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Abstract

Surface flow down a granular pile ("avalanches") can be excited by shear forces or by vibration. Based on a generalization
of a recently proposed minimal dynamical mean field model, we discuss theoretically how a periodically modulated shear
rate about a zero mean can change the dynamics of avalanches. In particular, we report the unexpected effect of non-periodic
avalanching due to periodic driving. The predicted effects should be experimentally observable in two-dimensional drums by
modulating the rotation rate.

                        
                                                          

1. Introduction

The collective interaction of  small macroscopic par-
ticles (grains) due to static and dynamic friction and
inelastic collisions in the gravitational field forms a
state of  condensed matter being at the border between
fluids and solids. Although this granular state (for a
recent review see [1 ]) is a part of daily experience, the
understanding of its physical properties, however, is
only at its beginning. Its physics has recently triggered
considerable interest in the structure and dynamics of
granular systems including sophisticated experiments
in simple setups [2-7] (cylinders and drums), numeri-
cal simulations based on classical many-particle mod-
els [8], cellular automata [9] and phenomenological
mean field models [10-13].

* Corresponding author. Fax: +49-821-5977-222; e-mail: linz
@ physik,uni-angsburg.de.

Any granular dynamics results from driving the
system out of  equilibrium. Lacking a well-accepted
statistical or non-Newtonian-fluid theory for the
granular state, the response of granular systems to
external (experimentally realizable) excitations such
as shear or vibration is the key to obtain deeper in-
sight into their dynamics. Paradigmatic experimental
setups are granular piles in horizontal drums [2] or
cylinders [3] which can be rotated about their hor-
izontal axes with an externally prescribed rotation
rate. An adiabatic rotation of the drum or cylinder
shows the following: Whenever the surface of  the pile
is not horizontal, it undergoes a shear force caused
by the along-surface component of the gravitational
force. Up to the maximum angle o f  repose (or angle
of initial yield) ~Os, the surface can compensate the
shear force by intergranular friction. Above ~Ps, an
avalanche develops in order to decrease the slope of
the pile until the minimal angle o f  repose (or angle
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of residual shear) ~o r is reached. Then the pile is sta-
ble again. This hysteretic stick-slip-stick behavior
is one of the major characteristics of the granular
state.

So far, research has been focused on constant
shear forces, shear forces that increase linearly in
time, and external vibration as driving mechanisms.
In this paper, we discuss the effect of  a different
driving mechanism, time-periodic shear forces, on
avalanche dynamics, a driving mechanism that has
not been considered in the literature yet. According
to the discussion above, this effect can be realized
by an external, periodic modulation of the rotation
rate of the drum or cylinder about a zero mean.
The major questions we will discuss in this paper
are: Is the stick-slip-stick dynamics, present without
modulation, significantly altered by experimentally
realizable rotation modulation? How does the dynam-
ics of  avalanches depend on the driving frequencies
and amplitudes? Do resonance phenomena exist? Is
just one avalanche excited or a series? If there is a
series of avalanches, is it a periodic process? What is
the effect of  granular friction? Our theoretical study
is based on an extension of a mean field approach
[12,13] that we proposed recently. If experimentally
verified, our results will lead to a deeper insight
into the friction behavior on the surface of granu-
lar piles as well as into the validity of  mean field
approaches.

Our paper is organized as follows. In Section 2, we
present the extension of the mean field model to mod-
ulated rotation, derive a minimal approximation of the
model in the form of a driven nonlinear oscillator in
a restricted phase space, and discuss the rigid-body
rotation solution. Section 3 discusses the exact solu-
tions of our model for the special case of vanishing
nonlinearity. In particular, we study the changes of  the
duration of the avalanche and the minimum angle of
repose. In Section 4 we show, using dominant balance
considerations, that the limit of  vanishing nonlinear-
ity is sufficient for the qualitative and quantitative dy-
namics of  the full model. In Section 5 we demonstrate
the effect of non-periodic successive avalanching due
to periodic  rotation modulation. We summarize our
findings in Section 6.

