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Surmounting a fluctuating double well: A numerical study
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For a system which is simultaneously driven by both ~hite and colored noise, we present results for the
stationary probability and the smallest eigenvalue, which are calculated numerically for the exact non-
Markovian dynamics. By use of the method of matrix continued fractions we study the stochastic motion in a
symmetric double well where the barrier height fluctuates due to colored noise. Our findings can be invoked as
a benchmark in testing present and future approximate theories for such two-noise driven systems.
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The study of dynamical systems perturbed by noise
sources is of wide-ranging significance to the detailed under-
standing of transport coefficients and the characterization of
nonlinear phenomena. In this context, the effects of nonwhite
noise sources (i.e., colored noise) has attracted a great deal of
interest in recent years [1].The objective here is the study of
a class of stochastic systems that are characterized by the fact
that two noise sources act simultaneously on the system dy-
namics. We shall assume that —apart from thermal noise—
additional colored noise (being either of intrinsic or external
origin) perturbs the system dynamics. This renders the theo-
retical analysis rather complex due to the inherent non-
Markovian nature of the problem. Due to this non-
Markovian character the majority of authors restricted the
investigation of the dynamics to the case of a single colored
noise source, hence neglecting the inhuence of an additional
(possibly strong) white noise force. The situation of two
noise sources acting simultaneously is, however, generic for
many applications: A first situation is given by nonlinear
optical systems where both colored pump fluctuations and
rapidly fluctuating spontaneous emission noise are present
[1].Another situation arises in the actively studied field of
"resonance activation" I2] where thermal Nyquist noise to-
gether with slow stochastic barrier modulations govern the
escape from metastable states. This latter situation is charac-
teristic for Brownian ratchets I3] which exhibit noise in-
duced transport in periodic potentials without reAection sym-
metry.

In this study we consider the class of stochastic Bows
which are driven by additive white noise and multiplicative,
exponentially correlated Gaussian noise (i.e., Ornstein-
Uhlenbeck noise). The relevance of such two-noise driven
non-Markovian systems has triggered a large activity among
theorists in constructing approximation schemes [4—6] cov-
ering limiting and intermediate parameter regimes. In order
to test such approximation schemes one is in need of precise
numerical results which we provide herein by use of matrix
continued fraction (MCF) expansions I1,7]. As a concrete
model we use the archetypal system of a symmetric bistable
Ginzburg-Landau flow, being driven by white thermal noise
and colored, symmetric barrier fluctuations of arbitrary cor-
relation strength r. This non-Markovian bistable dynamics
tests, within exponential sensitivity, both the bimodal station-
ary probability density W„(x;r) and the lowest nonvanish-
ing eigenvalue X,(7). This eigenvalue equals twice the rate
of reaction.
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with f(x) in dimensionless variables given by
f(x)=x —x . The symmetric barrier fluctuations are mod-
eled by g(x) =x. The term f(t) represents a colored noise
with its characteristics given by the Ornstein-Uhlenbeck pro-
cess

In both equations (1) and (2) the stochastic forces g;(t),
i=1,2, denote Gaussian white noise (with multiplicative
noise being interpreted in the Stratonovich sense) of zero
mean and correlation (g;(t)g, (s)) =28;,8(t s); i—,j =1,2
Hence, the Gaussian colored noise is exponentially corre-
lated,

yielding a constant integrated intensity 2Q.
Systematic analytical approaches in the theory of this

class of stochastic processes are possible I 4,5], but they pos-
sess the caveat of being restricted to limited parameter re-
gimes only, e.g., limits of very small or very large correlation
times r. In contrast, approximation schemes that cover a
broad parameter regime, such as small-to-intermediate-to-
large noise color, are generally not of systematic nature, but
nevertheless can yield reliable results. With one colored
noise source only, this fact has repeatedly been demonstrated
with the use of the so called unified-colored-noise approxi-
mation [8].Following a similar reasoning, a generalization to
the situation in (1) has been put forward recently in I 6]. The
approximation scheme in that latter work has been tailored in
such a way that it yields the exact stationary probability for
the x dynamics in piecewise parabolic wells. In this sense, a
Markovian approximation covering the behavior at small
correlation times 7.~1 can be obtained. The corresponding
(Stratonovich) SDE reads [6]

