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Abstract. - Spatially periodic structures are exposed to additive Poissonian white shot noise of
zero average. Because the underlying master equation no longer obeys the principle of detailed
balance, these non-equilibrium fluctuations induce a macroscopic current—even in the absence of
spatial asymmetry. The resulting current can be expressed in analytical closed form and we
discuss its behaviour in the limits of very weak and very strong noise intensities. We find that the
current increases monotonically and—in contrast to common intuition—saturates at infinitely
strong noise intensity. The role of internal symmetries of the periodic structure is investigated
from the viewpoint of optimizing the current amplitude at fixed noise intensity.

The fact that it is possible to obtain a macroscopic particle current in periodic structures
without the application of any external bias force, field gradients or a spatially varying
temperature has stimulated interest among many scientists working in such diverse areas as
biology, chemistry or physies[1,2]. The interest in considering such novel macroscopic
transport mechanisms originated from biology [3]: Assemblies of tubulin molecules, which
possess a periodic structure with intrinsically broken symmetry, allow motor proteins to
«walk» along in a directed way. Similarly, lithographic techniques can be utilized to engineer
periodic structures such as blazed gratings which, when exposed to oscillating or stochastic
fields of zero average, separate or «pump» particles of micrometer size. Such schemes have
recently been implemented experimentally by both electronic and optical means [4].

Usually it is assumed that additive white fluctuations are not capable of inducing a finite
current due to the laws of equilibrium dynamies. It must be noted, however, that a Maxwell-
Demon mechanism that extracts work from a single heat bath is possible with white noise
possessing a Poissonian waiting-time statistics. Such noise, which commonly occurs in
electronics and in microstructures, is characterized by a temporal asymmetry, i.e. sharp
pulses of zero duration are followed by a constant negative value which lasts over an
exponentially distributed waiting time.

The starting point of our analysis is an overdamped stochastic dynamics in a periodic
potential V(x) = V(x + L), with L denoting the spatial period, which is driven by white shot
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noise £(1), i.e.
_ V(=)

+ &(), (1

with
n(t)

§@t) = Aglyid(t—ti)—/l(yi)' (2)

The quantity n(t) is a Poisson counting process with a parameter A which determines the
average sojourn time between two -kicks. The positive-valued weights of the d-pulses {;},
being independent of n(t), are exponentially distributed, i.e.

oy)=A lexp[~y/Al, y=20, (8)

with (y;) = A. From (2) and (8) it follows that the noise &(¢) is of zero average, and possesses
the correlation

(E(®)E()) = 2AA%5(t - 3). 4

Equation (4) defines a total noise intensity D = AA%(}). The stochastic dynamies in (1)-(3)
yields for the probability density p(x, ) the Markovian integro-differential master equation [5, 6]

t 3
PE D _ 3 | fa) — adlple, B - Apie, t>+1fp<x—y, De(ydy, (5
ot dx ;

where we set f(x) = —oV(x)/ox. Upon introducing the shift operator, exp[—y3/dx]-
p(x, t) = p(x — y, t), and performing a few manipulations involving the moments {y}) =
= k! A*, (5) takes on the appealing form of a continuity equation for the probability

Ip(x, t) 3
= - = J, 1), 6
ot o (@ 1) ©)
with the probability current J(x,t) given by
a x
T, ) = fa)pte, ©) - 14 = [ o= pty, iy )

A stationary current J follows from (6) in the long-time limit ¢ — « with periodic boundary
conditions imposed on the corresponding stationary probability p(x) = p(x + L). With o(y)
given in (3), the current J is determined from (7) by (the prime denotes a derivative with
respect to x)

J =A[f(x) - AAlp'(x) + [ f(x) + Af'(@)]p(x), (8)
where the drift in (5) takes on the role of a diffusive part in (8). For J = 0, a homogeneous

(!) This white shot noise results also as a limit of asymmetric two-state noise of zero mean, i.e.
(a'/A") = (afi) = 0, where (@', & > 0) denote the two-state values and (1, 1) the corresponding
transition rates. White shot noise is approached in the limit ¢’ — %, ' — «, such that @'/’ = a/A =
= const [5,6]. Asymmetric two-state noise is exponentially correlated with correlation time 7, =
= (A +4)7!, and its total integrated noise intensity equals D = aa’1,[6].
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solution py(x) reads

