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We study thermally driven escape from a double well over a fluctuating barrier height. The fluctua-
tions of the bistable potential are governed by exponentially correlated Gaussian noise of weak-to-
moderate-to-large noise correlation time 7. Exact results are obtained for the limiting cases of very fast
(7—0) and very slow (7— ) barrier fluctuations. For finite noise color 7, we present approximation
schemes for the stochastic dynamics of nonlinear systems that are driven simultaneously by both a white
noise source and a multiplicative colored noise (colored noise driven parametric stochastic flows). Our
approximative results for arbitrary, but finite noise color 7 become exact for escape in a piecewise para-
bolic bistable potential with a cusp at the transition state.

PACS number(s): 05.40.+j, 82.20.Mj

I. INTRODUCTION

Ever since the pioneering contribution of Svante Ar-
rhenius and Hendrik Antoine Kramers, the problem of
escape from metastable states has become ubiquitous in
almost all scientific areas. A particular interesting
variety of this problem is the transport in complex sys-
tems as it occurs in glasses [1,2] or in biological systems
[3,4], possessing many metastable states. Typically these
complex systems are open systems, being in contact with
one or more fluctuating environments. Then the fluctua-
tions are no longer related to dissipation via a
fluctuation-dissipation theorem of the Einstein-Nyquist
type [5,6] which relates the friction strength to the corre-
lation properties of fluctuations. Clearly, escape from
states of local stability can occur—in the absence of
quantum tunneling—via noise-assisted hopping events
only. For such nonequilibrium systems the problems of
evaluating the escape time thus becomes a daunting prob-
lem, because even the stationary probability generally is
no longer given by the Boltzmann distribution; it must be
determined, instead, self-consistently from the fluctuation
properties. Within this context, an interesting variation
of the common topic of escape from a metastable state
[7,8] arises when the barrier configuration is no longer
static, but is a fluctuating quantity itself [9—12]. Hence,
the topic is closely related to the area of noise-assisted es-
cape in metastable fields in the presence of fluctuating
(i.e., nonquenched) control parameters. This latter theme
was to the authors best knowledge addressed first in Ref.
[12], and pursued further within a different spirit by oth-
ers in Refs. [13-15].

As emphasized by the advocates of Refs. [9-11], the
problem of surmounting fluctuating barriers involves
several relevant time scales. Most importantly, because
stochastic barrier modulations likely are induced by
strong couplings to relevant degrees of freedom of the
system, the fluctuations of the potential landscape may
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vary on a time scale much slower, be comparable, or even
may vary on a much larger scale as compared to the typi-
cal average time scale for local relaxation. The theme is
thus necessarily related in spirit to the area of colored
noise driven escape [16]; an area which by itself has at-
tracted a tremendous amount of activity within the last
decade [17,18]. The previous studies on escape in fluc-
tuating metastable potentials [9—11,12,13] had been sub-
ject to severe limitations: These are either (i) the statistics
of the noise sources is approximated by white Gaussian
noise [9,10,12,13] or by a two-state noise (dichotomic
noise) [11] and/or (ii) the form of the potential has been
restricted [11(a)-(d)] to piecewise linear barriers and
wells.

The objective here is the study of the stochastic dy-
namics of a single relevant degree of freedom which is
driven simultaneously by white Gaussian noise and
colored noise. This situation is generic for a variety of
physical situations. A first example is biological trans-
port (see above) which works in the presence of white
thermal noise and internal, generally correlated random
noise of biological origin, such as, e.g., the hydrolysis
mechanism of adenosine 5'-triphosphate [19] (ATP).
Another physical situation is given in nonlinear optics
such as the dynamics of a dye laser [15,20-23]. In this
latter case colored noise originates from the pump fluc-
tuations while the white noise models the effect of quan-
tum fluctuations. In contrast to the case with a single
colored noise source [16-18,21,24-29] there exist rela-
tively few prior studies [9-13,21(b),22,30-32] wherein
one accounts systematically for the mutual influence of
white and colored noise, driving simultaneously a single
degree of freedom. Indeed, none of the prior approxi-
mate schemes correctly describes a linear dynamics
driven simultaneously by additive white and additive
colored fluctuations of arbitrary correlation time. Thus
the generalization of some previous approximation
schemes to two-noise driven flows presents a challenge.
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With our focus being on two-noise driven transport
over intervening fluctuating barriers we consider the ar-
chetypical situation of a fluctuating Ginzburg-Landau
bistable dynamics, i.e.,

x=ax —bx3+g (x)5(t)+h(x)V2D £(1)

a>0, b>0. (1.1)

Here, £(¢) denotes Gaussian white noise of strength D,
with correlation £(¢)&(s)) =8(t —s) and g(x)&(¢) models
the presence of generally multiplicative colored noise. In
the absence of colored noise and with additive white
noise, i.e., A(x)=1, the flow in (1.1) reduces to the well-
known Smoluchowski dynamics

x=ax—bx>+V2D &(1) (1.2)

for which the escape time T is known exactly up to quad-
ratures [8]. In the limit of weak noise, this escape time
for a particle to leave the metastable state x . =+V'a /b
and to be trapped in the neighboring metastable state
equals the well-known result [33]

771/5 3 b a’
T= +=-— 1.
a 2 g b 4bD (1-3)
with A®=(a?/4b) being the Arrhenius energy (barrier
height).

As a specific situation we shall investigate in this work
the influence of additional parametric noise. In doing so
we let the barrier curvature become a fluctuating quanti-
ty. Following Ref. [12] we set

a—a+§(t), (1.4)

where £(¢) is assumed not to be correlated with the white
noise source £(1); i.e., {£(2)&(s)) =0. The stochastic dy-
namics in (1.3) thus becomes a process driven by two
noise sources, one being additive and one being multipli-
cative, i.e.,

x=ax —bx>+x&(t)+V2D &1) . (1.5)

With a —a +{(¢), the random curvature thus can as-
sume both positive and negative values. Moreover, the
barrier height becomes fluctuating; namely, A® =0, when
a+&(1)<0, and A®={[a+&(t)]>/4b}, when a—+E(r)
>0.

