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Brownian parametric quantum oscillator with dissipation

Christine Zerbe and Peter Hanggi
Institute of Physics, University of Augsbvrg, Memmingerstrasse 6, D 861-85 Augsburg, Germany

(Received 4 April 1995)

We study the quantum Buctuational properties of a parametric oscillator with and without
coupling to an Ohmic environment. After considering the momentum and coordinate variances as a
function of initial squeezing for the undamped dynamics, we invoke the functional integral method to
derive the fully exact reduced density matrix for parametric dissipative quantum Brownian motion,
covering the whole temperature regime from T = 0 up to the classical limit at room temperatures.
Moreover, we present the exact result for the quantum master equation for both the density matrix
and the corresponding Wigner function. The time evolution of the covariance matrix elements of
damped quantum Huctuations is studied numerically. These variances undergo within the regime of
global stability asymptotic, periodic oscillations. As an interesting result, we And that the minima
of these oscillations fall below the corresponding thermal equilibrium values.

PACS number(s): 05.30.—d, 05.40.+j, 32.80.Pj

I. INTRODUCTION

The study of the quantum dynamics of a particle mov-
ing in a time-dependent potential has prompted a flurry
of literature over the past few years [1].Due to the non-
linear forces inherent in most models they can be solved
by numerical means only or within certain approxima-
tions. In this paper we shall discuss one of the few
exactly solvable time-dependent quantum systems, both
with and without coupling to an Ohmic environment. A
short account of our work appeared in Ref. [2].
The system under study is a parametric one-

dimensional oscillator for the coordinate x (with mass
m and angular frequency ufo) described by the time-
dependent potential

V(x, t) = —rn[(uo + icos(At + y)]x2
The parametric modulation is characterized by the am-
plitude ~, the modulation frequency 0, and an initial
phase y. We assume that the phase is not known, i.e., it
is equally distributed between 0 and 2'. For e = 0 the
potential (1) becomes the potential of a harmonic oscil-
lator —or of a parabolic barrier, because we also allow
negative values for uo.
This potential has several possible physical appli-

cations. One major application is the study of the
quadrupole ion trap, also termed Paul trap, in the quan-
tum regime [3,4]. Another suggested application is the
generation of squeezed states [5,6].
A major objective is the study of the influence of dis-

sipation on the quantum mechanics of the parametric
oscillator in (1). In doing so, we shall couple the time-
dependent quantum system in (1) to a bath composed
of infinite many oscillators. This system-plus-reservoir
approach for the description of quantum dissipation has
been pioneered during the sixties [7] for purely har-
monic systems. For nonlinear system dynamics coupled
to a bath of harmonic oscillators [8] this system-plus-

harmonic bath presents the state of the art in the de-
scription of quantum dissipation [9]. Therefore, although
we deal with quadratic interactions only, the results are—due to the inherent time dependence of the poten-
tial and the huge number of bath degrees of &eedom
nontrivial.
We start within classical mechanics in Sec. II and give

a brief review of the classical parametric oscillator. A
survey of the quantum parametric oscillator without dis-
sipation is presented in Sec. III. Additionally, we present
a barely known method to constru"t the propagator for
this system. Based upon these results we study the prob-
lem of parametric dissipative quantum Brownian motion
in the time-dependent potential (Sec. IV). We intro-
duce the coupling to an Ohmic heat bath and use the
Feynman-Vernon real time influence functional formal-
ism [10,11] to derive the exact evolution operator for the
reduced density matrix. We also present the master equa-
tion for this system. On the basis of these exact results
we calculate and discuss time-dependent mean values and
variances. We conclude with a brief summary in Sec. V.

II. THE CLASSICAI PARAMETRIC
OSCILLATOR

In a linear quantum mechanical system —damped or
undamped. —the average motion is governed by Ehren-
fest's theorem, which coincides with the corresponding
classical problem. Therefore, we erst recall some results
for the classical parametric oscillator. The equation of
motion for a damped particle in the potential (1) reads

mx + mpz + mar (t, y) x = 0

with cu (t, (p) = ~o + c cos(Bt + p). (2)
The parameter p characterizes Ohmic damping. The
introduction of the scaled parameters t = Qt/2, wo
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4wo/0, e = 2e/0, and 7 = 2p/0 renders the normal-
ized damped equation of motion for a parametric oscilla-
tor, i.e.,

x+ pe+ 2 (t, &p)x = 0,
where u2(t, y) = ue + 2ecos(2t + p). In this section we
shall exclusively use the normalized form (3) and hence
drop the overbars for the sake of convenience. With the
substitution z = y exp(—pt/2) one can remove the damp-
ing contribution such that Eq. (3) can be cast into the
standard form of a (formally undamped) Mathieu equa-
tion [12],with a friction-renormalized angular frequency