1
I.x—x'+x KQ4(t)+ K&6(t)], (4)

with y(x, r) given by
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The stochastic process under investigation is described by
a stochastic differential equation (SDE) with two noise
forces, i.e.,

x=f(x)+g(x) f(t)+ V&41(t)
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y(x, v) = (1+2' )(1+x Q/D)
1+(Q/D+2r)x

27x Q/D(1 —x )
[1+(Q/D+27)x ]

0.8—

Given this Markovian approximation we readily can evaluate
the stationary probability density or the mean first passage
time (MFPT).

In the limit of large noise color r&)1, the corresponding
approximation, which again reproduces the exact behavior
for parabolic potentials, reads [6]
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(x —x )(1+2' )
1+ (Q/D+ 27)x (6)
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For the case in which the white noise approaches zero, i.e.,
D~O, both approximations agree with the unified-colored-
noise approximation used in previous literature [1,8].

In our numerical calculations we start from the exact
equations, (1) and (2), and derive the corresponding (exact)
Fokker-Planck equation for the joint probability density
W(x, f;t), i.e.,

O 8 8 1 8—W(x, (;t)= ——(x—x +xg)+D 2+ ——gBt Bx Bx 'r 8$

0.8—
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0 ":
04 0.8 1.2 1.6

Q g2
+ +, W(x, (;t). (7)

We are primarily interested in the colored noise dependent
stationary density in x, i.e., W„(x;r), which follows from
the stationary joint density W„(x,()=lim, „W(x,g;t) by

W„(x;r) = jW„(x,().
J —oo

This function can be evaluated numerically by use of the
method of MCF expansions [1,7]. Another quantity of the
system which we can access by means of the latter method is
the lowest nonvanishing eigenvalue k, (v.) of the time-
dependent Fokker-Planck solution in (7), being of the struc-
ture

W(x, (;t) = g W„(x,()e
n=O

(9)

where Wo= W„, and ho=0. For the case of escape in a
symmetric double well this eigenvalue is related to the
MFPT T of the particle from one minimum to the other by

2
k, (r) = —. (10)

The MFPT T can be obtained from the approximative SDEs
in terms of two quadratures [9],which are evaluated numeri-
cally. The eigenvalue k, (r) equals 2/T in the limit of small
noise intensities D and Q, where k& is clear-cut separated
from the remaining set of eigenvalues.

Next we test the quality of the approximation schemes in
(4) and (6) against precise numerical results. In doing so we
choose equal noise strengths D and Q for the white and
colored noise since otherwise the results are dominated by

FIG. 1. (a) The stationary probability density for positive-valued
x, W„(x;r)=W„( x; r), is sh—own for white and colored noise
strengths D = Q =0.05. The correlation time of the colored noise is
v= 1. The solid line gives the numerical (MCF) result, the dashed
line represents the small-v theory, while the dotted line depicts the
crossover approximation which essentially agrees with the large-v
approximation. (b) The same as in (a) for different correlation
times: The results with v——10 are depicted by crosses for the cross-
over approximation and as a solid line for the numerical (MCF)
results. The results of the large-v approximation in (6) agree within
line thickness with the numerical results for v= 10. The other set of
lines shows the results for 7= 0.l: The numerical results (solid) and
the crossover approximation (dotted); here, the small-~ theory in (4)
agrees almost within line thickness with the numerical results.

the well known cases of a SDE with only one white or only
one colored noise, respectively [1].In all figures the error of
the MCF results lies within the line thickness.

