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Coherent and Incoherent Quantum Stochastic Resonance
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We study quantum stochastic resonance (QSR) in the periodically driven biased spin-boson system.

The amplitude and the phase of the nonlinear response function vs temperature are studied in the
incoherent and coherent tunneling regimes, encompassing adiabatic and nonadiabatic driving, weak and
strong Ohmic coupling a. For a ­ 1y2 we present exact QSR results. As a general feature, a principal
maximum appears when the static asymmetry exceeds the driving frequency and strength. Moreover,
the nonlinear QSR shows a noise-induced suppression of higher harmonics and a characteristic phase
shift.

PACS numbers: 05.45.+b, 03.65.Sq
The process whereby noise operates on a bistable sys-
tem enhancing the response to an external periodic signal
has been termed stochastic resonance (SR) [1]. Since its
discovery in 1981, this intriguing phenomenon has been
the object of many investigations [2,3]. Classically, the
resonance condition is assumed when the thermal hop-
ping frequency is near the frequency of the modulation.
Upon decreasing the temperature, quantum tunneling be-
comes increasingly important. Its role has only started
to be explored. Above a crossover temperature T0, ther-
mally activated transitions dominate over quantum tunnel-
ing events [4]. The effects of quantum noise then result
in a quantum correction factor of the classical rate of ac-
tivation [5]. As the temperature is decreased below T0,
tunneling transitions prevail. The aim of our study herein
is the exploration of quantum stochastic resonances in the
deep quantum regime 0 # T ø T0. The quantum noise
is characterized by the temperature of the thermal bath
and by the coupling strength of the bistable system to the
environment. In the absence of driving, at sufficiently
high temperatures and/or coupling, the dissipative effects
are so strong that quantum coherence is completely sup-
pressed by incoherent tunneling transitions. In this case
the dynamics can be modeled by rate equations. This pic-
ture still holds for low-frequency driving [6].

The role of incoherent transitions at low-frequency
driving for classical SR has been addressed first
in Ref. [7] and its extension to quantum stochastic
resonance (QSR) in [8]. In [8] it is found that QSR suc-
ceedingly vanishes as the equality between forward and
backward transitions is approached. In contrast, for
classical SR, the resonance is maximal in the ab-
sence of asymmetry [9]. As the external frequency
is increased and/or when the temperature is lowered,
quantum coherence and/or driving-induced correla-
tions render the dynamics intrinsically non-Markovian
[10]. In this work we predict various novel QSR
phenomena, both for coherent (conventional quantum
coherent regime for adiabatic driving and low tempera-
tures; driving-induced coherent regime for nonadiabatic
driving) and incoherent driven quantum dynamics. Apart
0031-9007y96y76(10)y1611(4)$10.00
from the generic amplification of the first harmonic of the
periodic quantum output, we also discover the existence
of the quantum analog of noise-induced suppressions of
higher harmonics [9], and, correspondingly, a disconti-
nuity in the phase shift between periodic response and
applied driving signal.

As a working model we consider a two-level-system
(TLS) Hamiltonian. Here the bath is described as an
ensemble of harmonic oscillators with a bilinear coupling
in the TLS-bath coordinates, and we allow for an externally
applied harmonic force sh̄êyad cos Vt
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The s’s are Pauli matrices, and the eigenstates of sz are
the basis states in a localized representation, while a is
the tunneling distance. The tunneling splitting energy of
the symmetric TLS is given by h̄D, while the asymmetry
energy is h̄e0. As far as the properties of the TLS are
concerned, the coupling to the bath is fully characterized
by the correlation functions of the stochastic force jstd ­P

a caxa in thermal equilibrium [11,12],
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and kjstdlb ­ 0, where b ­ 1ykBT is the inverse of
the temperature. Jsvd is the spectral density of the en-
vironment, and we make the specific choice of Ohmic
dissipation Jsvd ­ s2p h̄ya2dave2vyvc , where a is the
dimensionless coupling strength and vc is a cutoff fre-
quency [11,12]. The dynamical quantity of interest is
the quantum expectation value Pstd ­ kszstdl. The com-
bined influence of dissipative and driving forces at in-
termediate times results in a reduction of the coherent
tunneling motion of the isolated TLS by incoherent tun-
neling transitions. For times t large compared to the time
scale of the transient dynamics, the motion acquires the pe-
riodicity of the external perturbation, and Pstd reaches the
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asymptotic value

lim
t°!`

Pstd ­ Psasdstd ­
X̀

m­2`

PmsV, êde2imVt. (3)