2. The model

In order to discuss the effect of  periodic  shear forces
on avalanches, we extend recent minimal, dynamical
mean field equations [12,13] that have been used to
model the dynamics of  avalanches in granular sys-
tems in presence of small constant rotation and ver-
tical vibration. Within the mean field approach, the
complexity of  the avalanche process is substituted by
two global variables: the kinetic energy Ekin (t) of the
avalanche and the surface angle q)(t) of the pile. In or-
der to model the time evolution of Ekin(t), it is more
convenient to use the mean velocity v( t )  ~
(the velocity of a "grain" in the mean field of the oth-
ers). Then the two coupled mean field equations for
the surface velocity v( t )  in the corotating frame and
the angle q)(t) of  the surface of the pile can be mod-
eled by generalizing Coulomb's theory of  friction of a
body on an inclined plane to a surface flow with vari-
able slope of the pile. Note that (i) v( t )  and q)(t) are
ensemble averages over a large number of experimen-
tal runs to level out some randomness present for the
individual avalanche and (ii) this model applies only
to situations when the dynamics of  the system takes
place in a thin layer at the surface of the pile without
any global convection in the bulk. Including the time-
dependent external rotation of  the drum, ~0ext(t), the
model reads

~) = g[sin q9 - (bo +b2v2)cos~o]x( (p ,  v), (la)

(o = - a v  + ~bext(t) (lb)

with Z(~P, v) = O(v) + 6)(~p - ~ps) - 6)(v)(9(~o -
~ps) and •(y)  = 0 (1) if y _< 0 (y > 0). Here,
g is the gravitational acceleration and a the coupling
coefficient between angle and velocity. The cutoff-
function X accounts for the static friction (cf. also [ 1 2])
in a way that the pile is at rest if v = 0 and ~p < 99s. This
mimics a Mohr-Coulomb yield criterion (see e.g. [14])
for the viscoplastic behavior of  the granular system.
The physical origin of the yield criterion is rooted in
the fact that the density of  a granular system has to
fall below a certain threshold in order to flow. Within
model (1), an avalanche is represented by a non-zero
velocity v( t )  with associated changes of the surface
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angle ~0(t) due to the cross-coupling of ( la )  and ( lb) .
Another consequence of the cutoff-function is that the
dynamical  evolution of the system is constrained by
v > 0. This reflects the fact that an avalanche at the
surface cannot climb up the pile. Therefore, the cutoff-
function X also takes into account that the avalanche
is trapped at rest if v reaches zero at an angle ~p <
%. In all other cases, the system evolves dynamically.
Dynamic friction is modeled by a nonlinear friction
coefficient kd(V) = b0 + b2 v2 with b0 and b2 both
positive [15]. 1

The external rotational modulation about a zero
mean discussed in this paper varies periodically in
time according to

q)ext(t) = A sin vt (2)

with A and v > 0 being the amplitude and the
frequency of the external rotation modulation, re-
spectively. Eqs. (1) and (2) are invariant under the
combined transformation {A ~ - -A and t -->
t ÷ zr/v}, i.e. under the inversion of the sign of the
driving amplitude and a shift in time by one half of
the driving period.

The accessible driving amplitudes A in (2) are
restricted by the physics of the problem, and are
therefore small. This can be seen as follows: The
amplitude of  the external angle modulation q)ext mea-
sured in degrees is related to A by q)ext m (180A/7£')°.
For example, an external modulation of the angle
by 1 ° (5 °) corresponds to an amplitude A = 0.0175
(A = 0.087). Therefore, we restrict the following
discussion to modulation amplitudes A of  the order
0.1 or less. This limitation should also guarantee

1 The model in [12] is minimal in the sense that its friction
coefficient kd(V) is the simplest to fullfil the physical limits, in
particular the quadratic increase with v for large v. In particular
it differs from related models [10,11] by assuming that kd(v)
increases monotonically with v. It explains the stick-slip-stick
behavior without rotation, shows the periodic slip-stick and
constant flow dynamics in presence of constant rotation and
explains their transition. In particular, it also shows the correct
quadratic dependence of the inclination angle for constant flow
on the (constant) rotation rate as found experimentally by Ra-
jchenbach (cf. [3]). Finally, it allows for a simple scenario why
external, vertical vibration can lead to a logarithmic decay of
the inclination angle of the pile on an intermediate time scale,
cf. [13].

that generically no global circulation of the system
is excited. Finally, we restrict the discussion to driv-
ing periods 2zr/v that are typically of  the order of
the duration of  an avalanche or larger. This excludes
bouncing grain effects on the surface that happen very
likely in the high driving frequency limit. To study
the effect of the forcing (2) experimentally, one has to
create first a stable static granular pile being as close
as possible to the maximum angle of  repose and then
to turn on the sinusoidal external angle variations.