Do) = exp[— ¥(2)], 9

1
Dgr ()

where the effective diffusion D.4(x) and the generalized potential ¥(x) are defined by the
relations

J(x)

Deff(x)=D[1~ —] Y(x) = —J LS
a 0

Deff(y)

dy, (10)

with a = A4 = D/A. In terms of p,(x) one readily finds for the normalized, spatially periodic
and stationary probability, which carries a current J, the explicit result

z+ L
P@ [ dyDE @)p' (W)
p(@) = — - . (11)

*+ L
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(i} x

For p(x) to exist for all x-values we implicitly assume a positive-valued effective diffusion
Dz (), i.e. @ > max|f(x)|. With (11), the stationary current J has an appealing form (3): it is
given by the double quadrature

J= 1 - exp[WP(L)] . (12)

e+ L

L
Ideegl(x)exp[—W(w)] j dy exp [¥(y)]
0

x

The closed form in this result allows to study various asymptotic regimes: For the
important case of weak noise intensity D << 1, the steepest-descent approximation yields, up to
terms of order @(D), the result

JDKLl) ~J; = w;w“ [1—exp[W(L)]] exp[¥(xy) — W(2,)1, (13)
7
where w2 = V"(x,), w2 = — V"(x,), and 2, denotes the location of a minimum of V(z), and #,

its neighbouring maximum 2, > x,. Another interesting limit is given by allowing the noise

(®) The corresponding result for correlated, temporal asymmetric two-state noise, cf. footnote (%),
can again be expressed in closed form:
L e+ L -1

J=(1-exp[¥D) [ Dt @) expl—¥@)] [ [1+ 7 f (plexpl¥(pldyda}
0 x

with W(z) defined as in (10), and Dyg(2) = D[1 — f(x)/all1 + az. f(x)/D], wherein D = aa't, — a® /A
as 7,— 0. For the special case of symmetric two-state noise this result reduces to the one recently
elucidated by Doering et al. {lel.
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Fig. 1. Fig. 2.

Fig. 1. - The current J is shown vs. shot noise intensity D for three values of the asymmetry parameter
AA = a = 2.5, 5 and 10 (top to bottom). The solid lines represent results for a cosine potential (see below
eq. (18)), while dotted lines are for the piecewise linear potential defined in eq. (17). The arrows indicate
the asymptotic limits for D-— », given in eq.(14). The inset compares the steepest-descent
approximation (dashed-dotted) to the exact result (solid) for the cosine potential at the same a values as
in the main figure.

Fig. 2. - The current is shown for different shapes of the potential: Solid lines are for V{x) =
= (1/2) cos (s), dashed and dotted lines for V = 0.454[cos (7zx) + (1/4) sin(2m2)), the latter potentials
are depicted in the inset. The parameter a is 2.5 in the upper curves and a = 10 for the lower ones. The
limit D — « again agrees within linewidth with (14) for D = 10.

intensity D to become very large. In this case, the current saturates at the value

L
[ @) D& ) da

JD>»1)~Jy,=L"1"

- (14)

j D& () dw
0

Hence, in clear contrast to the case with Brownian ratchets driven by additive, symmetric
forces [1,2], strong white shot noise does not blur the directed motion, but rather enhances
the current towards a finite maximal value, cf. fig. 1 and 2. This feature can be traced back to
the role of the effective diffusion D (x) in (10), being non-homogeneous over the spatial
period L. In this sense, white shot noise resembles from a mathematical viewpoint the
current mechanism that characterizes transport in Gaussian white-noise~driven systems
with a state-dependent diffusion that is not in phase with the periodic potential [7]. With
a — %, the white shot noise approaches the additive Gaussian white noise [6]. In this latter
limit the master equation in (5) reduces to a Smoluchowski equation that obeys detailed
balance. Hence, the current J must vanish as a — «, ie.

