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Abstract

We study directed motion of a Brownian particle in a periodic “ratchet”-potential due to a periodically oscillating
temperature of the thermal environment. Precise numerical results are compared against analytical approximations for
asymptotically slow and fast temperature oscillations. This “diffusion-ratchet” tends to resist carrying a current for slow and
fast temperature modulations, while showing a maximal current at moderate frequencies.

                                  
                                                               

1. Introduction and model

Directed Brownian motion induced by non-equilib-
rium noise in the absence of macroscopic forces and
potential gradients is presently under intense investi-
gation [ I]. While in thermal equilibrium such an ef-
fect is ruled out by the second law of thermodynam-
ics, in the non-equilibrium case it apparently can be
realized always by a suitably tailored “Brownian mo-
tor” [ 2,3]. Besides interesting technological applica-
tions like novel mass separation methods, this trans-
port mechanism may also be of relevance for intra-
cellular processes [ 41.

In this letter we study a one-dimensional over-
damped Brownian particle in a periodic potential,
V(x + L) = V(x), subject to thermal fluctuations
with a periodically modulated temperature,

k(t) = -V/(x(t)) + J2Dol(t), (1)

’ Present address: EijtvBs University, Puskin-u. 5-7, H-1088 Bu-
dapest, Hungary.

where D(t + 7) = D(t) and D(t) > 0 for all t. The
friction coefficient has been absorbed into the time
scale, D(t) and 7 = 21r/w stand for the correspond-
ingly resealed temperature and period, respectively,
and t(t) is Gaussian white noise of zero mean and
variance (c(t) t(s)) = 6( r - s). This model will be
valid under the (very weak) assumption of local (or
accompanying) thermal equilibrium, i.e., provided the
thermalization of the immediate environment of the
Brownian particle is much faster than the time scale 7
of the temperature oscillations. In practice, these os-
cillations may be realized by periodically adding and
extracting heat, or alternatively, e.g., by modulating
the pressure. From a different point of view, one may
also consider t(t) in ( I ) as an externally imposed
Gaussian white noise of oscillating intensity D(t).

                                                                   
                         



                                                     

2. General properties

The probability density of the noisy dynamics ( 1)
is governed by the Fokker-Planck equation

$Ix. t) + &, t) = 0,

.i(X.f) := - ( V’(x) +D(t)& P(x,t). > (3)

Restricting ourselves to the long time limit, the solu-
tion P (x, I) will be periodic in time and space, P ( x +
L,r) = P(x,f + 7) = P(x,t), and is conveniently

* normalized on the unit interval, JO” P(x, t) dx = 1.
The quantity of central interest is the time-averaged
probability current

7

J := -+
J’

j(x.t) dt, (4)
0

where the x-independence of J can be readily veri-
fied by exploiting (2) and P(x, t + 7) = P(x, t).
Note that the average particle velocity (i) :=
lim ,-,( l/t) J;(W))d s is related to the probability
current (4) according to*

(i) = LJ. (5)

Obviously, a non-vanishing current J is only possible
for a periodic potential V(x) with broken spatial sym-
metry (“ratchet”). Even then, in the fast oscillation
limit w = 2n/7 t 00, the Brownian particle ( 1) will
behave like in the presence of a time-averaged con-
stant temperature. Since this corresponds to thermal
equilibrium, we conclude that J + 0 when o -+ 0;).
Similarly, in the adiabatic limit 6~ -+ 0 each parti-
cle experiences a quenched realization of the temper-
ature, yielding again J --+ 0. It is therefore not ob-
vious at first glance whether directed motion J # 0
can be generated at all by our “diffusion ratchet” ( 1) .
This is in clear contrast to a similar model, but with
a sparial rather than a temporul periodic temperature,
where J # 0 is a trivial consequence of the so-called
“blowtorch” effect [ 51.