Up to this point, the noise statistics of £(¢) with
(&()) =0 has not been specified. Bearing in mind the
central limit theorem we shall use throughout a Gaussian
statistics for {(¢). For our explicit considerations we use
a Gaussian Markov process, namely, exponentially corre-
lated Gaussian noise with correlation

(E(1)e(s)) = ——exp(—lt——sl/‘r) (1.6)
wherein 7 denotes the noise correlation time. Our fluc-
tuating double-well escape dynamics is then character-
ized by three parameters: The white intensity D, the
colored noise intensity Q, where R =Q /D is held fixed,
but otherwise arbitrary, and the noise correlation time 7.

The findings of our comprehensive study can be sum-
marized as follows.

(i) The dynamics in (1.1) with (1.6) is equivalent to a
two-dimensional Fokker-Planck process. With a general
drift ax —bx3— f(x) the corresponding (Stratonovitch)
Langevin equations read [16]

x=f(x)+g(x)5(t)+h(x
= £+‘/2Q n(t),

)W2D (1),
(1.7)

with {1(2),&(¢)} being independent Gaussian white noise
forces with correlation

(E(DE0)) = {(n()n(0)) =8(z) ,

and (&(#)n(0))=0.

(ii) Limit of white noise sources. With £(¢) being white
noise, (1.7) reduces to a one-dimensional Langevin equa-
tion driven by two white noise sources £(¢) and
&(t)—>V'2Q n(t). Asis well known, the escape time T for
a particle to leave the first metastable state at x _, over-
coming an instable transition state at xy, x _ <xy<x
and being trapped in the adjacent metastable state
x4+ <x_, can then be expressed—via the mean first pas-
sage time TMT (x=x_ —»x=x,)=T(R)—in closed
form in terms of two quadratures [7,8]. With R=Q /D
finite, this white noise driven escape time T (R) at weak
noise D <<1, Q <<1 is always exponentially suppressed
over the escape time in the Smoluchowski limit, see Eq.
(1.3), i.e.,

T(R)Y<XT(R=0)=T . (1.8)

Moreover, the decrease of T(R) is Arrhenius-like and
occurs monotonically with increasing R. Put differently,
in accordance with the previous results in Refs.
[10,12,13] the additional multiplicative noise source
g (x)V'2Q 7(t) assists the Smoluchowski escape dynamics
by enhancing the effective temperature D —D(x) in a
state-dependent way, i.e., if we set h(x)=1,

D—>D(x)=D+gXx) Q=D , (1.9)

which consequently accelerates the escape dynamics.

(iii) Limit of small noise color. With small noise color
7—0 (“pink” noise), a consistent small 7 expansion
around the limit 7=0 leads for the rate of change of the
probability p,(x) to a master equation that contains in
leading order 7 a third-order derivative. That is, con-
trary to common wisdom [23,34], there exists no con-
sistent small-7 effective Fokker-Planck equation govern-
ing the dynamics of a multiplicative noise structure com-
posed of two Gaussian noise sources with one being
colored, cf. (1.5).

The next five points summarize the main results of the
present work.

(iv) We construct novel approximation schemes for the

nonlinear colored noise flow in {1.1) and (1.7). In doing
so, we introduce the auxiliary, nonlinear process
—1
u=5+(f/g) ) (1.10)

which notably depends on the ratio of noise intensities D
and Q. This process is ideally suited to obtain a one-
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dimensional Markov approximation for the asymptotic
long-time properties of the non-Markovian Langevin
equation in (1.1). In particular, we have with # —0 as
7— oo the “large-r approximation”

= fl1—7g(f/g)]
[1+R(g/h)*—7g(f/g)]

+h(x)V2D E(2) , T>>1.

(1.11)

In the opposite limit 7<<1, an adiabatic elimination of
the fast process u yields a new, generalized unified
colored noise approximation (UCNA) [21,28,29,32],
given by the (Stratonovitch) Langevin equation

x=[ry(x,7)] " {f(x)+g(x)V2Q (1)

+h(x)V2D &)}, (1.12)

with the effective friction y(x,7)=y(x,R=Q/D)
defined in (5.3).

(v) These approximation schemes reduce to known re-
sults in the literature [21,28,29,32] in the limit D —0, i.e.,
when R=Q/D— o. We now find that the generalized
potential ®(x,7) governing the exponential behavior of
the stationary probability is exact for the linear case, cf.
(4.1). Moreover, the effective Arrhenius energy for addi-
tive [i.e., g(x)=h(x)=1] colored noise driven escape in
bistable, piecewise parabolic potentials with a cusp at the
transition state x is found to be exact.

(vi) The generalized potential ®(x,7), as well as the es-
cape time itself, become exact in the limit 7=0 and
7— . As a matter of fact the escape time is minimal at
7=0, and monotonically increases, in Arrhenius-like
manner, with increasing noise color towards the 7—
limit, given by the Smoluchowski result in Eq. (1.3), i.e.,

T=T(R,7—>©)=T(R,7)ZT(R,7=0)=T(R) .
(1.13)

(vii) Of special interest are the limiting behaviors at
asymptotic values of the noise color r and/or noise ratio
R. Setting A (x)=1 one finds, for example, that

T(R,7<<1)
T(R,7=0) ,
2
R7? *o gf
= — — dx
€Xp D { fx_f 1+Rg2

+0() (1.14)

is enhanced proportional to 7. This behavior is in agree-
J

plx)= lK X) | exp[ — ®(x)/D]
.z ex f"—————ay“by3 d
(1+Rx2) 2P |Jo D(1+Ry?) Y
_ Z! —1 - b
(1+Rx2)1/2exp 3RD +bx a+R

In(1+Rx?2)

ment with rigorous considerations taken from asymptotic
path integral solutions of non-Markovian flows
[22,32,35-37] when 7—0, with (7/D)>>1. In contrast,
the (ad hoc) truncated Fokker-Planck dynamics at
second order for small 7, cf. (iii), predicts an exponential
growth linear in 7.

