressed below the thermal limit given
in (31). Clearly, this fact does not imply a contradiction

to statistical mechanics, because the parametrically
driven oscillator represents an open statistical system for
which the common laws of equilibrium thermodynamics
are not applicable. It should be noted that the regime of
parameter values guaranteeing this characteristic
suppression are mainly located within the first stability
zone [see Fig. 1(a)], and thus are readily experimentally
accessible. For the situation with coo=0, there occurs a
similar characteristic initial drop of the variance, fol-
lowed by a subsequent increase with increasing driving
amplitude e. This result has been confirmed experimen-
tally very recently by Arnold, Folan, and Korn in Ref.
[8], monitoring the parametric Brownian motion of a mi-
crosized polystyrene particle in a Paul trap. In agree-
ment with (29) the experimental data for the time-
averaged variance o,", exhibit a characteristic decrease
proportional to e, and after passing through a
minimum the variance grows again as the driving
strength e approaches the boundary of stability. We re-
mark that for coo=0 and e«1 the pseudopotential ap-
proximation used by Arnold, Folan, and Korn to de-
scribe the experiment yields the identical limiting result
in (29).

It should be stressed that such a typical minimum for
0'„' does not occur generically: For example, for the ad-
ditively driven Brownian oscillator studied in [5], the
phase-averaged asymptotic second mean increases mono-
tonically with e [15].

IU. FLOQUET SPECTRUM

To determine the Floquet spectrum for a set of param-
eters which are located within the stability zones, we
start with the eigenvalue problem (6), written in adjoint
form

u —yv —x [coo+2ecos(2t +y)] +yD +—p„=—p„p„8 8
x Bu clu Qv Br

where n, m =0, 1,2, . . . .
Because we deal with a two-dimensional nonseIparable eigenvalue problem, we index the Floquet eigenvalue by two

subscripts n and m. The adjoint eigenfunctions p„areperiodic in t with period m, and consist of polynomials in x and
v. For the calculation of the eigenvalue p,

„

it is sufficient to consider only the highest-order homogeneous polynomial
m„being part ofp„=m„+0(x~v ~;p +q (N); i.e., with the order N given by n +m =N we have

m„=aj (t)x +a2 (t)x 'u+ +ag, , (t)xv '+a/, (t)v (33)

Due to the linear structure, insertion of m„ into (32), and comparison of equal powers of x and v yield a closed set of N
coupled differential equations. The noise strength D does not enter into this system of equations because the diffusion
operator maps a homogeneous polynomial of order X onto a homogeneous polynomial of order X—2. Hence the Flo-
quet eigenvalues are independent of D. Put differently, it is therefore sufficient to infer the spectrum from a determinis-
tic viewpoint. [The Floquet spectrum, as well as the corresponding adjoint Floquet functions, are determined in the
Appendix by using the Fokker-Planck equation in (32) explicitly. ] The solution of (1) in the absence of noise is given
through Eq. (14) with (x (r; q ) ) =x (t; tp). On the other hand, using for the probability the spectral decomposition

P(x, v, t;y)=pc„e " p„(x,u, t;y),
we evaluate the Nth moment as

(34)

(x (t;y)) =x (t;y)= J P(x, u, t;qr)x dx du = g b„(t;p)e™,
n, m
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where

bx (v;p) J=v„p„„(xv, v; p) x dxdv .

If we equate (35) with (14), i.e.,

e[iv (y—/2)]t+iv((i(/2) r+~ +c e —[iv+(y/2)]t i—v((p/2)cue pt ce
2

N

n, m

(36)

(37)

p+~ Plp~p+mpp), n, m =0, 1,2, . . . ,

where

(38a)

pip= —iv+ poI =iv+2' 2' (38b)

In conclusion, the Floquet eigenvalues are given by a
linear combination in terms of the basic stability
coefficients p, o and )uo) [see Eq. (14)]. This central result
is similar to the behavior of the eigenvalues for a multidi-
mensional Ornstein-Uhlenbeck process [16].