2.1. Derivation of  the minimal model

If A = 0, the dynamics of (1) and (2) is basi-
cally centered around the angle ~0d ---- arctan b0, being
smaller than %, by construction of  the model [12].
Shifting all angles according to ~ ( t )  = ~p(t) - ~0d,
non-dimensionalizing time by x / ~ t  ~ t and velocity
by ~ / ~ v  --+ v, and combining ( la) ,  ( lb)  and (2) in
order to eliminate v, we arrive at the following driven
nonlinear oscillator equation for the variations 4,(t)
about ~0d,

q~ - [3(cos • - g sin qs)(q6 _ A f  cos f t )  2

-- ~2 g sin q:']X (4L ~ )  = - - A f  2 sin f t  (3a)

with the cutoff-function

X(O, d~) = O(  A f  sin f t  -- cD) + 0 ( 0  - Os)

- O ( A f  sin f t  - q6)O(4~ - 4>s). (3b)

The coefficents in (3) are given by ~ = (b2g/a) cos ~Pd,
~02 = 1 / cos +Pd, and # = tan ~Pd. 4's = % -- ~0d is the
shifted maximum angle of  repose and f = v/v~d-~
denotes the scaled driving frequency. Taking into ac-
count that the velocity follows q~ according to v =
- ~  + A f  cos f t ,  Eq. (3) is still fully equivalent to (1)
and (2). Experiments for A = 0 [2,3] show that the
variations of  43 are only a few degrees and are there-
fore small enough to allow a small angle approxima-
tion in ¢' about +Pd- This will also be the same for not
too large external driving amplitude A as relevant in
this study. Therefore, Eq. (3) can be reduced to

- [~(q5 - A f c o s  f t )  2 -- ~22q)]X (q), q~)

= - - A f  2 sin f t ,  (4)
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which will be our working model for analytical cal-
culations in the following. Note that the modulation
of the rotation rate is reflected in (4) by driving terms
that enter parametrically and additively. From the ex-
periments for A = 0 [3,11], one can obtain estimates
for the order of magnitude of the parameters entering
in Eq. (4); S --- 0.1 and 120 --~ 1.1 seem to be typical.
The dynamics of Eq. (4) for A ---- 0 is a half-oscillation
of the harmonic oscillator with quadratic friction [15]
previously discussed in [ 12].

3. Linear dynamics induced by modulated
rotation

Previous analysis [ 12] suggests that ~ is very likely
a small quantity, S ~ O(0.1). Therefore, the limit ~ =
0 should already lead to valuable information on the
dynamics of (4) for small 3. In Section 4, we will sup-
port this statement with a dominant balance argument.
If S were equal to zero, Eq. (3) reduces to an additively
driven harmonic oscillator, i.e.

2.2. Rigid-body rotation

The simplest possible dynamical evolution of  (4) is
a modulated rotation of the whole granular pile as a
rigid body without avalanches taking place, i.e. v = 0
for all times. Assuming that the initial condition for
the angle at t = 0 is given by • (0) = q~i, the variation
of the surface angle is a pure sinusoidal rotation about
the initial angle

qb(t) = ~i + A sin f t ,  (5)

4- S-22~ g (~ ,  cp) = -z3 f2s in  f t ,  (7)

in the restricted phase space {qL qb} with the constraint
< A f  cos f t .  If qb = A f  cos f t ,  or equivalently

v -- 0, is reached, the system undergoes pure rigid-
body rotation as discussed in Section 2.2. Depend-
ing on the modulation amplitude A, the rigid-body
rotation can go on forever or a new avalanche can
start if the maximum angle of repose {it's is reached
again.

which instantaneously follows the external modula-
tion. This type of  motion, however, exists as aperma-
nent solution for all times t > 0 only if X --- 0, i.e. if
the initial angle ~i fulfills the condition A < q0s - ~i.

A rigid-body rotation can also appear as a perma-
nent dynamics after an avalanche came to a halt at
time th and angle ~h. For t > th, this solution reads

&(t) = q~h -- A sin f th + A s in( f t )  (6)

as long as ~ ( t )  < q~s. From Eq. (6) we see that the
rigid-body rotation (rbr) oscillates about a time aver-
age q}rbr = ~ h  - -  A sin fth. The averaged angle ~ r b r  is
in general different from ~h where the avalanche came
to a halt; only if th = nzr/ f  with integer n, ~ r b r  = ~}h
holds. Eq. (6) also yields a criterion whether rigid-
body rotation as long-time dynamics can appear at all.
The condition to be satisfied is q~ (t) < q~s for all times
t > th, or equivalently, q~h < 4~s -- A(I  -- sin f th) for
given q~h and th; otherwise, subsequent avalanches are
generated. So far, we have not yet determined the du-
ration of  an avalanche tn; this requires an analysis of
the dynamics of  (4) given in Sections 3 and 4.