The harmonics Pm of Pstd present the quantity of interest
to investigate the nonlinear QSR. In the linear response
approximation, only the harmonics 0, 61 of Psasdstd are
different from zero, P0 being just the thermal equilibrium
value in the absence of driving and P61 ­ h̄êxs6Vd
being related to the linear susceptibility xsVd by Kubo’s
formula. With increasing strength ê higher harmonics
become important. The amplitudes jPmj determine the
weights of the d spikes of the averaged spectral power
density in the asymptotic state Ssasdsvd via the relation [13]

Ssasdsvd ­ 2p
X̀

m­2`

jPmsV, êdj2dsv 2 mVd . (4)

Thus, in order to investigate QSR we shall examine the
power amplitude hm in the mth frequency component of
1612
Ssasdsvd and the associated phase shift wm as well, i.e.,
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In doing so we shall take advantage of novel results
for the dynamics of driven-dissipative two-state systems
[6,10,14]. An exact formal solution for any strength of
the external force can be obtained using a real-time path
integral approach. It is in the form of a power series in
the tunneling transitions. The series can be summed up
exactly in analytic form for the special value a ­ 1y2 of
the Ohmic strength, to give
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2ê

V
sin

vt

2

∂
,

h2k11sl, gd ­ s21dk sin pa
Z `

0
dt e2lt2gty22Sstde2isk11y2dVt cosse0tdJ2k11

µ
2ê
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Here, Sstd ­ 2a lnsh̄bvcypd sinhsptyh̄bdg, Jmszd is a
Bessel function of the first kind, and g ­ pD2y2vc is the
renormalized tunneling frequency De [see Eq. (11) below]
for a ­ 1y2. In Fig. 1 the fundamental amplitude h1

is plotted as a function of the temperature for different
asymmetries e0. It exhibits a bell-shaped maximum only
when the static asymmetry exceeds both the external
frequency and strength. A double peak appears at the
lowest temperatures in the curve with ê ­ V ­ e0y2
(middle curve). Also, in the associated phase shift w1 the
double resonance structure is observed (not shown). In the
inset, h1sVd is depicted. In contrast to the undriven case
(at a ­ 1y2) where only incoherent tunneling occurs, we
find a driving-induced coherence in the temperature region
where the secondary peak of h1sT d appears, as shown by
the presence of resonances near submultiples of e0 (full
line in the inset). As the temperature is increased, the
coherence is lost (dashed line). In the temperature region
where the SR maximum appears, incoherent transitions
prevail.

In the static case sê ­ 0d, the major difficulty for an
analytic resummation of the series arises from the bath-
induced correlations between different tunneling transi-
tions. Further, it is known that a perturbative approach
would fail in describing the destruction of the quantum
coherent motion induced by the environmental stochas-
tic forces at finite temperatures. In the presence of time-
dependent driving, the situation is even more intricate
since one also has to take into account the correlations in-
duced by the external field. The bath-induced correlations
can be treated within the noninteracting-blip approxi-
mation (NIBA) for the stochastic force, whose range of
validity has to be determined self-consistently [10]. A set
of coupled equations for the Fourier coefficients Pm can
be derived for any strength and frequency of the driving
force, yielding the non-Markovian result
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FIG. 1. Amplification vs temperature of the fundamental am-
plitude h1 [cf. (5)], via quantum SR, for different asymmetries
e0 and ê ­ V ­ 5 in the exactly solvable case a ­ 1y2 of the
Ohmic strength. The inset depicts h1 vs driving frequency V
at e0 ­ 10, ê ­ 5. The two temperatures show the transition
from the coherent to the incoherent regime. Frequencies are
given in units of g, temperatures in units of h̄gyk.
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The coefficients fm are defined by Eq. (7) via fm ­
D2hms2imV, 0d; for the gm one has
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In the low-frequency regime V ø akTyh̄, Eqs. (8)
and (9) can be simplified because, to leading order,
driving-induced non-Markovian correlations do not
contribute. The asymptotic dynamics is intrinsically
incoherent and governed by the equation ÙPsasdstd ­
2gastd fPsasdstd 2 Peqstdg, possessing the form of
a rate equation with a time-dependent rate gastd ­
Re Sf´stdg and time-dependent adiabatic equilibri-
um Peqstd ­ 2 tanspad Im Sf´stdgyRe Sf´stdg. Here,
´std ­ e0 1 ê cos Vt plays the role of a time-dependent
adiabatic asymmetry,
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while G denotes the gamma function and De ­
DsDyvcdays12adfcosspadGs1 2 2adg1ys222ad. The rate
equation can be solved in terms of quadratures to give
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Equation (12) completely describes the nonlinear dy-
namics at low frequency within the validity range
of NIBA. We observe that classical nonlinear SR
has been recently investigated in a SQUID system
[15]. Lowering further the temperature brings the
system into the regime of Eq. (12) where nonlinear
QSR could be observed for a macroscopic quantum
system. At low frequencies, NIBA is justified for
strong damping a . 1, while for weak coupling a , 1
it is valid in the region akT $ h̄D or j´stdj ¿ D.
In the small coupling limit a ø 1 the relaxa-
tion rate in (12) becomes