In Fig. 5 we depict the behavior of the Floquet eigen-

5-

2-

0
0 1

10

we find upon a comparison of the time-dependent factors
for different values of N the result for the Floquet spec-
trum, i.e.,

values p, p and pp& as a function of friction y. The param-
eter v is the Floquet coeScient of the deterministic para-
metric oscillator, cf. (10), with coo substituted with
tt)()—y /4. For zero friction, iv is imaginary. Hence,
Re(p, ) first grows proportionally to y/2, cf. (38), while
Im((M) is determined by v, being dependent on s and y, cf.
Fig. 1(a). The imaginary part of p vanishes whenever v
reaches an upper boundary line a2„in Fig. 1(a). Thus i v
becomes real valued, cf. Fig. 5(b), until —with increasing
friction y—a lower boundary line b2„is hit. On the oth-
er hand, for parameter regions where v is located between
the lines (22„+)and b2„+„wehave ~lm()u)~ =1=~Re(v)~.
With the friction increasing continuously, a bifurcation
of p takes place, yielding the bubblelike structure in Figs.
5(a) and 5(b). The number of bubbles occurring in Re(p, )
or Im(p), respectively, depends on the number of cross-
ings of upper stability lines a„~. ~ap &0. If one ini-
tially starts with the (n +1)th zone of stability, and with
the friction y increasing from zero, the first bubble for
Re(p) starts at y=2[to() —a„((0o,e, y)]'/ and ends at
y=2[ro() b„(coo,E—,y)]'; this process is continued until
one reaches the negative-valued zone boundary (2(). This
is exemplified in Figs. 5, wherein with coo=5 and a= 1

one starts out at y =0 from the n =3 zone of stability.
We also note the limiting behavior of the Floquet ei-

genvalues Ip)(),po)] when the friction y assumes very
large values, i.e.,

1.5
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2
COp

Pip= r
2

No
and pp&=y — as y~~ . (39)
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FIG. 5. The stability coe%cients po& and p, o are shown at
F0=5 and @=1as a function of the damping y. The real eigen-
values are plotted with solid lines in (a), whereas the real parts
of the complex eigenvalues are depicted by dashed lines in {a}.
The imaginary parts are shown in (b).
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FIG. 6. Time-homogeneous autocorrelation function of the
position variable, SC (~), vs r at uo=0. 5, y=0. 3, and D =1.
The modulation e takes on the values a=0, 0.3, and 0.5.
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V. AUTOCORRELATION FUNCTION

In this last section we investigate the autocorrelation
function E „ofthe position variable. The decay of this
correlation is determined by the Floquet eigenvalues p„

which enter the spectral representation of the autocorre-
lation [5,10,11]. Alternatively, the correlation can be ex-
pressed directly in terms of the solution of the Langevin
equation in (1), i.e., in terms of the Green s function solu-
tion in (18) one finds

K„,(t, t', y)= (x(t;y)x (t', qr})
t=2yDe 'r "'+' ' G(t, s;p)G(t', s;p)e~'ds

+[ (0)p, (r;q)+ (0)y,(i;q)][ (0)y, (r', q)+ (0)y, ( r', q)]
-' ""'+". (40)

This correlation is time inhomogeneous, due to the in-
herent nonstationarity of the Fokker-Planck process in
(4). With phase y being uniformly distributed, an aver-
age over the phase yields a time-homogeneous correlation
[5,10,11] K„„(t,t', y)~K„„(tt'=r—) The .initial value
K„(v=0)coincides with 0'„',whenever we consider pa-
rameter values (e,y) that lie within corresponding zones
of stability; ie. , (x(t~~;y))=(x(t~~;y))=0 in
this case, cf. Sec. IIIA. The behavior of this phase-
averaged time-homogeneous autocorrelation K„„(r)is de-
picted in Fig. 6 for three different sets of parameters. We
remark that for parameter values [ coo, e, y ] yielding a
real-valued Floquet coeIcient v, the long-time decay of
K„,(r) is governed solely by the friction y, i.e.,

K„„(~~~ ) ~ exp( —yr/2), v:real, (41)

whereas the relaxation time is always enhanced whenever
v assumes complex values, i.e., with Im(v) & y/2 in the
zones of stability one obtains

VI. CONCLUSIONS

In the present work we elucidated in detail the dynam-
ics of noisy, dissipative parametric oscillators character-
ized by a time-periodic force constant. The statistical
properties, such as the time-inhomogeneous (Gaussian}
conditional probability, are solely determined by the

K„„(r~~ ) ~ exp[ [Im(v) —y/2]r], v:complex . (42)

Note that with [y/2 —Im(v)] &y/2, the corresponding
bandwidth in the Fourier spectrum becomes narrowed as
compared to the case in (41). We recall that this latter
situation in (42) describes the dissipation-induced stabili-
zation of an otherwise unstable behavior of the friction-
free parametric oscillator.