3.1. Exact solution

Eq. (7) can be solved exactly. The initial conditions
at time t =- 0 we choose are an initial angle given by
the maximum angle of  repose, • (0) = q~s, and zero
initial velocity, v(0) = 0, or equivalently q~ (0) = Af .
In the following we suppose that the driving amplitude
A is positive. If A is negative, the system first un-
dergoes a rigid-body rotation for one half-period 7r/f
and then proceeds in the same way as for positive A.
This reflects the invariance of  Eq. (7) under the trans-
formation mentioned in Section 2.

If the driving frequency of  the rotation modulation
is different from the eigenfrequency, f 5~ 120, the
solution of  (7) reads

q)(t) = ~s cos $20t

AfX sin f t ]+ S 2 0 ~ 2  I - ~ s i n ~ 2 0 t -  , (8)

provided v > 0. If the driving frequency equals the
eigenfrequency, f --= ~0,  one obtains
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q~ (t) = q~s cos S20t

+ ½A[sin S20t + S-20t cos S20t], (9)

as long as v > 0.
The velocity v reaches zero for the first time at time

th (being the duration of the avalanching process) and
at the angle of  halt 4'h, given by the condition q5 (th) =
,4 f  cos f t h ,  or equivalently by

~ s ( ~ 2  _ f 2 )  sin(f20th)

+ , 4 f ~ 0 ( c o s  f t h  -- cos ff20th) = 0. (10)

The angle of halt @h(A) is the generalization of the
minimal angle of repose, ¢Or = q~h(A = 0), for non-
zero driving. The implicit  relation (10) for the duration
of  an avalanche is one of  the central results of  the
paper. Without driving, ,4 = 0, the duration of an
avalanche is given by th(A = 0) ---- ye/S20. For non-
zero driving amplitudes A, one sees that th = rr/S20
is a solution of  (10) provided that f is zero or an odd
multiple of  a"20.

3.2. Perturbation theory fo r  very small A

With ,4 being small, a perturbation analysis for the
duration of  the avalanche, th(,4), can be performed.
Inserting the expansion

a'20th (`4) = :7" + K I  A +X2 A2 + O ( A  3) ( l l )

in (10) and introducing the frequency ratio r -- f /S2o,
one obtains for the expansion coefficients

r cos(rye) + 1
Jq - , (12a)

qOs 1 - r 2
r 2 sin(rye)

x 2 -  qO s 1 - r  2 Xl (12b)

Since tq is positive (negative) if f < ~20 ( f  > ~20),
the duration of an avalanche is increased (decreased)
for f < ~0  ( f  > £2o). The angle of  halt, q~h = ¢'(th),
where the avalanche stops, is given in lowest order
correction in ,4 by

r 2 sin(rye)
fi0h = --¢Ps 1 -- r 2 ,4 + O(A2)" (13)

In Fig. 1 we show the dependence of ~0th and ~h
on the frequency ratio r in a range 0 < r < l0 for

a modulation amplitude A = 0.002. If r > 3, the
duration of  the avalanche th possesses maxima given
by ye/I20 at odd values of  r and minima close to even
values of r; the minima are less pronounced for larger
r. For r < 3, the behavior is different: S20th has a very
pronounced maximum at about r = l ,  reaches I20th =
Jr at r = 1, and has a very pronounced minimum close
to r = 2. If r > -~, the angle of halt, q0h = --~/'s,
oscillates about the angle of  repose ~/'r --  qSh(A = 0)
and possesses alternating minima and maxima at odd
multiples of r = l" For 0 < r < 2, the modulus
of  the angle of halt q0h is considerably increased in
comparison to the non-modulated case, implying the
avalanche stops at smaller angles.

Inspection of (11) and (12), however, shows that
the radius of  convergence of expansion (11) is rather
small, In fact, (11) is actually an expansion in terms of
A / ~ s .  Since q0s is half of the difference between the
maximum and minimal angle of repose, q~s = l (~0s -
~Pr) when no modulation is present, qSs is typically of
the order of  a few degrees or equivalently, of the order
O(10-2) .  Therefore, the validity of (11) is restricted
to very small driving amplitudes A being of the order
0.001 or less.