The stationary probability densities W„(x;r) are shown
in Fig. 1. We depict only the range x~0, since
W„(x;r) = W„(—x; r). In Fig. 1(a) we depict the results for
7=1. This value of noise color is most "critical, " because
the regime of validity of the approximations (4) and (6) are
least justifiable for an intermediate noise color of the order
7-0(1). Nevertheless the numerical result (solid line)
agrees rather well with the small-r theory (dashed line). In
addition to the above given approximations we consider a
SDE which covers approximatively the limiting probability
densities W„(x;v) for 7 —+ 0 and 7~~ simultaneously,
termed crossover approximation [6]. Such a crossover SDE
reads

x=x —x + /D(x, v)('t(t)

with

D(x, 7) =[(1+27x )D+Qx ]/(I+2rx ) (12).
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The resulting stationary probability density W„(x; r)
=A(x, r)exp( —4(x, r)/D) possesses the identical generalized
potential 4(x, r) as the large r approximation in (6). The
only difference lies in the prefactor A(x, r). The results of
the crossover approximation are depicted in the figures by
dotted lines. In Fig. 1(a) this crossover approximation essen-
tially agrees with the large-r approximation in (6). In Fig.
1(b) we show the stationary probability for small noise color
7=0.1, and large noise color 7.=10. The exact result agrees
very well (within line thickness) with the scheme in (4) for
the case of small noise color, while the crossover approxima-
tion exhibits small deviations (dotted line). For large noise
color, the numerics (solid line) coincide very well with the
large-r approximation in (6) and the crossover approxima-
tion (crosses) is also practically indistinguishable from the
exact numerical results. The density at 7.=10 is peaked more
narrowly due to the effective reduction of the influence of
colored noise, i.e., (( )=Q/r decreases with increasing r
(freezing out of colored noise).

The results for the exponentially small eigenvalue kt(r)
are depicted in Fig. 2. In Fig. 2(a) we use the same noise
strengths as for Fig. 1. The eigenvalue increases monotoni-
cally from its minimum at r=~—where the colored noise is
completely frozen out—to its maximal value at
7=0 where the dynamics is driven by two white noise
sources (t(t) and $2(t). In the latter limit the total effective
noise strength S amounts at the stable states x=~1 to
S=D+Q =0.1. In this case of nonweak noise the relation-
ship involving the inverse MFPT in (10) consistently under-
estimates the exact eigenvalue at small noise color; see Fig.
2(a). For r~~ this difference becomes increasingly less de-
tectable due to the effective lowering of the total noise inten-t~ oo

sity S —+ a=0.05. Indeed, at even lower noise intensities
Q =D =0.02, cf. panel 2(b), the difference at r~0 now also
vanishes. The crossover approximation for twice the inverse
MFPT is depicted in Fig. 2 by the dotted line: It smoothly
approaches the corresponding approximative results for r
small tdashed-dotted line in panel 2(a)] and r large [dashed
line in panel 2(a)], and bridges accurately the regime of in-
termediate noise color r-O(1). As a matter of fact, the
maximal error between exact result and approximation oc-
curs near r= 1. In panel 2(b) the maximal error occurs near
r-O(1) and it does not exceed 18%.At small noise inten-
sities the steepest descent approximation, see [10], to the
quadrature formulas of the MFPT can be invoked. %'ith
W„(x;r) more strongly peaked at large noise color the
agreement between steepest descent and exact result im-
proves for decreasing noise color.

In summary, we have presented precise MCF calculations
for the archetypal bistable flow driven by Gaussian white
noise and multiplicative, exponentially correlated Gaussian
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FIG. 2. (a) First nonvanishing eigenvalue X,(r) of the exact
non-Markovian dynamics vs inverse correlation time. Panel (a) is
for D =Q =0.05. The numerical result is depicted by the solid line,
while approximative theoretical results from the inverse MFPT are
shown as a dashed line for the large-r theory in (6), a dashed-dotted
line for small-r theory in (4), and a dotted line for the crossover
approximation in (11) and (12).Arrows indicate the exact limits for
twice the inverse MFPT at r=0 and r~~, respectively. (b)
k, (r) for noise strengths D =g =0.02. The numerical result is de-
picted by a solid line and the crossover approximation by a dotted
line. In addition we show the steepest descent approximation for
twice the inverse MFPT to the crossover approximation as a dashed
line, see footnote [10].