2
y+ (uo ——+ 2ecos(2t+ y) y = 0. (4)

In general this equation cannot be solved in explicit form.
From the Floquet theory for an ordinary second-order
difFerential equation with periodic coeKcients we know
that there exist two independent solutions of (4) of the
form [12]

solution of Eq. (3) may be expressed in the form

(t) (iu p—/2)t+iuy/2 (t + /2)
—(iu+p/2)t —i u~/2 ( t /2)

The constants cq, c2 are determined through the initial
values of x(t) and x(t). We can —dependent on the
parameter values —distinguish between three difFerent
kinds of asymptotic (t -+ oo) solutions. If v is real or
complex with Im(v) ( p/2, then x(t) -+ 0. The so-
lution x(t) is purely oscillating with period ~ or 2vr, if
Im(v) = p/2. If Im(v) ) p/2 the solution x(t) grows
exponentially. Figure l(b) shows the stability diagram
for p = 0 and p = 0.4. The solid lines form the stability
diagram for zero &iction, while the dotted lines give the
new stability zones at finite friction p = 0.4. The unsta-
ble regions are reduced to the shaded areas. The efFect
of damping increases the regions of bounded solutions;

12-

gg(t; p) = e'"('+~/2 p(t+ p/2),
g2(t;(P) = gg(—t; -P),

with p(t) a periodic function of time, i.e. , p(t + m)
p(t). The constant v is called the characteristic or Ftoquet
exponent. For e = 0 the Floquet exponent v and the
periodic function p(t) become
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Hence the familiar results for the damped harmonic os-
cillator are recovered.
We see that the Floquet exponent v governs the global

behavior of the solution. In regions of parameter space
where v is real, but not an integer, both fundamental
solutions are bounded for all times. The general solution
to (4), which is a linear combination of gq and g2, is
then called stable. If v becomes complex, one of the
solutions grows exponentially as t ~ oo. The general
solution is termed unstable. In the special case when
v is a whole number, which occurs on the "boundary"
between stability and instability, it can be shown that the
solutions gj and g2 are not linearly independent. One of
the solutions is a periodic function with period vr or 2';
the second independent solution is found to be unstable.
The diagram in Fig. 1(a) depicts the stable [white areas
in Fig. 1(a)] and unstable regions (shaded areas) of the
Mathieu equation (4). Changing the sign of e, i.e. , e ~—e, is equivalent to a phase shift p -+ p' = p+ vr. This
phase, however, has no influence on the stability of the
solutions. The diagram is therefore symmetric to the
(~02 —p2/4) axis.
After transforming back &om y(t) m x(t), a general

$02

0-
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FIG. 1. (a) Stability chart for the Mathieu equation (4)
with shifted angular frequency too ~ sio —p /4. The shaded
areas, being bounded by the lines a and 6 +q, n = 0, 1,2, . . . ,
denote the regions of unstable solutions. The diagram is sym-
metrical about the ordinate axis. (b) Stability diagram for the
damped parametric oscillator Eq. (3) for the values p = 0 and
p = 0.4. The solid lines denote the boundaries for stability
for p = 0. With finite friction, i.e., p = 0.4, the regions of
bounded solutions become extended as characterized by the
dotted lines. The shaded areas denote the corresponding re-
gions of instability.
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in particular, the zones of unbounded solutions no longer
reach the up axis.
For later simplification we introduce solutions to

Eq. (4), Pi and P2, with the special initial values at time
tp ——0

4i(to, V) = o,
4'i(to I'p) = 1,

Because the Wronskian for the Mathieu equation is in-
dependent of the time [12], Pi and P2 fulfill the relation

4'1(t p)A(t p) 4'i (t p)4'2 (t p)
Whenever we need explicit values for Pi and P2 we calcu-
late them via a numerical integration of the differential
equation in (4).
The combination G of solutions &j&i and P2

G(t, s; p) = Pi(t; y)P2(; p) —Pi(; p)$2(t; (p) (10)
will also proof useful in the following. By insertion of &Pi
and P2 into (10) it is easy to show the relations

G(t, s; p) = —G(t, t'; p) BG(s,
t', p)

OG(t, t', y)
Ot'

and

G(t, s; &p) =—G( st; p).