3.3. Numerical results

For driving amplitudes A of the order 10 -2  or 10 -1
the avalanche duration th has to be calculated numer-
ically, either by finding the roots of  (10) or by numer-
ical integration of (7) until v = 0 has been reached
for the first time. In Fig. 2, we show the dependence
of  the duration th of  the first avalanche as function
of the forcing frequency f ,  reduced by £20, for three
different forcing amplitudes, A = 0.01,0.05,  0.1. As
representative values, we have used S20 = 1.1 and
q~s = 0.014; they are estimates [12] based on data of
the experiment of  Jaeger et al. [2]. Several important
effects can be observed:

(i) For driving frequencies f smaller than a'20, the
duration of an avalanche is significantly en-
hanced. This enhancement is larger for larger A,
with a maximum that is shifted closer to f = 0
for larger A.
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Fig. 1. Dependence of (a) the duration t h of an avalanche (multiplied by £2o) and (b) the angle of halt @h of the surface as function
of the frequency ratio r = f/£20, for a very small driving amplitude A = 0.002. Other parameters are £20 = l.l and @s = 0.014.
For this value of A the perturbation theory (cf. Section 3.2) is still accurate.

(ii) If  the driving f requency f equals the eigenfre-
quency £20, the duration of  the avalanche is equal
to the duration without  rotation modulat ion,
A = 0 .

(iii) For  driving f requencies  f > £20, the duration of
an avalanche cannot  exceed  th(A = O) = 7r/£2o
and is in general  significantly decreased.

(iv) For  A = 0.01, the dependence  of  the duration of
the avalanche is quali tat ively similar  to the case
of  very small A as discussed in Sect ion 2.2 (cf.
also Fig. 1). The major  differences are that the
wells  be tween  the max ima  are more  asymmetr ic
and the min ima  are shifted to larger r -va lues  (cf.
Fig. 2(a)).

(v) For  A = 0.05, 0.1, one can see drastic changes
of  th for f requencies  f > £2o. At  odd mult iples
of  the e igenf requency  £20, the avalanche dura-
tion does not last until th(A = 0) = 7r/£20 any
more;  th is significantly decreased.  In addition,
the avalanche duration th possesses as function
of  the f requency ratio r step-like discontinuit ies
where  th jumps  to a higher  value if  r is infinites-
imal ly  increased.

i (~) | I i I

4-

2 -

0 I I I I

a°  4 .  (b)

'[ k ,  ' ' '

01 J J ~ ,

0 2 4 r 6  8 I0

Fig. 2. Dependence of the duration t h (multiplied by £20) of
the avalanche on the frequency ratio r = f /£2 o for three dif-
ferent values of the driving amplitude A, (a) A = 0.01, (b)
A = 0.05, and (c) A = 0.1. Other parameters are Cs = 0.014
and £2 o = 1.1. Without rotation modulation, A = O, £20th
equals n.
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Both phenomena in (v) can be understood by con-
sidering the structure of the zeroes of Eq. (10). For
A = 0.01 and f > 1-20, Eq. (10) possesses only one
real root in the interval 0 < th < 7r/£20 for each
r = f/X-2o. The dependence of this root of (10) on
the frequency ratio r consists of wells with minima
between the maxima at integer odd multiples of r
(cf. Fig. 2(a)). Increasing A changes the well struc-
ture of th(r); the wells become more and more asym-
metric, the minima of the wells bend downwards to
smaller values of th and to larger values of r. For
large enough A, the wells "fold" back in a hysteretic
way after reaching their minima. The minimum e.g.
of the "folded" well between the maxima at r =
2n + 1 and r = 2n + 3  (with integer n > 1) is
then located in the range 2n + 3  < r < 2n + 5 .
Equivalently, for large enough A, there exist three real
roots of Eq. (10) in the interval 0 < th < 7r/S20
for each r = f/£2o > 1. Since the avalanche stops
at the first positive root of (10), there are discon-
tinuities ("jumps") at values of the frequency ratio
where the folded wells cease to exist and therefore, the
roots th ---- 7r/S20 at odd integer r-values are covered
up.