noise. The approximation schemes for this class of two noise
driven stochastic flows in (4), (6), and (11)which are tailored
to cover extended regimes of noise correlation times ~ corn-
pare favorably with the exact results for the whole range of
small-to-large noise color r. These approximations provide
good results even for the regime of intermediate noise color
r-O(1) where no systematic analytical estimates are
known.

This work has been supported (R.B., P.H.) by the German
Research Foundation (Az. Ha1517/13-1) and the Brazilian
Council of Science and Technological Development
(A.J.R.M.).

[1]For a recent review see P. Hanggi and P. Jung, Adv. Chem.
Phys. 89, 239 (1995), aud references therein.

[2] C. R. Doering and J. C. Gadoua, Phys. Rev. Lett. 69, 2318
(1992); U. Ziircher and C. R. Doeriug, Phys. Rev. E 47, 3862

(1993);C. Van den Broeck, ibid. 47, 4579 (1993);M. Bier and
R. D. Astumian, Phys. Rev. Lett. 71, 1649 (1993); P. Hanggi,
Phys. Lett. A 78, 304 (1980); Chem. Phys. 180, 157 (1994); P.
Reimann, Phys. Rev. E 49, 4938 (1994); J. J. Brey and J.



R2152 BARTUSSEK, MADUREIRA, AND HANGGI

Casado-Pascual, ibid 50. , 116 (1994); F. Marchesoni, L. Gam-
maitoni, E. Menichella-Saetta, and S. Santucci, Phys. Lett. A
201, 275 (1995).

[3] M. Magnasco, Phys. Rev. Lett. 71, 1477 (1993); S. Leibler,
Nature 370, 412 (1994); C. R. Doering, W. Horsthemke, and J.
Riordan, Phys. Rev. Lett. 72, 2984 (1994);R. D. Astumian and
M. Bier, ibid 72, .1766 (1994); R. Bartussek, P. Hanggi, and J.
G. Kissner, Europhys. Lett. 28, 459 (1994).

[4] P. Pechukas and P. Hanggi, Phys. Rev. Lett. 73, 2772 (1994);P.
Reimann, ibid 74, .4576 (1995), and unpublished.

[5] K. M. Rattray and A. J. McKane, J. Phys. A 24, 1215 (1991).
[6] A. J. R. Madureira, P. Hanggi, V. Buonamano, and W. A. Ro-

driguez, Jr. , Phys. Rev. E 51, 3849 (1995).
[7] H. Risken, The Fokker Planck -Equation (Springer, Berlin,

1984).
[8] P. Jung and P. Hanggi, Phys. Rev. A 35, 4464 (1987).
[9] L. A. Pontryagin, A. Andronov, and A. Vitt, Zh. Eksp. Teor.

Fiz. 3, 165 (1933); P. Hanggi, P. Talkner, and M. Borkovec,

2 +2 D[(18+36R+72r+17(R+2r) ]
T m 12(1+2r)3(1+R+2r)

(R+2r)(2r—1)+r
2(R+2r) 2(R+2r)

[(R+2r) —(R+2r)(2r—1)—2r]ln(1+R+ 2r)
2(R+2r)

For small D, and R finite, the prefactor (I+8X . .) ' can be
approximated by 1: In Fig. 2(b) the first order correction is not
detectable; in contrast, for larger noise D, cf. Fig. 2(a), the
correction in the prefactor gives rise to a change in X.,„„of
approximately 10% as v~0, but effectively already a zero
correction for 7.~~.

Rev. Mod. Phys. 62, 251 (1990), cf. Sec. VII.
[10]With R=QID, twice the inverse MFPT reads, up to order

O(Dz), as