J(@a— ) ~B/a + &(1/a?), (15)

with a slope

-1

L L L
B= sz(x)dx{ jexp[—V(x)/D]dxjexp[V(x)/D]dx . (16)
[ 0 0
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Before we study the behaviour of the current J for smooth periodic structures, we remark
that for piecewise linear potentials the current can be obtained explicitly. For example, for
the symmetric, and periodically continued potential

1+zx, -1,0 dL,
Viw) = x rel 1 mo (1
1-2, xel0,1]lmodL,

with L = 2, the resulting current reads

1 b, —b_

= — , (18)
4D (b, —1)}b_--1)

with b. = exp [a/[D(a ¥ D]].

The dependence of J on the shape of the periodic potential is studied numerically in fig. 1.
We evaluated the current for the piecewise linear potential in (17) and compared the results
with a smooth symmetric potential V(x) = V(—x) = (1/2)[cos(zx) + 1] having the same
period L = 2, and the same bare barrier height AV = V() — V(x,) = 1. We find that for both
periodic structures the current increases monotonically to the maximal value J,, cf. (14). The
asymptotic values are approached already at D = @(1). We note that for a smooth barrier the
current is enhanced over the piecewise linear case. The inset compares the steepest-descent
approximation in (138) (dashed-dotted line) with the numerical precise result (solid line) for the
cos(zx)-structure. It should be stressed that the weak-noise approximation fails above
D ~ @(1): 1t even predicts a bell-shaped behaviour at moderate noise intensities, being in
clear contradiction to the exact behaviour. Therefore, the a priori use of a steepest-descent
approximation comprises pitfalls!

The combination of both a spatial asymmetry for V(z), i.e. a ratchet-type potential [1-4],
and temporal asymmetric shot noise is depicted in fig. 2. The potentials are again chosen to
possess the identical period L = 2 and the same bare potential barrier height of AV = 1. We
compare the same cos-potential as in fig. 1 with two ratchet potentials of opposite «polarity»,
i.e. V(x) = 0.454[cos(mx) = (1/4) sin(2nx)], see inset in fig.2. We find that for ratchet
potentials driven by white shot noise a differing polarity does not affect the sign of the
current. This fact is in contrast to the case of a rocking ratchet [2] and ratchets driven by
symmetric coloured noise [1]. With positive-valued weights for the J-kicks, we obtain a
strictly positive current J, independent of internal symmetries of the periodic structure. Put
differently, if we separate £(f) into a constant negative tilt —a = — A(y;), and positive,
infinite high d-spikes, one finds that the latter ones dominate the current. This result is not
evident o priori, because the d-spikes act over zero duration. Comparing the asymmetric with
the symmetric potential, we observe that the ratchet with the positive (forward) polarity
(dotted lines) yields an enhanced current at moderate-to-large noise intensity D; this
behaviour is reversed at small noise intensities D << 1. (In fig. 2 the solid and the dotted lines
cross for ¢ = 2.5 at D = 0.425 and for a = 10 at D = 0.085.) At present, we are not able to
provide a vivid physical explanation of this result; the features of W(x) cannot explain these
observations.

In conclusion, in this study we have investigated the role of white shot noise of zero
average for directed transport in periodic structures, in the presence and in the absence of an
internal asymmetry. We demonstrate that the white-noise character of additive, temporally
asymmetric fluctuations is sufficient to generate a net macroscopic current (3). For vanishing

() In contrast, temporally symmetric white shot noise (i.e. with both positive and negative y; in (2),
(3)) can induce a current in periodic structures only if the reflection symmetry is broken.
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temporal asymmetry the white shot noise with Poissonian jump statistics smoothly
approaches a Gaussian limit [6), see (15), which in turn restores the detailed balance
symmetry characteristic for equilibrium systems (%). As a major result we find that white shot
noise induces a current that monotonically increases with the noise intensity, and undergoes
a saturation at extremely strong noise intensity. This counterintuitive result is due to an
effective, inhomogeneous diffusion, which becomes more homogeneous with increasing level
a, at which the shot noise impulse £(t) dwells during an exponentially distributed sojourn
time.

With shot noise processes being abundant in electrical engineering and in life sciences [9]
these exist a variety of potential applications in making use of shot-noise-induced directed
transport, and to devise several novel separation mechanisms. Hence, we encounter another
example where white noise with temporal asymmetry can be a useful tool—rather than a
nuisance.
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(*) For equilibrium systems driven by white shot noise it is necessary to consider Langevin
equations driven by state-dependent white noise [8], which are tailored to restore the detailed balance

symmetry.
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