In Fig. 3, we show the dependence of the angle of
halt q0h (reduced by its value for A = 0, q0h(A =
0) = --q~s) versus the frequency ratio r = f/~2o
for the same parameter values as in Fig. 2. For A =
0.01, the variations of q~h(r) are qualitatively simi-
lar to the case A = 0.002 (cf. Fig. l(b)); the min-
ima of ~h(r) ,  however, are wider and the maxima
are narrower. The maxima of q~h(r) occur at the min-
imum values of th(r). For larger A-values of 0.05
and 0.1, there are again drastic changes in compari-
son to the behavior for A = 0.01. One can see from
Fig. 3 that there are discontinuities of q~h where an
infinitesimal increase of r leads to a strong decrease
of ~h. These jumps of the angle of halt occur at the
same values of r as the jumps of the duration of the
avalanche, th. From Fig. 3(b) and (c), one can also
see that the angle of halt q~h is strongly decreased
in comparison to the non-modulated case q~h(A =
0)/q~s = --1 for most of the frequency ratios r. In
particular, the first minimum of 4~h is the most pro-
nounced for A = 0.05 (A = 0.1) about 7.5 (14)

O (a)

L I I I I

1
I I I I /

~h/~O ~

-IO

0 2 4 6 8 I0

Fig. 3. Dependence of the angle of halt ~h(r, A) of the
avalanche (reduced by its angle of halt for A = 0 ,~r = --q~s)
on the frequency ratio r = f/~o for three different values of
the driving amplitude A, (a) A = 0.01, (b) A = 0.05, and (c)
A = 0.1. Other parameters are q~s = 0.014 and I20 = 1.1.
Without rotation modulation , A = 0, ~h/~Pr equals --1.

times -4~s. Only for values of r in the neighborhood
of the discontinuities, is the angle of halt 4~h larger
than - 4~s.

4. Nonlinear dynamics induced by modulated
rotation

In this section, we discuss the avalanche dynamics
of the fully nonlinear model 2 (see also footnote 1),
Eq. (4), and, in particular, the impact of non-zero 3. We
distinguish between two ranges of driving frequencies

f.

4.1. Ver b, small frequencies -adiabatic limit

In the adiabatic limit, f --+ 0, the system evolves
like the unmodulated system until it reaches zero
velocity at 4~h, basically given by the minimal an-
gle of repose ~r  = - ~ s ( 1  - 43~s) + 0 ( 3  2) [12].

2 The distinction between linear and nonlinear dynamics is
based on the behavior of the dynamical friction coefficent kd (v).
All terms proportional to 6 result from the nonlinear (velocity-
dependent) contributions to kd(v), since 6 ~ b2.
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The duration of  the avalanche is determined by
tr = (zr/£20)(l + ~A2~2)+O(84) .  Since ~3 _~ O(0.1)
and 4~s ----- O(0.01), the corrections to these results for
zero non-linearity are small and probably hard to ob-
serve experimentally. After having reached v = 0, the
system will follow instantaneously the rigid-body ro-
tation, Eq. (5), with q~i = ~ r  provided A < q~s - ( P r .

4.2. Larger frequencies - dominant balance

In order to see the effect of the nonlinear terms in
Eq. (4), we have performed numerical integrations of
Eq. (4) to determine the duration of an avalanche and
the angle of  halt for the parameter sets used in Figs. 2
and 3. The results of  the nonlinear model agree within
line width with the results in section 3C for 8 = 0.
The reason why there are no significant changes of the
duration of  an avalanche due to the incorporation of
the nonlinearity 8, can be understood on the basis of
the following dominant balance argument: If there is
no rotation modulation present, A = 0, 4~ and its time
derivatives are of  the order 4~s [ 12]. For small driving
amplitudes A (as relevant in our study), this scaling
is unaltered. Therefore, we can rescale Eq. (4) by 4~s.
Introducing x(t)  = ~ ( t ) / ~ s  being a quantity of unit
order, Eq. (4) reads

£ + S 2 2 x - -  Af~2sin f t  + 8 ~ s 2 2
~s

8 A 2 f  2
-- 26 A f ,f cos f t + cos 2 f t .

~s
(14)

After multiplication with ~ s / A f  2, the four terms on
the right-hand side of (14) scale like

1 ' ~ 2 6 .  ~s~
A f  z f • z38, (15)

where we have used that 2(t) and the trigonomet-
ric functions are quantities of  unit order. Since 8
O(10 - l )  and since the physically accessible ranges
of A reach from O(10 -3) to O(10-1),  relation (15)
implies that the three 8-dependent terms are small in
comparison to the first term in (15). This holds pro-
vided t ha t  A f  2 >> 8 ~  2 --~ O(10 -5) and f >> ~4~s --~

                                                

O(10-3).  Therefore, the impact of  the terms propor-
tional to 8 in Eq. (4) do not change the dynamics qual-
itatively or even quantitatively in a significant way in
comparison to the case 8 = 0 discussed in Section 3.
As a consequence, the avalanche duration th deter-
mined by Eq. (10) and the angle of halt, determined
by ~h = 4~(th) using Eq. (8), approximate the exact
values very accurately. Only for very small driving
frequencies f ___ O(10 -3) or less, the second term in
(15) dominates. In this case, the dynamics of Eq. (4)
is basically unaffected by the modulation and the adi-
abatic limit discussed above applies.