(viii) For a constant, T-independent variance (%) =Q,
i.e., Q—Qr, the generalized UCNA in (1.12) still holds
for finite, but small noise color 7<1. In contrast
to the case with constant noise intensity, i.e.,
Q= [2(L()5(0))dt, cof. Eq. (1.6), this now implies that
the Smoluchowski limit is assumed for +=0, i.e.,
T(R—R7,7=0)=T. Our generalized UCNA predicts
in this case an effective Arrhenius energy A®(R —RT,7)
which decreases for increasing, small noise color, i.e.,

ADP(RT,7)<AP(r=0) as 7]0. (1.15)

This fact is in accordance with very recent findings for
the mean first passage time over fluctuating barriers
[11(6), 11(g)].

II. FLUCTUATING DOUBLE WELL:
LIMIT OF WHITE NOISE

We begin by elaborating in greater detail the case first
discussed in Ref. [12]: the white noise driven overdamped
parametric oscillator in (1.5). With 7—0, we find from
(1.6) that

1iné(§(t)§<s)>=2ga(r—s) .

By use of the Stratonovitch interpretation for the sto-
chastic differential equation in (1.5) we obtain a Fokker-
Planck dynamics for the single event probability density
p:(x), reading

9 G
pt=—-(,;{(ax—bx3+QX)Pt}+Dg€7{(l+Rx2)P‘} :

2.1)

By use of the dimensionless variables x —x (b/a)'’?,
t—at, D—Db/a? and Q—Q/a, Eq. (2.1) could be
brought into a dimensionless form with a=b=1. We
prefer, however, to stick to parameters carrying a dimen-
sion in order to exhibit explicitly the dependence on the
potential parameters, and—most importantly—for use-
ful (dimensional) checks of cumbersome calculations, e.g.,
see Eq. (2.9).

As is well known, the stationary probability p (x) can
readily be evaluated in terms of a generalized potential
®(x) and a prefactor K(x), i.e.,

] > (2.2)
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where Z ~! is the normalization constant. We shall al-
ways assume that p (x) is truly bistable; i.e., p"’(x _) <0,
p"(x4)<0, and p"'(xy)>0. This implies the restriction
Q=RD <a; or R<a/D. With D-—0, the ratio
R =Q /D stays finite when Q —0. With ®'(x)=0 at the
stable states x =x, =1V'a /b, and at the unstable state
x,=0, the extrema of ®(x) coincide with the determinis-
tic steady states [38].

In passing, we note that in the absence of additive
noise, i.e., D=0, the above model can be solved for its
dynamics exactly (‘“Schenzle-Brand” model [20]): Its
spectrum consists of a finite number of discrete eigenval-
ues and a continuum part. With D =0, it belongs to the
class of generalized Verhulst models, studied extensively
in the literature in the context of “noise-induced transi-
tion phenomena” [39,40].

Our prime concern is the study of the escape time
T(R). An escape occurs only for D >0. The mean first
passage time (MFPT) to reach the state x . =+Va/b,
when a random walker originally started out at
x_=—Va/b,is given by the two quadratures [8]

T(R): TMFPT(X__ —X 4 )
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With (2.2) the escape time has the structure

T(R)=D_1f:+dx H,(x)exp %
ij dy H,(y)exp _<I>_(Dy)_ (2.4)

In our case we have H(x)=H,(x)=K(x).

For weak noise D <<1, this expression can be evalu-
ated within the steepest descent approximation. By use
of the formula, where (a,8,y7)x<1/D, a>>1,

fw dx exp( —ax?+Bx3+yx*)
sz (14Bx3+yx*+ 182 ®)exp( —ax?)dx

172 3 15 g2
1+> L4 22
42 16 &

, (2.5)

m
a

the result for T'(R)—up to order O (D?)—is explicitly

<Dnll(x_ )
[@"(xy)?  [®"(x_)]?

1 q)rln(xo)
8

(2.6)

i r* dx x
=p!f " —2 (p)dy . (2.3)
fxf (1+Rx2)p(x)f—wpy Y given by
J
T(R) (A®/D) 2mH ((xy)H,(x _)
=ex
p [|(I)”(XO)|¢”(X_)]1/2
x |1+D |+ HI"(X,?) le,(x:)
2 Hl(x0)|¢ (xO)I Hz(x_.)(b (x_)
1| Hixg)®"(xo) | Hylx )®"(x_)
2 | H (xg)|®"(x0)I>  Hy(x_)[®"(x_)]?
i (q)lu(xo))2 [(I)”I(X_ )]2
24 lq)”(xo)|3 [<I>”(x_)]3

This explicit steepest descent result for Eq. (2.4)—valid
for multiplicative noise—will prove useful throughout
the remainder of this work. With H,(x)=H,(x)=const,
the first and third contributions inside the square bracket,
multiplied by D, vanish and the result in Eq. (2.6) reduces
to the well-known expression for the Smoluchowski es-
cape time, corrected for first-order temperature effects
[41]; see (1.3).
The Arrhenius energy A® is evaluated to read

Va/b ay —by?
AD(R)= —=———q
J, (1+Ry>) ™
_ b a
=(2R) '{—a+ — |In [1+R—
(2R) a a-+ R n|l Rb |
<AD(R=0). 2.7)

In agreement with Ref. [12], the escape time is always ex-
ponentially reduced over the case T(R=0), i.e.,

T(R=0)>T(RF0).
A®D(R) approaches

For R—0 the barrier height

1 _a

2
A¢(R)=L[1—§R—+0(R2) , R>0. (2.8)

4b b

From (2.7) it also follows that A®(R) monotonically de-
creases with increasing R. The escape T (R) itself follows
from (2.6), including the correction of order D, as

T(R)= TV2 AD(R)
a D
Db -
a
X {1+ |— | |[1+R—
[ a? b
3 17 2
a a
=~ —+— [R— . 2.9
X 2+3Rb+12 Rb } (2.9)
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III. FLUCTUATING DOUBLE WELL: LIMIT OF
SMALL NOISE CORRELATION TIME

With a good understanding of our model in the limit of
white driving noise forces we are courageous enough to
engage with the more realistic situation of colored pa-
rameter fluctuations £(¢). Our objective is to investigate
the influence of colored noise for the barrier fluctuations
in analytical terms. This task, however, encounters a ma-
jor difficulty, namely, the problem of a nonlinear stochas-
tic flow which is non-Markovian. Here, we shall focus
first on the behavior of escape in the presence of fluctuat-
ing potential barriers near the limit of white noise. With
exponentially correlated Gaussian noise in mind we shall
treat Eq. (1.5) in the limit of small noise color, i.e.,
at<<1. The authors have not been able to obtain analyt-
ical results for the escape time of the corresponding two-
dimensional Markovian flow in (1.7), which clearly does
not obey detailed balance. To make some progress we in-
voke an approximation scheme. With our interest being
in finding analytical approximations for the escape time
we seek an approximation procedure which reduces to a
one-dimensional, effective Fokker-Planck equation.