@„(x,t) = exp(—i e„t)y„(x, t),
g„(x,t) = g„(x,t+~). (14)

The function y is called a Floquet function and e is
the Floquet or quasienergy. Contrary to eigenfunctions
of the time-independent problem, these Floquet functions
are time-dependent and orthogonal only for fixed, equal
time arguments, i.e. , (y„(x,t)[g (x, t)) = b' . Because
of the linearity of the system, y and ~ are fully deter-
mined through the solutions of the corresponding classi-
cal problem, i.e., solutions of Eq. (4) for vanishing con-
stant p

x+(u (t)x = 0.
There are different approaches to the quantum me-

chanical problem; see, e.g. , [3,4,14]. The wave functions
and the Floquet energies for the whole parameter space
were given first by Pereloxnov and Popov in Ref. [14]: In
the stable region a discrete spectrum of quasienergies ex-
ists, which is given through e„=(n,+ 2)v, n = 0, 1,2, ...,
where v is the Floquet exponent of the deterministic
Mathieu equation (15). In the unstable regions and at the
boundaries between these regions the spectrum becomes
continuous: In the unstable region it is doubly degenerate
and reads ei, = k Im(v), with k being a real number and
running &om —oo to oo. The continuum is no longer de-
generate at the boundaries where it is of the same form,
with II.. ranging &om 0 to oo only.

III. THE QUANTUM PARAMETRIC
OSCILLATOR

Introduction of the scaled quantities x = gmA/2hx
and t = Ot/2 yields the dimensionless Schrodinger equa-
tion for the potential (1), i.e. ,

1 2 1i4 (x, t) = ——0' + —u'(t) x' (13)

with ~ (t) = ~o + 2mcos(2', coo = 4tuo'/0', and ~ =
2e/0 . Apart from x, this is the same scale as in Sec. II.
Again, we stick in this section to the scaled variables and
henceforth omit the overbars for ease of notation. We
have chosen the initial phase y = 0, because, in contrast
to Sec. IV, it provides no additional insight.
The periodicity of the Hamiltonian leads to Floquet

form solutions of the Schrodinger equation [13]. With
the initial time set to ——0, a solution @„(x,t) of Eq. (13)
can be factorized as

A. Propagator

K(xf tf x;, t;) = ) y„(xftf)y„*(x;,t;)
n=p

Zx exp ——e„(tf—t;) (16)

For a continuous spectrum the sum becomes an integral
and we have to take into consideration possible degen-
eracies of the quasienergy spectrum. Doing so, we obtain
for the propagator the explicit result

The propagator for this system, obtained originally by
Husimi [15],can be derived in a variety ofways, e.g. , with
Feynman's path integral method or by a canonical trans-
formation into a harmonic oscillator as in [16]. In terms
of the Floquet functions and the quasienergies, it is also
possible to construct the propagator K(xf, tf, x;, t;) di-
rectly in terms of a spectral representation. In this way
we obtain

K(xf, tf,.x;, t, ) =
i 5,BG(tf,t;),BG(tf, t, ) l

27ri G(tf t ) 2G(t f t )( l9t f '' Bt
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The function G(tf, t;) is defined as in (10) with p and
p set to zero. The Maslov correction m(t, t;) gives the
number of zeros ofG(t, t, ) in the interval [t;, t], rn(t, , t;) =
0, and we used the definition of the root

This equation is solved for a state that is prepared at
time to ——0 with the initial variances 0, o „,and u„„.
The solution for the variance of the coordinate x then
reads

G' '(t t ) = iG(t t )i' ' "-'' '
But this propagator (17) is valid only for times ty

With t we denote the time when the mth zero of
G(tt, t, ) occurs. To calculate the propagator at these so-
called caustic8 we use the propagator property, namely,

K(x„,t„;x, , t;)
o p(t) = o &i(t)&i(t) + o**&2(t)&2(t)

+ *,[~ (t)~ (t) + ~ (t)~ (')] (23)

where Pi and P2 are defined as before in (8). With (20)
we 6nd for the remaining variances the result

dx.K(x„,t„;x„t.)K(x., t.;x,, t;). (18)
This relation holds for any time order of t;, t„andt„.It
is not necessary that t & t . We choose the intermediate
time t, so that K(x, t;x„t, ) and K(x„t, ; x;, t;) do not
possess caustics at this point. With the relations (ll) and
(12) we find for the propagator at a caustic the explicit
result

K(x, t;x, , t, )
('-'*l~'/io)G(t t )/at, [

BG(t;, t )xb x — " x,Bt;
O'G(t, t;) BG(t, t, )

with DG(t, t, )/]9t; = [o)G(t, t;)/Bt, ]i,

B.Variances and squeezing

It has been demonstrated previously [5,6] by various
methods that a time-dependent harmonic oscillator gen-
erates squeezed states. To study its squeezing properties
in greater detail we compute the variances of the oper-
ators ~ and p with the Heisenberg equation of motion.
For this linear system the mean value of the operator x
follows the solution of the classical equation (15) and the
mean value of the momentum is given as (p) = d(x)/dt.
The variances o (t) = (x ) —(x), cr „(t)= 2(xp+