5. Successive avalanching

So far, we have discussed the changes of the dura-
tion and the angle of  halt of the initial avalanche due to
additional rotation modulation. As already mentioned
in Section 2.2, the dynamics can be even richer: De-
pending on the modulation frequency and modulation
amplitude, a series of  successive avalanches can be ex-
cited. This successive avalanching differs significantly
from the periodic avalanching due to rotation with
a constant, small rotation rate [3,11,12]. Successive
avalanching due to periodic rotation modulation about
a zero mean is generically a non-periodic process.

5.1. Numerical example

As a typical example we show in Fig. 4(a) the time
evolution of velocities of the successive avalanches
and in Fig. 4(b) the trajectories in the {v, ~J-phase
space obtained from a numerical integration of  Eq. (4)
for A = 0.1 and f = 5 S20 in a time range 0 < t < 15.
The system was started at time t = 0 infinitesimally
above the maximum angle of repose. From Fig. 4(a)
one sees that a first avalanching event with a large
maximum velocity and duration is followed by sub-
sequent avalanches with much smaller maximum ve-
locity and duration. The spacings between successive
avalanches, i.e. the duration of  the rigid-body rotation
with v = 0, are not constant. In addition, one can see
from the phase space plot in Fig. 4(b) that the angle of
halt of  the subsequent avalanches slightly increases.
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Fig, 4. (a) Velocity v(t) of successive avalanches and (b) trajectories in the phase space spanned by {v, q~} obtained by numerical
integration of Eq. (4). All avalanches start at the maximum angle of repose determined by q~s = 0.014; other parameters in (4) were
fixed to ~0 = 1.1, 3 = 0.1, A = 0.1 and f = (5/2)J20.

5.2. Theoretical considerations

To understand the effect of successive avalanch-
ing analytically, we have to combine several results
obtained previously in this study. Since we have nu-
merically checked that setting ~ = 0 does not show
any significant differences of the velocity evolution in
comparison to realistic values of 6 "~ O(0.1), it is suf-
ficient to discuss the approximation 3 : 0. The first
avalanche starts at time t = tsl = 0 and at the max-
imum angle of  repose 4,(0) = q~s with ~6(0) = A f
and stops at time thl = th and at the angle of halt
~hl  --= q~h; the values can be calculated from Eqs. (9)
and (10). Then, the system undergoes r igid-body rota-
tion according to ~ ( t )  --- q~hl -- A sin f th l  + A  sin f t .
If q~s -- q~hl < A(1 -- sin f t h l ) ,  the system will even-
tually reach the maximum angle of  repose, q)s, again
at time ts2. In contrast to the first avalanche, the time
derivative • (ts2) = A f  cos f ts2 is in general different
from and smaller than the time derivative of  the angle
of the first avalanche at its start. This explains why the
first avalanche possesses the largest maximum veloc-

ity and the largest duration and also why subsequent
avalanches differ in their maximum velocity and dura-
tion. With the new initial condition for the time deriva-
tive 45 (ts2), the next avalanche starts. In Appendix A,
we present a general analytical method to derive the
process of successive avalanching. Depending on the
entering parameters, this process can go on forever
or end up in a pure rigid-body rotation. The iterative
procedure in Appendix A also shows that (i) the suc-
cessive avalanching process depends strongly on the
history of the process, particularly on the duration of
all previous avalanches and on all previous r igid-body
rotations and (ii) the duration of the avalanches as well
as the duration of  the r igid-body rotations between
them are not constant and do not seem to vary in a
periodic way.

6. Summary

We have studied the dynamics of  avalanches
along granular piles induced by periodic rotation
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modulation, qgex t = z~ sin f t ,  about a zero mean
rotation rate. Although this effect has not been con-
sidered in the literature yet, it should be realizable in
standard rotating drum experiments (as used e.g. in
[2,11]). In our theoretical study which is based on a
generalization of a recent mean field model [12,13],
we have found a variety of  new interesting dynamical
phenomena. The most important results are:

(i) Due to rotation modulation, the duration of an
avalanche and the angle of  halt of  the surface
of the granular pile are significantly altered; in
particular, the duration of the first avalanche
is prolonged for small driving frequencies and
shortened for larger driving frequencies.