To start, let us imagine that the additive white noise
&(t) is switched ‘“‘off.”” Then we deal with a one-
dimensional, multiplicative colored noise flow for which
one can construct an effective Fokker-Planck equation by
expanding the functional derivative 8x (¢)/84(s) around
the white noise limit [16,24,26-28,30,31,42,43], i.e., for

D=0 the rate of change of the probability
p(x;D=0;t)=p(x,t) reads
~__ 0 3 275
p,—-—a:{[ax—bx +0Ox(1—27bx°)]p,}
o 2 2)15
—+-Qa—7{[x (1—27bx°)1p,} - (3.1)
x

Switching back ‘“on” the neglected white noise £(¢) we
thus obtain an approximation for the rate of change of
the probability p, reading [23,34]

p,=—%{[ax—bx3+Qx(1—2Tbx2)]p,]

2
+Daa—{[l+Rx (1—27bx2)1p,} . 3.2)
X

With (3.2) we can evaluate the escape time just as with
the white noise case in Sec. II. The result reads in lead-
ing order

- S R
T(R,r)=~ Texp [2Rb7 [ """ rdy
0 [1+Ry*(1—27by*)]
AD(R,T)
X —_— 3.
exp D , (3.3)

with an effective Arrhenius factor

ay —by*
dy . (3.4
1+ Ry2(1—27bp2)]

With a7 << 1, this reduces to

AD(R,T)= fO\/a/b :

Va/b
A®(R, 7)=AB(R)+27bR [ ”’%}-’;}—’—)}2—
y

ZAP(R,7=0) . (3.5)

Here, the second contribution in Eq. (3.5) yields a posi-
tive value. Thus we find that the escape time exponen-
tially increases with increasing correlation time propor-
tional to 7, i.e., we have

T(R,7)>T(R,7=0), (3.6)

with the increase being Arrhenius-like.

The above analysis is just fine if we had not made a
mistake: We obtained (3.2) within a two-step procedure
with the white noise first switched off—and then
switched on again. The simultaneous presence of the two
Gaussian noise sources, however, with differing correla-
tion time (i.e., T¢=T Versus 7-€=0) adds additional contri-
butions to the rate of change of p, [30,31]. Following the
reasoning of Dekker [31] we find that (3.2) becomes aug-
mented by a non-Fokker-Planck contribution [16,30,31],
i.e., a third-order term in (38/9, ), which in our case, see
Ref. [44], is explicitly evaluated as

2
270D [%x—a@;pt } . (3.7)

It explicitly involves the product QD, thereby reducing to
(3.1) for D =0. Hence the result in (3.3) cannot be trusted
quantitatively. The general conclusion, however, that
colored noise increases the escape time with increasing
noise color should not be affected by the non-Fokker-
Planck contribution: This conclusion is consistent with
the result of mean-field decoupling theory [25], predicting
that the effective colored diffusion D, <D(zero color)
[25-27]; whence slowing down the escape dynamics.

Before we proceed we emphasize that the leading con-
tribution in (3.7) rules out the construction of a consistent
effective Fokker-Planck equation, as presented with (3.2);
a fact which is not sufficiently appreciated in the litera-
ture [23,34]. Hence, use of (3.2)—although appealing—
can generally be justified only a posteriori.

IV. TWO-NOISE DRIVEN LINEAR FLOW

Before we elucidate the approximation schemes for ar-
bitrary noise color we investigate the exactly solvable
linear colored noise flow

% =—ax+E1)+V2D &1) . @.1)

This linear flow follows by setting » =0 in (1.5), and using
a stable parabolic potential a — —a <0. The correspond-
ing two-dimensional Markovian flow, i.e.,

x=—ax+&()+V2D &(r)

(4.2)
§ g—+ sz —=n(t),

presents a two-dimensional Gauss-Markov process. Its
exact stationary probability is a Gaussian, reading
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2
p(x,§)=Z_1exp(ky2)exp( a— % xZ], (4.3a)
where

_ B _ —ax

Yt o T T b0 ) .30
and

a=—%(a+7'-1)[3,

B=a(a+7 H[Da+r"1)2+Q7r 2], (4.3¢)

_ T -1 -1 -2

A= 2QaB[T D(a+77)+7°Q].

Integrating over ¢ yields the exact, colored noise depen-
dent stationary probability for x, i.e.,

2r{D(1+1a)+Q} |
a(l+ra)

172

plx,7)=

Xexp (4.4)

2[D(1+71a)+Q]

—x%a(1+7a) ]

We note from (4.3a) that the pair (x,§) is correlated. In
distinct contrast, the transformed process (x,{)—(x,y) is
correlation free. As demonstrated previously [28], the
choice of the correlation-free process is a necessary prere-
quisite to approximate accurately the stationary probabil-
ity of a higher-dimensional Markovian flow—via an adi-
abatic elimination—by a reduced one-dimensional Mar-
kovian flow. In the next section we seek a colored noise
approximation scheme which correctly reproduces the
stationary probability in (4.4). This constitutes a truly
nontrivial task: All of the presently available colored
noise approximation procedures such as the small-7
theories [24-27,30,31,42—44], the decoupling theory [25],
the unified colored noise scheme in Ref. [21(b)], or pertur-
bative path-integral studies at small noise color [22,32]
fail to reproduce the exact result in (4.4) for this two-
noise driven linear case.