px) —(x) (p), and o„„(t)—:(p2) —(p).z satisfy the coupled
set of equations

In contrast to the harmonic oscillator, the variances are
always time-dependent quantities. They are bounded or
increasing with time, like the solutions of the Mathieu
equation in the corresponding region. To obtain explicit
results we start at to ——0 with a wave packet with min-
imum uncertainty o.P = 1/2rg~p2+ 2e, o „=0, ando„=rg~p2 + 2e/2. This corresponds to a coherent, or
squeezed, state of a harmonic oscillator with angular fre-
quency (r/Ho —gu/p + 2e = (d(tp = 0). The parameter r
characterizes the amount of squeezing of the initial state;
r = 1 refers to an unsqueezed initial state. With (22)—
{24) it can be shown that the state does not remain a
state of minimum uncertainty for all times, i.e.,

o {t)o„„(t)= o o.„„+cr'„(t). (25)

Only for times when o „(t)equals zero is the initial un-
certainty reattained. At these times o (t) and cr„„(t)
take on minimal or maximal values, as can be deduced
from (20), i.e. , maximal squeeziiig in one of the variances
occurs In Fig.. 2 we plot the time variation of o (t) for
a Axed value of uo. Depending on the chosen parameters
and the initial squeezing the results vary strongly. Fig-
ure 2(a) shows cr (t) for a squeezed state and different
amplitudes of the parametric modulation e. In Fig. 2(a)
we can observe that strong squeezing —alternately in
o (t) and o&„(t)—app'ears at certain times. For pa-
rameter values in the region of stability the amplitudes of
the oscillations of the variances are small. Approaching
the boundary of stability, the amplitudes become larger,
and in the instable regime they grow to inanity as t ~ oo.
It can be seen that the variation of t changes the form
and also the amplitude of the oscillations. In Fig. 2(b)
variances are plotted for diferent squeezing parameters

CT~~ = 20~p)

o-„„=—2(u'(t)o p.
(20) IV. THE DISSIPATIVE QUANTUM BROWNIAN

PARAMETRIC OSCILLATOR

~.".+4~*(t)a..+ 2 —]uP]t)] j~..= 0dt (21)

By eliminating cr p(t) and o~„(t)from Eqs. (20) we find
an equivalent third-order equation for cr (t)

To describe the inHuence of friction we couple our sys-
tem bilinearly to an environment [7—11]. This environ-
ment is modeled by a linear system consisting of a set of
noninteracting harmonic oscillators. The Hamiltonian of
the coupled system assumes then the form
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H(t) = H „(t)+ H/ + HR, (26)

where

H „(t)= + —m[~p + e cos(At + p)]z,2m 2

is the Hamiltonian of the parametric quantum oscillator,

HR =) + —) m A)2(2
ex=1 ex=1

N N
H, =—*) c.(.+*')

ex=1

is the interaction Hamiltonian. The first term in HI
couples via the coupling strengths (c ) the parametric
oscillator to the bath. The interaction with the bath
oscillators leads to a frequency shift in the parametric

is the Hamiltonian of the reservoir consisting of N oscil-
lators with masses m, angular frequencies u, momenta
p, and coordinates (, and

I(~) = vr) h(ur —(u ).
Q=1

(27)

Throughout this work we consider an Ohmic heat bath
that is characterized through the spectral density I(u) =
mph'.

oscillator. This purely classical efFect is removed with
the second contribution in Hy, termed the counterterm
[17].
To obtain explicit results we need to specify the envi-

ronxnent: We consider the bath and the parametric oscil-
lator to be uncoupled initially. The heat bath is then in
equilibrium at temperature T. At time to ——0 the para-
metric oscillator and the heat bath are brought together.
The total density matrix at (z;, y, , tp) can therefore be
written as p»,+R(z;, y, , tp) = p „(z,, y;, tp)pR(z;, y;, tp),
where p „(x;,y;, tp) and pR(z' y' tp) are the density op-
erators of the parametric oscillator and the reservoir, re-
spectively. Additionally, the bath consists of an in6nite
number of oscillators with densely distributed kequen-
cies. Therefore we introduce a spectral density of the
environment I(u)

A. Density matrix

20—

10—

I ~

~ lI
I I
I I I

I
I I
I I

I I
I

I

\
I

\

I

I
I

\I I
I

t
I 'I
I

I

I

y
I I

~w

We next derive the density matrix for the dissipative
parametric quantum oscillator. To this aim we eliminate
the bath and calculate the exact reduced density opera-
tor pR(xf yf t). We make use of the functional integral
method of Feynman and Vernon [10].
We start with the Hamiltonian (26). The influence

functional formalism then yields for the reduced density
matrix

0 5 10 15 20 25 30 35 40 45 ~R(*~ vs ') = f &*' f ~u* ~(*y uy &i*' u' o)

x pR(x;, y, , 0), (28)

2-5 —:.