’ Proof: Exploiting ( I ) one can see that (a) = (l/T) X

i: dt,~:d.uP(x,t) [-V’(r)]. With (3) and (4) it then fol-

lows that (i) - LJ = (l/7) S,;d&dxD(t) dP(x,r)/3x = 0.

W

Fig. 1. Probability current J versus oscillation frequency w for
the “diffusion ratchet” ( 1). (6). (7) at the parameter values
Do = 0.1 and A = 0.7. The solid line shows numerical results
from a matrix continued fraction calculation and the dashed line
is the theoretical large-o asymptotics ( 16). The dotted straight
line of slope 2 corresponds to the w?-asymptotics for small w.
predicted in Section 4.3. The used ratchet potential t 6) is plotted
in the inset.

If the periodic potential and the oscillating tem-
perature can be expressed in terms of a few Fourier
modes, one can evaluate the current J very efficiently
and with high accuracy by means of matrix continued
fraction techniques, see e.g. in Ref. [ 61 (note the ap-
plications) and further references therein. As an ex-
ample we choose

V(x) = v,(x)
:= [ sin( 2nx) + 0.25 sin( 4rx) ] /27T, (6)

D(r) = Do[ I + A sin( wr>]*. (7)

In Figs. 1 and 2 the numerically determined current J
is plotted for various representative values of the pa-
rameters w, A, and Do in (7). In agreement with our
prediction, J(w) vanishes for asymptotically small
and large W, but is definitely non-zero inbetween, with
a pronounced maximum at an A - and Do-dependent
o-value. For fixed DO, this maximal current is mono-
tonically increasing with [A(. On the other hand, for
a fixed parameter A, the maximal current is obvi-
ously zero for DO = 0, reaches an absolute maxi-
mum at a Do-value comparable to the barrier height
max, V(x) - min, V(x), and, not unexpected, van-
ishes again for Do + co. For weak noise DO, the lo-
cation of the current maximum J(w) depends only
weakly on A, cf. Fig. 2a. For moderate-to-large noise
DO, this maximum shifts to larger w-values with de-
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Fig. 2. The probability current J for the “diffusion ratchet” (I),
(6). (7 ) as a function of the temperature modulation frequency
w and amplitude A at different noise intensities Do = 0.1 (a) and
D,, = 0.5 (b). Numerical matrix continued fraction results (solid)
are compared with the fast modulation theory in ( 16) (dashed).

creasing A-values, cf. Fig. 2b. A natural question,
which is difficult to answer numerically and thus rep-
resents an analytical challenge, is whether the current
will have the same sign for all finite w-values what-
ever ratchet potential V(x) and diffusion coefficient
5(t) is chosen, or not.

3. Transformation into a flashing ratchet

One can get rid of the unusual time-dependent
diffusion coefficient in the Langevin equation ( 1)
by means of the common transformation y(t) :=
x(t) [D(t)]-‘/*, yielding

(8)

Unfortunately, the transformed potential (9) now de-
pends periodically on time and, worse, is not even peri-

odic in space anymore. Hence, we are not able to draw
any useful conclusion from (8). However, prominent
insight is gained by the time transformation [ 7 ]

i(t) := s 5(s) ds, (10)
0

which has a well-defined inverse t(i) due to the pos-
itivity of 5(r). One readily sees that this transforma-
tion is equivalent to considering the noisy dynamics

i(i) = - V’(x(f) 1
D(t(f)) + JzsctL

instead of ( 1) . Moreover, one finds that the averaged
currents J are equal for the processes ( 1) and ( 11).
In particular, one recovers J -+ 0 for o 4 0 and
o + cc from (11). The dynamics (11) describes
a Brownian particle in a fixed thermal environment
but with a spatially homogeneous time-periodic mod-
ulation of the ratchet potential, i.e., a variant of the
so-called “flashing ratchet” or “fluctuating potential
ratchet” [ 3 1. While this equivalence of ( 1) and ( I I >
considerably extends the scope of our present work, it
does not lead to significant simplifications and there-
fore is not used in the subsequent analytical approxi-
mations.