V. MARKOV APPROXIMATION FOR
PARAMETRICALLY DRIVEN COLORED
NOISE FLOWS

As made obvious within the study of the white noise
limit in Sec. II and the small-7 limit in Sec. III the ex-
ponential leading part of the escape time at weak noise is
dominantly ruled by the generalized potential ®(x,7) of
the stationary probability

p(x,7)=K(x,7)exp[ —®(x,7)/D] .

Our main focus thus will consist in seeking an approxi-
mation for the long-time dynamics of the nonlinear one-
dimensional non-Markovian process in Eq. (1.1), or
equivalently the long-time dynamics of the enlarged two-
dimensional Markov dynamics in Eq. (1.7). In doing so
we seek a one-dimensional Markov process whose sta-
tionary long-time properties, such as the generalized po-
tential (but not necessarily its short-time dynamics), is

close to the long-time properties of the original non-
Markovian process. We start from the general, two-
dimensional (Stratonovitch) stochastic differential equa-
tion in (1.7). We next introduce the auxiliary nonlinear
process u(?), defined by

=+ (f/g) 5.1

1+(Dh2/Qg¥)[1—1g(f/g)']

Here the prime denotes a differentiation after x. With
additive colored noise, i.e., & (x)=g (x)=1, this process u
coincides for f (x)= —ax with the uncorrelated process y
introduced in (4.3b). Moreover, setting D =0, the process
u(t) yields the previously established unified colored
noise approximation for colored noise driven one-
dimensional stochastic flows [21,28,29,32]. The depen-
dence on the multiplicative noise functions g (x) and A (x)
for the auxiliary process #(t) in (5.1) is fixed uniquely by
noting that a nonlinear transformation of the linear pro-
cess x (¢) in Sec. IV, i.e., x(t)—F(x (t)) yields a (Strato-
novitch) Langevin equation with multiplicative noise
sources whose exact stationary probability coincides with
the correspondingly transformed stationary probability.
It is remarkable, however, that with D70 the auxiliary
process u(t) depends on the noise intensities D and Q.
After a lengthy but straightforward calculation we can
recast the two-dimensional flow in Eq. (1.7) as

(1

X =gu ——;—A)g(f/g)+h(x)1/55§ , (5.2a)
where
2
a=1+ |2 li—rg(rrer | (5.2b)
and an exact Langevin equation for 4, i.e.,
ii=¢+ —(f;g) %
=—‘}/(x,'r)12+~—(f/g) T 4+g(1—A4) 1/8) ]
A A
+‘/%Qn+ f—gg h(x)VIDE . (5.2)

Note that (5.2c¢) is linear in #. This feature is nontrivial
and results solely due to the ingenious choice for the aux-
iliary process # in (5.1) The effective friction y(x,7) is

given as
/4.

(5.3)

2
1+20 i rarsa

y(x,7)= {[T“—g(f/g)’]

The form of this effective friction for the case of a fluc-
tuating double well, cf. Eq. (1.5), is depicted in Fig. 1 for
7=0.1 and 1. We note that y(x,7) is of order 7 !
throughout the bistable region. Without loss of generali-
ty, we use in the following—for the sake of simplicity
only —additive white noise, i.e., we set A (x)=1.
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FIG. 1. The effective friction for the fluctuating double well
in Eq. (1.5) with a=b=1 is depicted for different noise ratios
R=Q/D. In (a) we use 7=0.1 while in (b) we have 7=1. The
solid line refers to R =0.1, the dashed line to R =1, and the
dotted line to R =10.

A. Markovian approximation for large noise color

For large noise color 7>>1, the process u(t) ap-
proaches £(¢). With £(¢) given in Eq. (1.6), the integrated
noise correlation

=0)=22 [ exp(— -
Slo=0)==% [ “exp(—1/7)dt =20 (5.4)

remains a constant, and {{*) approaches zero propor-
tionally to 7~ 1. Therefore, with #(z)—0 as 7— 0, we
find from (5.2a) and (5.2b) the large-r Markov approxi-
mation, reading

= 1—1g(f/g)
[1+Rg>—7g(f/g)]

With A (x) not a constant, the corresponding result reads
asin (1.11).
The stationary probability is readily evaluated, i.e.,

p(x,7)=Z lexp[—®,(x,7) /D], (5.6)

+VID (1) . (5.5)

with the generalized potential for large (L) noise color
given by

= x fl1—7g(f/g)]
O (x,7)=— dy . 5.7
Lon== 1+Rg>—g(f /gy~ G

For the stochastic differential equation (SDE) in Eq. (5.5),
the escape time T'(x _ —x ) is given by the MFPT
*+ dx

T(R,7)=D"!
x_ p(x,7)

[ pmdy, (5.8)

with p (x,7) given in (5.6). For weak noise D << 1, this es-
cape time is up to order O (D) evaluated as

21
[|®}(xo;R,7)|®} (x_,R,7)]'?

Xexp(A®,(R,7)/D) , (5.9)

T(R,7>1)=

with the (effective) Arrhenius energy given by

Yo fl1—7g(f/g)]
x_ 14+Rg*>—7g(f/g)

Next we discuss exactly solvably limits. (i) For a linear
flow with f(x)=—ax and g(x)=const, the stationary
probability in Egs. (5.6) and (5.7) coincides precisely with
the exact result in (4.4). (ii) For 7— o, the above results
smoothly converge to the Smoluchowski limit in Eq.
(1.3), being consistent with the SDE in (5.5), when 7— oo.
(iii) For R —0, i.e., @ —0, one again recovers the correct
Smoluchowski behavior in (1.2). (iv) With D =0, i.e.,
R — o0, the generalized potential in (5.6) and (5.7) coin-
cides with the UCNA theory elucidated previously by
several authors [21,28,29,32].