(b)

where J is the evolution operator or propagating func-
tion of the reduced density matrix. In the case of a fac-
torizing initial state the reduced initial density matrix
pR(x;, y;, 0) is nothing else but p „(x,, y;, 0). The prop-
agating function J is given by a twofold path integral

J(z, , y, , t~z, , y, , o)

Dx Dy exp —Sx —Sy Txy, 29

0.5
0

I I I I I I I I I

5 10 15 20 25 30 35 40 45 50
where the integration is over all paths x(s), y(s), tp = 0 (
s & t with x(tp ——0) = x, , y(tp ——0) = y;, x(t) = xf, and
y(t) = yf. The action S[z] of the parametric oscillator
readsFIG. 2. Variance o vs time t for for various amplitudes of

the parametric modulation and di8'erent squeezing parameter
at ceo = 0.1. (a) r = 0.3. The solid line corresponds to e = 0.1,
the dashed line to e = 0.7, and the dotted line to e = 0.8. (b)
t = 0.025. The solid line corresponds to r = 1, the dashed
line to r = 0.8, and the dotted line to r = 0.4.

1S[z] = ds —m(x —[(up+ icos(As+ (p)]x ). (30)

The efFect of the environment is included in the in8uence
functional X [18]
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z mX[x, y] = exp ——(x, + y, )
1x exp —— ds6 p p

d»(8) [~(8)—y(8)] +
B

d»(8 —u) [*(u) + y(u)] I~(8)—y(8)]

For an Ohmic heat bath these quantities are given by

K(s) = mp
p(s) = 2p$(s).

CCd (' Cdh
cd coth

~ ~
cos(cds),

vr (2A:~T )

Since the path integrals in J are quadratic, they can be
done exactly to yield

J(&X yt tl~' y* 0)

'"v q(~f~. ~l —+fr.~l))&f~.i, v. il (34)

The functions x ~, y, j denote the classical paths and N is a
normalization factor. Introducing the sum and difference
variables, i.e.,

1
Q = —(x+ y), (35)

the minimal action paths are given as the solutions to
the equations

q(s) —7q(s) + cd (s; p)q(s) = 2qg7b(t —s), —

Q(s) + pQ(s) +cd (8;(p)Q(s) =—2Q,pb(s),
(36)

(37)

with the boundary conditions q(0) = q;, q(t) = qt,
Q(()) = Q;, Q(t) = Qt, and cd {8;p) = cd+ot cos(08+@).
The inhomogeneities on the right-hand side of (36) and
(37) arise because of the first term on the right-hand
side of the in8uence functional in (31). In the work of
Caldeira and I eggett [11] these terms were omitted.

K(s) denotes the noise kernel
d(d f Cd@ lcath

i ~
cos(cds)I(cd),

(,2k~T )
wherein k~ denotes the Boltzmann constant and T de-
notes the temperature of the bath. The friction kernel
p(s) reads in terms of spectral density

2 Ct(d I(Cd )p(s) =— — cos cds.

In the case of a time-independent harmonic oscilla-
tor the solutions of (36) and (37) are connected through
q(s) = Q(t—s). With a time-dependent frequency this is
no longer true. Hence one has to be careful in using re-
sults from the literature for stationary problems [18,19].
Equations (36) and (37) are solved with

q(8) = Vi(t, S; (P)qi + V2( t, 8; (P)q'y
Q(s) = ui(t, 8; (p)Q; + u2(t, 8; p)Qg

+2~fi(8 P) [1—o-(8)]Q'

for s ( t, (38)

for all 8,

with 8(s) denoting the step function O(s ( 0)
0, e(0) = 1/2, and O(s ) 0) = 1. Here we defined
solutions to the homogeneous part of Eqs. (36) and
(37) that fulfill ui(t, 0; (p) = vi(t, 0; p) = 1, ui(t, t; (p) =
vi(t, t; (p) = 0, u2(t, 0; (p) = v2(t, 0; (p) = 0, and
u2(t, t; (p) = v2(t, t; (p) = 1. For ui and u2 we obtain

u (t 8'V') = f ( 'p) f ( V')'f2(t; V)

fi(' ~)u2(t) si (p) = f (t )
~ (40)

with f, (8; (p) = (t); (8; (p) e )'~2, i = 1, 2, and P, (8; (p) given
in (8). The functions vi and v2 read

vi(t, s;p) = f2(s; p) —fi(s;p) ' e ',f2(t; V)
i tiP

(, . )
fi(8 V),(.-)
fi(t; v) (41)