gastd ­ paD2
e
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s2pakTyh̄d2 1 ´std2 coth

h̄´std
2kT

,

(13)

and Peqstd ­ tanhfh̄´stdy2kTg. It should be noted that
in the nonlinear regime ê ¿ e0 the presence of the
term 2pakT in the denominator is crucial since ´std
is zero at any instant t, obeying t ­ 1yV arcosse0yêd.
This explicitly shows the breakdown of any perturbative
approach to deal with time dependent problems at high
temperatures in the nonlinear regime.

At low temperatures akT # h̄D and weak coupling
NIBA fails to predict the correct long-time behavior be-
cause the neglected bath-induced correlations contribute
to the dissipative effects to first order in the coupling
strength. Nevertheless, at low temperatures, where con-
ventional quantum coherence occurs, a perturbative treat-
ment is allowed [11,12]. A solution of the dynamics can
then be discussed in the low-frequency regime êV ø D2

where the tunneling motion may be treated in the adiabatic
limit [14]. In the adiabatic regime and for weak coupling,
Psasdstd is simply related to the function Nstd, represent-
ing the population difference between the lower and upper
eigenstates of the driven two-state system, by Psasdstd ­
h̄´stdyEstdNstd. Here Estd ­ fD2 1 ´std2g1y2 is the time-
dependent level splitting. One then finds that Nstd obeys
the first order differential equation ÙNstd ­ 2gstd fNstd 2

Neqstdg, which is again in the form of a rate equation with
a time-dependent rate gstd ­ paD2yEstd coth Estdy2kT
and time-dependent adiabatic equilibrium value Neqstd ­
tanh Estdy2kT . Again this equation can be solved in terms
of quadratures to give for the harmonics of Psasdstd
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Equations (12)–(14) capture the essential features of
the dynamics of the driven TLS for low frequencies and
weak coupling in the whole temperature range. For strong
coupling, Eq. (12) holds down to the lowest temperatures.
Figure 2 shows the behavior of h3 vs temperature. We
discover the quantum analog of noise-induced suppression

FIG. 2. Noise-induced suppression of the third amplitude
h3 vs temperature in the low-frequency regime (14) as the
frequency is decreased. The inset depicts the discontinuity
in the associated phase shift in correspondence to the NIS.
Frequencies are given in units of D, temperatures in units of
h̄Dyk.
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(NIS) of higher harmonics [9,15] as the frequency is
decreased. Correspondingly, in the inset the associated
phase shift shows a sharp discontinuity at the very same
value of the temperature where the NIS appears.

As the frequency is increased, non-Markovian cor-
relations become increasingly important rendering the
solution of Eqs. (8) and (9) extremely difficult. Nev-
ertheless, a high-frequency approximation can be dis-
cussed when the condition yse0d ø V is met [16]. Here,
yse0d := limê!0 g0s0d ­ Re Sse0d is the only nonvanish-
ing coefficient gm in (10) for zero external field. It defines
the time scale for the system to reach thermal equilibrium
in the absence of driving. To leading order we then find
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The dynamics described by (15) can be highly coherent as
revealed by a numerical analysis of the Fourier coefficient
P1sV, êd as a function of the driving frequency: When
the external frequency matches fractional values of the in-
trinsic bias, resonances are found (not shown). At higher
frequencies, the spectral amplitude hm is completely sup-
pressed, when êyV is a zero of the Bessel function either
of order zero J0sêyVd or of JmsêyVd. QSR phenomena
at high frequency are presently the objects of more de-
tailed investigations.

In summary, we studied novel QSR phenomena in the
deep quantum regime. We found that quantum noise can
substantially enhance or suppress the nonlinear response.
In particular, the occurrence of NIS allows a distortion-
free amplification of signals in quantum systems. The
possibility of QSR in the presence of coherent tunneling
carries a great potential for applications, as they emerge
in the task of controlling persistent quantum coherences
in complex systems by use of tailored laser pulse se-
quences [17]. These novel QSR phenomena may be de-
tected by measuring the ac conductance in mesoscopic
metals [8,18], in ac-driven atomic force microscopy [19],
investigating ac-driven hydrogen tunneling in metals [20],
or in driven macroscopic quantum systems [15]. Hence,
quantum noise does not represent a nuisance, but rather
can be a useful tool when interplaying with external peri-
odic perturbations.
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