Finally we find that with —g(f /g)’ =0 within [x _,x]
the Arrhenius energy obeys

AD(R=0)ZAdD,(R,7)Z AP, (R,7=0),

A®, (R, 7)=— (5.10)

(5.11)

which monotonically increases with increasing noise
color 7  towards the Smoluchowski result
A®(R =0)=a?/4b, cf. (1.3).

Although the approximation for large noise color
7>>1 in (5.5)—(5.7) yields the exact result for the general-
ized potential of the stationary probability (but not its
prefactor) even for the case 7=0-—and thus naturally
bridges the result from 7=0 up to 7— co —the approxi-
mation is not expected to represent accurate results for
very small 7 values, where % (#)70. Hence we shall study
the behavior at small noise color separately.

B. Markovian approximation for small noise color

Starting from the exact dynamics in (5.2) we observe
that the effective friction y(x,7) in (5.3) approaches very
large values as 7—0. With the new time t—t/V'T we
adiabatically eliminate (i.e., we set ii =0) the fast process
u(2) in (5.2¢) in regions of x values that guarantee a posi-
tive effective friction; i.e., in regimes of x values where
[1—7g(f/g)']>0. Solving from (5.2c) for the stationary
process u(t) and substituting this adiabatic approxima-
tion into (5.2a) yields a one-dimensional Markovian
description for the non-Markovian flow in (1.1) with a
general drift f(x). The resulting (Stratonovitch) SDE is
evaluated to read

[f (x)+V20g (x)n(t)+ V2D &), (5.12)

S
Tv(x,7)

with its straightforward generalization for nonconstant
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h(x) given in (1.12).
Its stationary probability at small (S) noise color 7<1
is readily evaluated, i.e.,

where

D g(x,7)=D[1+Rg*x)]/[y(x,7)]* . (5.14)
Z—l
’ = - ’ D > 5.13
P |D gl x,7)[1/2 expl stx7)/D] .13 The generalized potential is given by
J
os(x,=— [FLU=BU/8V]dy [*Re (= (2g' /g)+7lg'(f /) —g(/ /g)"1ldy (5.150)
o 1+Rg>—7g(f/g) 0 (1+Rg*—7g(f/8))*(1+Rg?)
=P, (x,7)+Pyx, 7) =P (x,7)+Dy(x,7) , (5.15b)

where ®,(x,7) is given by the second contribution on the
right-hand side r.h.s. of (5.15a). From (5.15a) and (5.15b)
we observe that ®(x,7) coincides precisely with the gen-
eralized potential of the large-r approximation in Eq.
(5.7). The contribution ®,(x,7) vanishes for 7=0.

The properties of this adiabatic approximation are as
follows. (i) With 7—0, we recover of course the correct
white noise limit in Sec. II. (ii) For a linear flow we find
that ®,(x,7) vanishes identically, i.e., p(x,7) yields again
the exact result in Eq. (4.4). (iii) Setting R =0, we again
find the correct white noise (Smoluchowski) limit. In par-
ticular, ®,(x,7;R =0) does not depend on noise color
7—as indeed should be the case. (iv) With D =0, we re-
cover the UCNA theory [28,21,29,32].

Next we compare this small noise color approximation
for the stationary dynamics with the small-r approxima-
tion put forward in Sec. III. In doing so we shall concen-
trate on the Arrhenius energy

AD(R,T)=Dg(xy,T)—Pg(x_,7) . (5.16)
From (5.15a) one finds to lowest order in 7
ADs(R,7)=AB(R,7=0)+ ¢ [ S

- | (1+Rg?)
+0(7) (5.17)
which with f(x,)= f(x _)=0 results in

ADg(R,7)=AD(R,7=0)+0(7%) . (5.18)

This behavior differs from the small-7 theory in Eq. (3.5).
Which result is more accurate? The systematic adiabatic
approach is certainly more convincing in obtaining a
good approximation for the generalized potential, since it
does not involve the procedure of neglecting in an ad hoc
manner the non-Fokker-Planck contribution in Eq. (3.7).
Interestingly enough, however, the contribution in Eq.
(3.5) being proportional to 7 coincides precisely with the
linear contribution of A®(R,7). This latter contribution
is exactly canceled by the linear contribution stemming
from A®,(R, 7).

This result that the small-7 correction for the effective
Arrhenius energy A®g(R,7) starts with 72 rather than
with 7 can be rigorously proved by studying the Ar-
rhenius energy as follows from a study of the correspond-
ing path-integral expression for the stationary probability

r

[22,32,35-37]: Expanding the action around the 7=0
solution—in the limit 7—0, but with (7/D)— 0 —
indeed yields for the action between two fixed points
f(x_)=f(xq)=0 a contribution starting proportional
to 72 [22] rather than proportional to 7.

Before proceeding let us look in closer detail at the
contribution O(7?) Setting g(x)=1, the 72 contribution
follows from ®¢(x,7) as

I %

o<72>———— Fody+ [ Cfifrdy

(5.19a)

= )'d (5.190b)
(1+R)3 f STy

With x, a fixed point, i.e., f(x_)=f(x,)=0, one finds

for the Arrhenius energy, after a partial integration,

AD(R,7)=AD(R,7=0)— —— (1+R ; I fUy

(5.20)

with the correction being positive valued. We observe
that the O(7?) contribution in Eq. (5.20) coincides pre-
cisely with the negative of the first contribution in Eq.
(5.19a), stemming from ®(x,7). Note that for a linear
flow with f'"(x)=0 the 7° contribution in Eq. (5.19) is
determined solely by the—in this case fully exact—first
contribution in Eq. (5.19a). In contrast to the case with
two fixed points, the effective Arrhenius energy A®(R,7)
starts in this case, however, proportional to 7, cf. Eq.
(5.17).

Yet another crucial test for our theory is provided by
the bistable potential U(x) composed of piecewise para-
bolic wells with a cusp at x =x,. With x_ =0, x, =2,
and xy =1 we set

Ex , x =1
Uux)=1, (5.21a)
—(x—2)?, x>1
2
With g (x)=1 we find for arbitrary noise color 7
_ _a(l+ra)/2
AD5(R,7)=AD (R, )= TS (5.21b)



This result fully agrees with the exact result derived re-
cently by Reimann [45].