The inhomogeneity in Eq. (37) is reQected by the step-
function contribution in (39). But we neglected the in-
homogeneity in Eq. (36). We considered the solution of
(36) only in the regime [O, t), because during this tiine
there is no inHuence of the inhomogeneity. The solution
is continuous at 8 = t [and because of the boundary con-
ditions q(t) = q~), but its first derivative jumps at that
point. Because we need only the derivative of Q(s), and
not of q(s), to calculate the propagating function we can
neglect this jump; cf. (36). Inserting these solutions into
Eq. (34) leads to the main result

1
J(qy, Qf, t~q;, Q;, 0) = exp ——{aii(t; (p)q, +[ai2(t; (p) + a2i(t. ; (p)]q;qy + a22(t; (p)qf )K t (42)

2x exp ——m([bs(t;(p)q; —b (t; cp)qf]Qy + [t)i(t; (p)q; —~2{t (p)qf]Q, )
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with

1a;, (t;)p) = — dsi

xK(si —s2)
dsz v~(t) si', )p)vf (t, s2, )p)

This yields for K(t)

N(t) = (47)

and

b, (t;&p) = ui(t, o; p) + p,
bs(tI)p) = u2(t, o; y))

b2(t;)p) = ui(t, t; p),
b (t''p) = u (t t 'p) (44)

Equation (28) together with (43) and (47) gives the exact
reduced density matrix for times t when fi(t; )p) g 0.

1 2~5
dQf p~(Qf) qf —0) t) = ~( ) b ( )

—1,

where we use

(45)

2
dQf Qf exp —bs (t; (p) q,Qf

bs(t ~) (ib (t &) Bq')
~(q;). (46)

Here the overdot denotes the derivative with respect to
s, i.e., ui(t, o) = [Bui(t, s)/Bs]I, 0. The normalization
factor %(t) can be determined from the conservation of
normalization of the density matrix

B.Master equation and %'igner transformation

We investigate here the equation of motion for the re-
duced density operator. By use of the Wigner distribu-
tion function we compare this equation with the equation
for a classical Brownian particle, the Fokker-Planck equa-
tion. This provides a possibility to discuss the connection
with the classical system.
To derive the master equation from the propagating

function of the reduced density matrix we take first the
time derivative of both sides of Eq. (43). Then we multi-
ply both sides by p~(q;, Q;, 0) and integrate over Q; and
q, . In this way one arrives at the central result

B h' f O' B' lih—p~(x, y, t) = '—Bt ' ' 2m (Bx' By' )
imp ( B(*-y)

I2 (Bx
——[D.„(t,o) +D„.

+ 2~'(t V)(x' —y') p~(x y t)

B1
R(x, y, t) + iD»(t, O)(x —y)'p~(x, y, t)By)

fB
(t, o)l(*—y) I

+—
I p~(x y t)(Bx By) (48)

where D„„,D„,and D „aregiven by [see Eq. (44)]

b.b4 b4 .D»(t, o) = 2 b4+— a22 —a22+ 2 ai2 —2—ai2,
b2 ) b2bs bs

1. b2
Di (t, o) = D „(t,o) =——ai2 + a22 + ai2.PK ) KP ) b362

(49)

vi (t, t; (p) =—u2 (t, 0; )p) (50)

to make D disappear. This relation is valid for an un-

The first term in the large square brackets on the right-
hand side of the exact equation (48) corresponds to the
Liouvillian evolution. The second term proportional to
p is a dissipative term and all the remaining terms are
diffusive terms with time-dependent coeKcients. In con-
trast to the classical limit (see below) the master equation
involves a cross diffusion Dp (t, 0) = D z(t, o).
Although the system unter consideration is time de-

pendent the diffusive term D equals zero like in the
case of the harmonic oscillator. The term D has the
form D (t, 0) = (2ai2—aii/bs)/bs. Because of the iden-
tity aii ———2vi(t)ai2 it is necessary that

driven harmonic oscillator because vi(t, s; )p) = u2(t, t-
s;)p). In addition, the condition (50) is also valid for a
parametric oscillator, due to the time independence of
the Wronskian (9):

f.(t;v)fi(t;v) —f2(t v)fi(t v),,~1))p — f ()
$2(t; )p)Pi(t; )p) —$2(t; )p)Pi(t; )p)

fi(t v)

fi(t; v)
=—u2(t, 0; )p).

To gain insight into the phase-space structure of the
driven dynamics we consider the Wigner transform of
p~, which is defined by

With (51) we find by virtue of Eq. (48) that I"~(Q,p, t)
obeys the Fokker-Planck-like equation

I" IQ, ), )) f&)) (Q —'-, ,=@+'- ') "'"
(51)
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0 E—vt'(Q, p, t)l9t

1 8 2 |9 0——p +mes t y —+p—pm BQ ' Bp Bp

be removed with an environmental cutofF cu, or a non-
factorizing initial state [18].
The variances are obtained accordingly. They are given

by
2~..(&;v) = (f~ — fi)—~.'. + fi—(f2 ——fi) ~.',

02—hD„„(t,0) Bp
x Fvtr(Q, p, t).