(ii) For the physically relevant parameter ranges, a
discussion of the linearized dynamics seems to
be sufficient. The velocity dependence of  the dy-
namical friction coefficient has no significant ef-
fect on the dynamics in presence of  modulated
rotation about a zero mean. This implies that the
core of our study, Sections 3 and 5, also applies
to mean field models with small negative differ-
ential friction [10,11]. Moreover, the dynamical
behavior under periodic rotation is quite different
from the one under constant rotation and/or ver-
tical vibration [12,13] where the nonlinearity in
the friction coefficient plays the key role. There-
fore, the relevance of  the velocity dependence
in the friction strongly depends on the type of
driving.

(iii) Rotation modulation can excite successive
avalanching if the modulation amplitude A is
large enough. In the example that we have stud-
ied, a large first avalanche is followed by many
smaller ones with smaller and smaller maximum
velocities. This successive aperiodic avalanching
due to periodic rotation moduation seems to be
generic.

An implicit assumption of  our model is that the
inclined surface remains basically flat during the mod-
ulation. This assumption might not be true if the ro-
tation frequency is too large, and might restrict the
applicability of our model. Therefore, we hope that
our theory will stimulate further experimental studies
on this subject in the near future.

Appendix A

Here, we provide - in form of an iterative pro-
cedure - the general formulas to analyze the suc-
cessive avalanching process discussed in Section 5.
The successive avalanching process alternates between
avalanche ("slip") and rigid-body rotation ("stick")
contributions. The main point in the following is that
avalanches can only start at the maximum angle of re-
pose q~s. The slip and stick contributions can be cal-
culated as follows.

(1) Avalanches." The avalanche i started at time tsi
and at the maximum angle of repose ~s obeys - in

2= 0-approximation - Eq. (7), i.e. ~av + ~0 4~av =
- - A f  2 sin f t ,  with initial conditions tibav(tsi ) = ~s
and 4 5 a v ( t s i )  = A f  cos( f t s i ) .  Its solution for t > tsi
is given by

qOav ( l )
A

: ~ s  COS[S20(t - -  ts i)]  +
a'-22/f 2 -- 1

S20
x s in( f t s i )  cos[S-20(t -- tsi)] + ~ -  cos( f t s i )

sin[S20(t -- tsi)] - -  s in ( f  t) l • (A.1)x

The avalanche i stops at time thi and at the angle
tlbhi = @av(thi) given by the first zero which fulfills
the zero-velocity condition 45 (thi) = A f  cos f thi  and
is larger than tsi. Explicitly, the condition for thi reads

0 --= ~s(f22 -- f2 )  sin[f20(thi -- tsi)] + Af f f20

x [COS(fthi) -- COS(ftsi) COS [S20(thi -- tsi)]]

+ A f  2 s in( f t s i )  sin[f20(thi -- tsi)]. (A.2)

Setting tsi = 0 yields the solutions for the initial
avalanche given in Eqs. (9) and (10).

(2) Rigid-body rotation." The solution of the rigid-
body rotation after the avalanche i came to a halt
at time thi and at the angle of halt (Ph i  c a n  be ob-
tained from 45rbr(t)  = A f COS f t  with initial condi-
tions tibrbr(/hi ) : tPhi.  For t > thi one obtains

t i b r b r ( t )  = <Phi - -  A sin f thi  + A sin f t  (A.3)

and holds as long as  tibrbr(t) is smaller than the max-
imum angle of  repose 4~s. If t i b rb r ( t  ) = t:ib s is fulfilled
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for the first t ime again, the r igid-body rotation ceases
to exist. The  corresponding t ime tsi+l is the initial
t ime of  next avalanche,  given by the first zero of

1
sin f t s i ÷ l  = ~(qSs  - -  ( iOh i )  - l -  sin f t h i ,  (A.4)

which is larger than thi. Eq. (4) shows that a finite
tsi+l can only exist  i f  A ~ O(q5 s -- 4'hi); for too small
driving ampli tudes ,6, there does not exist  any solution
of  (4) implying that no next  avalanche develops.

From the preceding discussion fol lows:  For  each
avalanche,  one has to calculate  three quantit ies:  (i) the
initial t ime tsi (ii) the t ime when  the avalanche stops
again, thi, and (iii) the angle of  halt q~hi. In general,
these three quantit ies differ in general  f rom avalanche
to avalanche and lead to aperiodic avalanching.  An
expansion in small  ,6 to obtain explici t  results for thi
and q~hi is not  helpful;  for the range of  validity of
this expansion,  one can gener ical ly  observe only one
avalanche.
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