VI. ESCAPE IN A FLUCTUATING DOUBLE WELL

The general theory of Sec. V is next applied to the ar-
chetype flow of a fluctuating double well in Eq. (1.5).

A. Deterministic dynamics

With (1.5) the deterministic dynamics follows from the
SDE in Eq. (1.7) by setting Q =D =0, i.e.,

(a)

d .x,m .............. ﬁfﬁK;,

¢

=) =
P
S

-2 -1 ) 1 2
xr
2 o
(b)
1
\»r o
-1 RS
-2
-1 0 1 2
X
2
(e)

-1 ] 1 2

x

FIG. 2. Deterministic trajectories of the system in Eq. (6.1)
written with the dimensionless variables, i.e., x —(b/a)!/%x,
t—&/a, t—at, T—ar, so that x=x—x3+x¢, (=—¢/7
(a)—(c) are for different strengths of noise color: (a) 7=0.1, (b)
7=1, and (c) 7=15. The dotted curve gives the line of turning
points y (x)= —1+x? in Eq. (6.3), where (d{/dx)= .
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X =ax —bx3+x¢,
(6.1

=76
T

In Figs. 2(a)-2(c) we depict this deterministic dynamics
for various values of the noise color 7. With
gx)=x=—g(—x), f(x)=ax—bx*=—f(—x), the
flow obviously exhibits a reflection symmetry about the §
axis. Thus the separatrix is given by the line x =0. The
flow lines exhibit turning points characterized by
d§/dx = . Setting

das
dt

1

dx
¢

. _dx dx
d¢ d¢

the sequence of turning points d§/dx = « (or dx /d{=0)
from a curve s (x), i.e.,

s(x)=—a+bx?. (6.3)

’ (6.2)

Most importantly we note that the stochastic dynamics in
the absence of white noise £(¢) (i.e., D =0) cannot cross
the separatrix line x =0; i.e., no escape from x _ —x |
(and vice versa) can occur. This is so because the 7(¢)
fluctuations are acting solely along the § axis.

B. Generalized potential

The stationary probability follows for large 7 directly
from Eq. (5.5) where the diffusion is constant. For small
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i
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FIG. 3. The normalized effective diffusion D.z(x,7)/D Eq.
(6.4) with a=b=1 is depicted for 7=0.1 (a) and 7=1 (b), and
different noise ratios R =0.1 (solid), R =1 (dashed), and R =10
(dotted).
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noise color the corresponding (Stratonovitch) SDE in Eq.
(5.12) has a state-dependent diffusion, cf. Eq. (5.14), i.e.
with R =Q/D and —g(f /g)'=2b7x2> 0 one finds

D 4(x,7)=D(1 +RxH)[ry(x;7,R)] 2

(14+27bx2)(1+Rx?)

=D (1+Rx?)
[14+(R +27b)x?]

. 27Rx%(a —bx?)
[1-++(R +27b)x2)?

(6.4)
|
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obeying D +(x =0,7)/D =1.

The condition [27h +R (1—a7)] =0 yields a sufficient
criterion for the bracket in (6.4) to assume finite, strictly
positive values for all x values. This latter condition
guarantees the positivity of the effective friction y(x,7)
used within the adiabatic elimination procedure, cf. Fig.
1. With a7 <1, it is obeyed for all values of R. Hence
the effective diffusion in (6.4) is positive, and finite, over
the whole bistable region [x_,x,], x,.=+Va/b, cf.
Fig. 3.

For the fluctuating double well the generalized poten-
tials ®; (x,7) and ®g4(x,7) can be expressed in analytical
closed form. For example, one finds

x4rb?

_b_>2rb+(Q2ra—1)(R +27b)
2 (R +27b)?
1

P, (x,7)=P(x,7)=

——————[a(R+27b)*—b(2a7—1)(R +27b)—27b*]In[1+x %R +27b)] .

2(R +27b)?

2(R +27b)

(6.5)

Of practical interest is the effective Arrhenius energy A®(R,7)=P(x,,7)—P(x_,7). In terms of Z=(a/b)R +2ar

one obtains, cf. Fig. 4,

aZ
A(DL(R,T):A(I)](R,T):—

2a7+ZQ2ar—1) _ar Z*—(2ar—1)Z—2ar

25 P 7 7 In(14+2Z)
Vazb (ax —bx)x*
=A®(R,7=0)+2rRb [P IETIXN 4 (22 (6.6)
0 (1+Rx)
and
3 3__ 2 _
ADL(R,7)=Ad, (R, 1)+ 2 Ig (1+ZZ) _ 2;1: _ (Z3—2ZaR/b+4Z 3+3z 2aR/b) ;14 )
2b z Z'R 2a7Z
[14+(a/b)R]? a
+A2220 ] i [1+ 2R 6.7
2a7(Ra/b)? " b (6.72)
=AP(R,7=0)+0X7+0(7) . (6.7b)
0.3 T L1 T 0.19322 T T T T T T T T
o= 000000000000
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FIG. 4. The effective Arrhenius energy A®,(R,7) with
a=b=1 is depicted for different values of R =0.1 (solid), R =1
(dashed), and R =10 (dotted). Note that the Arrhenius energy
monotonically rises towards the limiting Smoluchowski value
A®;=1asrt— .
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T

FIG. 5. The exponential part of the escape time is governed
at small noise color by the effective Arrhenius energy Adg in
Eq. (6.7). Using a=b=1 and a noise ratio R =1 the effective
Arrhenius energy A®g clearly depicts initial quadratic growth
with increasing noise color 7.
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The behavior of Eq. (6.7) versus small noise color 7 is de-
picted in Fig. 5.