02——[D*~(t 0) + D~*(t o)]m 8 Bp

(52)

For high temperatures (T ~ oo) we can calculate the
diffusion coeKcients D„„andD „explicitly because K(s)
takes on the form

1 2 o 2h+ fg o' +—fg ccrc],
o*J(t V) = m f2f2 —2 l fif2+ fif2 — Vfi-fx l

+ (fif-2+ fif2 —pfafi)~.'„
+ fxficr,'p + 2&(fifioi~ + f~cci2),

(59)

(60)
K(s) = h(s), D = kgy T. (53)

They are given as

pDDp ——0 D„p———h (54)

8 1 8 ~ 0
Bt ' ' rn BQ ', BpF~(Q, p—, t) = ——p + m(d (t; p)Q—

Therefore, Eq. (52) for T -+ oo takes on the form of
the classical Fokker—Planck equation that is discussed in
detail in Ref. [20],

op~(t;P) =m*(f, ——f,) a' y2mfi (f~ — f,) o'—p
+f,'cr~„+2&m(2f,'n» + f&cc]2 + cc22) ~ (61)

where we omitted the arguments of the functions
o,,~(t; y), and f, (t; y) for better lucidity We. also used
that aq2(t; p) = a2q (t; &p) and termed the initial variances
at to ——0 as o. , o „,and. o„„,respectively. The expres-
sions containing the initial values describe the transient
behavior and are damped out in the course of time; the
remaining terms contain the long time behavior.

0 8+p—p+ pD Ew (Q, p, t) (55).
Bp Op D. Numerical results

C. Mean values and variances

The expectation value (f(x)) of a variable f, being a
function of the coordinate x alone, is given by

V'(&)) = dQf &(Qf)pIc(Qf &f 0 ~)

f d i dpi f
x J(Qf, qf = o, t[Q;, q;, 0)pn(Q;, ~, , 0). (56)

The first moments read in terms of the initial values
( (to=0 )) =(*) ( (to=0 )) =( o)
(&(&;p)) = [f2(&;p) — fg (&; p)](xp)—+—fy(&; p)(pp),I

(p(t''p))™d(~(t'&))
= m[& (t; V )——&~(t ~)l(») + &i(t; V ) (pp).

(58)
The evolution of (p(t; p)) is discontinuous at tp ——0, i.e. ,
limc~p+ (p(t; p)) = (pp) —m7(xp)/2 is in general not
equal to (pp). This instantaneous jump of (p(t; p)) can

To get explicit results we calculate the variances nu-
merically. For that purpose we insert the functions
Pq (t; p) and $2(t; &p), which we determined via a numer-
ical integration of the differential equation (2) into Eqs.
(59)—(61). The Ohmic damping leads to a clivergence ino„„,just as in the case of a damped harmonic oscillator
[18,21]. We introduce a sharp high-frequency cutoff w, of
the bath frequencies w in the frequency integral of K(t)
(33) to remove this divergence. This is correct as long as
we consider only times that are large compared to u,
A more appealing procedure would be to regularize the
divergent quantities with a high-&equency cutoff in the
spectral density of the heat bath.
The results are plotted in Fig. 3. Figure 3(a) shows

mOo (t; p)/2h for increasing modulation amplitude c.
The initial values of the variances are analogous to that
in Sec. III, i.e. , cr = h/2mrgmp2+ e, o „=0, and
cr„„=hrmgurp + e/2. The c values c = 0, 0.5, 1 lead to
decaying solutions of the damped Mathieu equation, i.e.,
(x(t; y)) ~ 0 as t ~ oo. After a short time, o (t; p)
becomes a constant for c = 0 (dissipative harmonic oscil-
lator), whereas for the other two values of c it becomes
a periodic function that oscillates with the frequency O.
This frequency is not a+ected by the strength of the &ic-
tion p. The amplitude of the oscillations increases with
increasing modulation strenghth e. For e in the unstable
region, the variances, as well as any other moment, be-
come unbounded, as can be seen for e = 2. In Fig. 3(b)
we start with a squeezed state and compare it with the
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FIG. 3. (a) Scaled position variance mQo /2h vs time t
at (up ——1, p = 1, 0 = 2, cu, = 50, p = 0, kaT/hop = 0.1,
and r = 1 for difFerent values of the parametric modulation
The solid line corresponds to e = 0, the dashed line to

e = 0.5, the dotted line to e = 1, and the dot-dashed line to
e = 2. (b) Scaled position variance mBcr /25 vs time t at
mo ——1, p = 1, 0 = 2, cu, = 50, y = 0, and e = 0.1 for varying
squeezing parameters and difFerent initial temperatures of the
bath. The dashed lines correspond to r = 0.1 and the solid
lines to r = 1. For the lines marked with 2, knT/hop = 0.1;
for 1, knT/fuup = 1. (c) Plot of all three variances mOo /2',
cr „/5,and 2o„„/hQmas a function of time t at &up = 1, p = 1,= 2, u, = 50, y = 0, knT/%up ——0.1, and e = 1. The
dashed lines correspond to the equilibrium values at e = 0.