The behavior of the velocity correlation K„and the
cross correlation K„„canbe studied likewise. Again an
average over the phase renders these correlations time
homogeneous. Within the zones of stability the asymp-
totic mean values approach zero, i.e., all correlations
[K {~},K„„(~),K„,(r)] approach zero as r~oo. There-
fore, the spectral density S(co)= fK (r )exp( —i cur }dr,
does not —in clear contrast to the general behavior of
systems exhibiting stochastic resonance [10,11]—exhibit
6-function contributions.

behavior of the deterministic system (i.e., mean values)
and the closed set of variance equations in (21). The
time-averaged variances for the position and velocity
variables exhibit an interesting behavior as a function of
modulation strength e and dissipation strength y. Most
importantly, we find the surprising result that the posi-
tion variance can, within certain parameter regimes and
coo@0, be suppressed below its corresponding thermal
equilibrium value; note (26) and the discussion below (31}.
For the case with co~ set equal to zero, a similar charac-
teristic bowl-shaped behavior with a minimum emerges
for 0„"as well. This latter finding is in harmony with re-
cent experimental results in Ref. [8]. The relaxation
properties of general statistical quantities such as correla-
tions, etc. are given in terms of the Floquet spectrum of
the nonstationary Fokker-Planck equation in (4). We ex-
plicitly derived the whole Floquet spectrum [p,„]in Sec.
IV. A second important finding is the atypical long-time
relaxation behavior of the time-averaged position correla-
tion discussed in Sec. V which shows a different relaxa-
tion time scale depending on whether the parametric os-
cillator is stable in absence or only in presence of friction
y [see Eqs. (41) and (42)]. These results (i.e., noise-
induced parametric "squeezing") may prove useful for
several applications in physics and engineering.
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APPENDIX

To obtain the first nonvanishing eigenvalues p~g and
pp~ and corresponding adjoint Floquet functions p, o and
p 0, , respectively, we start with the ansatz

p,a=a', (t)x+ai (t)v, po, =a, '(t)x+a2'(t)v .

Because of the invariance of the Fokker-Planck equation
under the parity transformation defined in Sec. II, p]o
and po, must be odd [10,11]. Therefore they cannot ob-
tain a term independent of x and u. Insertion of the an-
satz into (32) and comparison of equal powers of x and v

yields the equations (we suppress the indices of a, and a2
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for the moment)
—cooo2 —e cos(2t +p)a2+d, = —iMa, ,
—ya2+a&+a2= —Pa2 . (A2)

This again is a damped Mathieu equation. The function
az(t} must be determined so that az is a periodic func-
tion. To this aim we make the transformation
a2 =a&exp[ (ls —y/2—)t] Thi.s transformation does not
only remove the damping term, but also removes the ei-
genvalue P in the equation, i.e.,

2
a2+ coo — +icos(2t +qv) 02=0 . (A4)

Eliminating a& leaves us with a second-order differential
equation for a2, i.e.,

o2+ (2iJ, y)a2—+ [roo+ij(p y)+—e cos(2t +p) ]a2 =0 .
(A3)

p =—iv+ p =tv+10 2 y 01 (A7)

Next (A5) can be inserted into (A2) to determine a, ' and
aI . This yields explicitly the first (left) Floquet eigen-
functions po& and p ]0.

For the higher-order Floquet eigenvalues P02, P», and
pro, we use the following ansatz for the adjoint Floquet
functions po2 p», and p20:

po2 =ac (t)+a& (t)x +a& (t}xv+a3 (t)v . (A8}

p» and pzo are defined analogically. The structure of
these Floquet functions is determined by the fact that
they must be even under the parity transformation men-
tioned above [10,11]. Again we insert this ansatz into
(32). In doing so, for the coefficients a„a2,and a3 we
obtain a closed system of three coupled differential equa-
tions. Upon an elimination of a, and a2, one finds the
corresponding equation of third order for a3. The three
independent solutions are given by

Using for 5'2 the Floquet solutions (11), we obtain for a2
the two solutions

-( /2)'o01 iv[t+(y/2)) [&loaz —e
2

a3 =(az ) exp[ —,'(y —iM2p)]

3 ( 2 2 }e pt: —,'(y —l »}l
o3 (o2 }'expt:—,'(y —l 02)l

(A9)

10 iv[ —t —(y/2)]e [&oia2 —e

(A5) with iTz being a solution of (A4). The periodicity condi-
tion for a3 determines the Floquet eigenvalues as

The periodicity condition for a2 implies P20 2P10 P» P10+P01y P02 2P01 (A10)

iv —Po, + =0 and —i v —Pip+ 0 .

Thus we obtain the first two Floquet eigenvalues:

(A6}
Knowing a3 the coefBcients ao, a, , and a2 can be calcu-
lated. In principle it is possible to construct with this
method all the other Floquet eigenvalues and left eigen
functions
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