The fact that the potential ®;(x,7) approaches the
correct limit at both 7=0 and 7— o allows one to con-
struct a smooth crossover approach. From the limiting
behavior of the diffusion coefficient D 4(x,7) in Eq. (5.5)
and Eq. (6.4), respectively, i.e.,

D if R—0,
D g(x,7)= {D(1+x?R) if 7—0, (6.8)
D ifr—>w ,

we set for the crossover theory the (Stratonovitch) SDE
% =ax—bx*+V2D(x,7)E) , (6.9)
where

D(x,7)=D (1+Rx2+27bx2)/(1+27bx?) . (6.10)

The choice in Eq. (6.10) yields the correct limiting
diffusive behavior in Eq. (6.8). Moreover, with the gen-
eralized potential being ®(x,7)=®,(x,7), the limiting
behaviors for 7— « and 7=0 agree as well.

C. Escape times

The crossover theory in Eq. (6.9) incorporates both the
correct large-r behavior in Sec. VA and the correct
behavior in Sec. VB for 7=0. With the effective one-
dimensional Markov approximation in hand, the escape
time follows via Eq. (2.4) in terms of two quadratures.
The results of the crossover theory in (6.9), together with
the limiting approximations derived in Eq. (5.5) (large 7),
and in Eq. (5.12) (small 7), are depicted in Fig. 6. We find
that the exact limiting behaviors for a7 <<1, and 7>>1
are correctly reproduced by the crossover theory and by
the corresponding colored noise approximation schemes.
In agreement with theory, the escape time is maximal for
7— o0, approaching the Smoluchowski limit, and mono-
tonically decreases with decreasing noise color 7 towards
the corresponding limit given by T(R,7=0)=T(R). Put
differently, for all fixed R values the escape time T(R,T)
increases monotonically with increasing noise color to the
maximal Smoluchowski result in Eq. (1.3). The behavior
at small noise color has been discussed already from a
general viewpoint in Sec. V: With weak noise D, the
behavior is controlled by the Arrhenius energy which in-
creases proportionally to 2. Because our approximation
schemes are guaranteed to be accurate to leading ex-
ponential order only, the dependence on noise color for
prefactors cannot be trusted.

Of special interest are the limiting (exponential)
behaviors for which the colored noise approximation
schemes assume most accurate results. For example, the
approach towards the limiting large-r Smoluchowski re-
sult is evaluated as
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FIG. 6. The ratio of the numerically evaluated [see the quad-
rature formula in Eq. (2.4)] escape times T(R,7)/7, with
T=T(R =0) being the Smoluchowski value, is depicted versus
inverse noise color 7 for different noise ratios R =0.1 (a), R=1
(b), and R =10 (c). The results are depicted for the fluctuating
double well in Eq. (1.5) with a=5b=1 for a dimensionless noise
strength D =0.02; implying for the Smoluchowski escape time
the value T=1.23 10° sec. The dotted line depicts the cross-
over theory in Eq. (6.9), the dashed line equals the small =
theory in Eq. (5.12), and the large noise color approximation in
Eq. (5.5) is shown by the solid line.
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1+ R In(at)
b

R -2
+ ¥ +0(r7%)

(6.11)

The behaviors for D —0, i.e., R — oo, are calculated to
read

(6.12)

i

. a’b
T(R —,at<1)=T(R)exp {—

~——+O0(R7?)

0 | 3R

being in accordance with the general behavior in (5.18)
For large but finite noise color a7> 1, one finds instead

T(R—,ar>1)

T

2
=T (R)exp [— a4

ab
5 + R [3—ar—21n(aR /b)]

Q

+O(R"2ZR™nR) | | . (6.13)

This latter result in Eq. (6.13) has a nice physical explana-
tion. With R — o and ar>>1 the fluctuations for x and
§ are small, and the stochastic dynamics follows closely
the deterministic flow lines, cf. Fig. 2(c). The escape
thus takes place along the curve of turning points s (x) in
(6.3), bringing the random walker close to the point
(x =0,{=—a). A small noise intensity D then kicks the
walker across the separatrix x =0, near {= —a. With the
stationary probability p({) obeying

p(&)=(7/2mQ) ?exp[ —7£%/20Q] ,

the escape time to reach {= —a, when started out at
((=0,x=—Va/b ), is thus dominated by the Arrhenius
energy 1/p({= —a). Thus the escape time

2

20

being in agreement with (6.13).

T(R— w,a7>1)xexp , (6.14)

VII. CONCLUSIONS

In this work we have investigated by analytical means
bistable stochastic flows that are driven by white and

simultaneously by multiplicative, colored noise. The re-
sults have been applied to the archetype model of a white
noise driven Landau-Ginzburg model (symmetric double
well) with a stochastically varying barrier curvature. Our
findings have been summarized already in the introduc-
tion. One of our prime findings is certainly that use of
the refined nonlinear process #(¢) in Eq. (5.1) leads to
different Markovian approximation schemes for the sta-
tionary properties of colored noise driven flows. In doing
so, we have generalized the commonly used UCNA
theory [21,28,29,32] for situations with two noise sources
acting.

This Markov approximation yields exact results for
parabolic potentials for all values of the noise correlation
time 7. The conventional UCNA theory is recovered
from our theory if D —0, i.e., R— . Upon inspecting
the smooth crossover results in Fig. 6 we surmise that our
approximation also yields reliable estimates for moderate
noise color a7~ O (1), i.e., also in regimes away from the
exact limiting behaviors as 7—0 and 7— c. With the
exception of the case with a parabolic potential, there ex-
ists presently no effective Markovian approximation
yielding the exact non-Markovian barrier height govern-
ing the exponential leading part of the escape time. Nev-
ertheless we have good confidence in the above conjec-
ture. This conjecture obtains support by noting that a
nonzero noise intensity D >0 acts in a “stabilizing” way
in the sense that the effective friction and/or the effective
diffusion in Egs. (5.5), (6.4), and (6.10) does not attain a
singular behavior within regions of local instability. Our
study in Fig. 6 for the escape time in a fluctuating double
well has motivated others to test the accuracy of our re-
sults for moderate noise color values by means of analog
simulations [46]; their preliminary experimental results
show good agreement with our analytical theory. Not-
ably, there are numerous other contexts for which our re-
sults are of relevance. Some are in the limelight of
present research activities, such as the description of
directed transport in Brownian ratchets [19] and two-
noise driven nonlinear optical systems [15,21(b),23].
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