FIG. 4. (a) Phase-averaged coordinate variance mAo '/25
as a function of the modulation e at p = 1, knT/%up ——5,
= 50, and 0 = 2 for two different values of the angular fre-

quency up = 0.2 and up = 1. (b) Phase-averaged coordinate
variance mAo' '/2h, as a function of the modulation e at p = 1,
Mo = 0.2 &

(d& = 50 &
and 0 = 2 for difFerent values of the ini-

tial heat bath. The solid line corresponds to k&T/~p = 0.5,
the dashed line corresponds to knT/Mp = 0.3, and the dot-
ted line corresponds to k~T/Mp = 0.1. (c) Phase-averaged
momentum variance 2o„„'/Mlm as a function of the modu-
lation e at p = 1, uo ——0.2, u = 50, and. 0 = 2 for
difFerent values of the initial heat bath. The solid line cor-
responds to knT/heep ——0.5, the dashed line corresponds
to kaT/hop = 0.3, and the dotted line corresponds to
k~

T/tulip

——0.1.
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nonsqueezed state. As an interesting result we find that
the eKect of initial squeezing relaxes on a fast time scale.
This relaxation time depends only weakly on tempera-
ture, but depends on the strength of the Ohmic &iction
This feature is in accordance with results for the re-

laxation of an initially squeezed state for the damped
quantum oscillator [18]. For reasons of comparison we
depict o (t; p), o„(t.; y), o~„(t;p), and the equilibrium
(e = 0) values m Fig. 3(c).
The minima of the time-periodic variances are smaller

than the respective equilibrium values, which are indi-
cated by dashed lines. Hence, with a stroboscopic mea-
surement, which only probes these minima, this behavior
can be used to reduce the fluctuations in either the mo
mentum or coordinate variable. This feature likely can be
of use in applications that aim at reducing (or enhancing)
the Quctuational properties, such as, e.g. , for e8ectively
lowering the temperature (i.e. , o~„)or diminishing the
spatial width of particle Huctuations.
These calculations of the variances required the knowl-

edge of the initial phase y of the modulation. Since in
an experimental situation, in general, the phase is not
known, we next average over the uniformly distributed
phase y. For t —+ oo this procedure becomes equivalent
to an average over time. The asymptotic (i.e., t m oo)
time-independent phase-averaged values of u and o„„,
i.e., 0 ' and o.pp, are depicted in Fig. 4. We consider only
parameter values that lie within the stable regions of the
parameter space. The behavior of o. ' is not depicted
because it equals zero for all parameter values. It can be
noted from Fig. 4(a) that for positive-valued ego, being
smaller than some threshold value wo 0.5, 0 ' erst de-
creases with increasing e, goes through a minimum, and
then increases again. Above this threshold value, 0
increases monotonically. This typical feature is distinct

from the behavior of a driven harmonic oscillator. De-
creasing the temperature not only reduces o ', but also
changes the form of the function: The minimum disap-
pears with decreasing temperatures of the heat bath, an
effect that can clearly be detected from Fig. 4(b). In clear
contrast to the behavior of the position variance, the cor-
responding phase-averaged momentum variance always
monotonically increases with increasing e; cf. Fig. 4(c).

V. CON CI U SIGNS

In summary, we have studied the mean values and the
temperature-dependent variances for dissipative para-
metric quantum Brownian motion. For Ohmic friction
we give the explicit result for the reduced density matrix
in Sec. IVA. The rate of change of this density matrix, or
its corresponding Wigner representation in phase space,
obeys an exact Fokker-Planck-like equation with time-
dependent drift and di8'usion coeKcients that depend on
the Mathieu solutions for the damped parametric oscil-
lator. The stable variances undergo asymptotic periodic
oscillations with the minima lying below the correspond-
ing equilibrium values for o, o„z,and 0 „,respectively;
cf. Fig. 3(c). This interesting feature may be of use for
applications that are tailored to reduce the influence of
noise on trapped particles.
In presence of Ohmic &iction, the efFect of initial

squeezing of variances decays on a rather rapid time scale;
cf. Fig. 3(b). The time-averaged position variance ex-
hibits a minimum for suKciently high temperatures and
sufBciently small uo. In contrast, the averaged momen-
tum variance is monotonically increasing with strength e
of the parametric modulation.
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