4. Asymptotic analysis

After a couple of unsuccessful attempts it becomes
apparent that a closed analytical solution of (2) - (4))
like for most non-equilibrium problems, is probably
impossible. In the following we focus on an asymp-
totic analysis for fast and slow oscillations. For conve-
nience we will work throughout this section with the
resealed time f := tw and the correspondingly resealed
B(0 :=D(t(Fj) and W,(x,i) :=P(x,t(tl)).where
t(I) := i/o. Finally, we use for this new time i again
the previous symbol t. Hence, n(t) is now a 2a-
periodic, w-independent function given by

B(t) = 5( r/w,, (12)

while Ww(x, I) = P(x, t/m) is also 2r-periodic in
time but still parametrically o-dependent.
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4.1. Fast oscillations

For fast oscillations w > 1 we expand the resealed
density W,( x, t) with respect to the parameter o as
Wu(x,t)+~-‘Wt(x,t)+....Forphysicalreasonsitis
clear that in the limit w = 03 the density W,( x, t) and
therefore WO( x, t) is time-independent, WO( x, t) =
WO ( x) Further, the normalization and periodic bound-
ary conditions on W,,,(x, t) imply Wi(x + L, t) =
W,(X,~ +2~) = Wi(x,t) and JoLWi(~,t)dx = 6i,c,
whet-e i > 0 and 8~ is the Kronecker delta. From
the Fokker-Planck equations (2)) (3) the functions
W, (a-, t) can now be readily determined by comparing
the coefficients of equal order oei. We briefly exem-
plify the typical line of reasoning for the order w”-
terms. The corresponding coefficients in the Fokker-
Planck equation (2) lead to the identity

aw, (x, t) J2Wo(x)
dr -A(t) dx2

= $ V’(x) +D& We(x), ( > (13)

where D and A(t) denote the averaged and the oscil-
lating parts of D(t),

27r

D := &
.I

D(t) dt, A(r) := d(t) - D. ( 14)
0

Clearly, both sides of (13) are equal to a time-inde-
pendent, spatially periodic function. Hence, [V’(x) +
L%,Jax 1 Wa( x) must be equal to an unknown function
f( .I-) satisfying f(x + L) = f(x). Upon integration
this yields

x

WO(X) = e- vcr,/b
( JC + dy evcy)/‘,f( y) /D

>

,

0

(15)

where C is an integration constant. Exploiting the x-
independence of the time-averaged current (4) one
can conclude that f(x) must be a constant. Further,
WO(X + L) = Wa(x) implies f(x) = 0 and C is fixed
by the normalization condition Jo” WO( x) dx = 1. For
the current (4) this finally yields J = 0 in leading
order w. Proceeding in the same way up to the next
order w’ still gives a zero result for the current! The

first non-vanishing contribution is obtained in order
w* and reads

J= 2S,2”dt[SddSA(s)12SOLdXV’(x) V”(x)’
w2 62 71.SOLdXeV(x)/f)SoLdXe-V’“‘/D

+ O(d). (16)

As expected, the current vanishes for D -+ 0 and
B ---f 00 as well as for potentials V(x) with spa-
tial inversion symmetry. For small d the integral
$dXeV’“)iDJ; dx e-v(*)/b becomes comparable to
the inverse transition rates between adjacent potential
minima of V(x) and, together with we2, dominates
the magnitude of the current J. The invariance under
w I--+ --w is not obvious and indeed is broken in the
higher-order terms O(w-‘) unless this symmetry is
already present in the underlying dynamics ( I ). The
integral JF dt [ sd ds A(s) ] * alludes to an effective
time correlation of D(t) and, surprisingly, the fac-
tor sd_ dx V’(x) V”(x) 2 also arises in the completely
different context of a “correlation ratchet” [ 81. Yet, a
reasonably convincing intuitive explanation of these
terms seems impossible to us. The comparison of ( 16)
with the numerical results in Figs. l-3 is excellent.

4.2. Current inversion

The sign of Jo” dx V’(x) V”(x)* and thus of J in
( 16) is positive for the specific ratchet potential V?(x)
from (6)) but may be negative for other examples like

V(x) = b(x) := {sin(2?zx)+0.2sin[47T(x-0.45)]
f0.1 sin[6r(x - 0.45)]}/2~, (17)

see the inset of Fig. 3. By continuously deforming the
potential Vz (x) into \/[1 (x) it follows that there must,.
exist certain V(x) = V(x) for which J changes sign as
a function of OJ, where we tacitly excluded the highly
ungeneric possibility that J identically vanishes for all
w. An example for such a potential p(x) is V,(x) it-
self, see Fig. 3. Recalling that in (1) we already ab-
sorbed the friction coefficient of the Brownian particle
into the time scale, it follows that in the original (un-
scaled) system, particles with different friction coef-
ficients will move in opposite directions for the same
properly chosen ratchet potential and the same peri-
odically varying thermal environment. Similar conclu-
sions apply for a periodically oscillating ratchet and a
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Fig. 3. Same as Fig. 1, but for the ratchet potential y(x) from
( 17). Note that the current inversion is not a consequence of the
slight extra “shoulder” of I$ (x) as compared to V2 (n) from Fig. 1,
but rather of the proper interplay of V’(x) and V”(x) in ( 16).

fixed thermal environment, cf. ( 10) and ( 11). Inter-
esting applications of this effect like friction-sensitive
separation methods for Brownian objects seem likely.

4.3. Slow oscillations

Finally, we briefly turn to the analytic treatment of
the slow oscillation limit w -+ 0. By a similar line of
reasoning as for 0 + cc one can rewrite Ww(x, t)
under the form WO(X, t) + wW1 (x, t) + . . . and by
comparing powers of w in the Fokker-Planck equation
(2) one finds for the current (4) that

x [(0(x - y ) V (Y ,)t  -  (@(x - Y))t(V(Y>L]

+ O(w2L (18)

where O(X) denotes the Heavyside step function and
the time-dependent average (f(x, y)), of a function
f( X, y) is defined as

(f(x?Y))t
exp{[V(x) - V(.v)l/@f))

J,“dxJoLdy exp{lV(x) - V(v)l/&f))
(19)

The leading-order contribution in ( 18) vanishes if the
dynamics is invariant under spatial inversion V(x) H
V( -x) but also if time-inversion symmetry w H --w
is respected, as for instance for the example (7). In

the latter case one has to proceed to second-order per-
turbation theory. Though the calculations are straight-
forward, the resulting expression is quite lengthy but
not very illuminating and is therefore not given here.
We, however, observe that the numerical results from
Fig. 1 indeed show the expected 02-asymptotics for
small w-values.

5. Conclusions

We studied the overdamped Brownian motion in a
one-dimensional ratchet potential in the presence of
an oscillating temperature. By means of matrix con-
tinued fraction methods we obtained accurate numer-
ical results for the current in the long time limit. For
asymptotically fast and slow oscillations we derived
analytical approximations which compare very well
with the numerics. In particular, we demonstrated that
for properly chosen ratchet potentials V(x) a current
inversion as a function of the oscillation frequency w
arises.

Apparently, our “diffusion ratchet” tends to resist
carrying a finite current: It starts only proportional
to w-* for fast oscillations and, in many cases, van-
ishes again like U* for slow oscillations. A further re-
markable observation is that such a diffusion ratchet is
equivalent to a “flashing ratchet” as given in Eq. ( 11).
We finally note that a modulation of the diffusion typi-
cally yields a current in the opposite direction as com-
pared to that induced by applying a modulated force
(“rocking ratchet”) (see Fig. la in Ref. [9], where
the ratchet potential V(x) = -V2 (x) is used.).
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