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Regular and Chaotic Transport in Asymmetric Periodic Potentials: Inertia Ratchets
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Motivated by recent work on stochastic ratchets, we consider the effect of finite inertia onto

the directed motion in a deterministically rocked, periodic potential lacking reflection symmetry.
Characterizing the motion by cumulants of the contracted, time-dependent solution of the Liouville
equation, we can distinguish regular from chaotic transport. The first cumulant describes a stationary
current that exhibits multiple reversals versus increasing driving strength, whereas the second
cumulant yields a measure for its variance. Chaotic transport exhibits universal (Gaussian) scaling
behavior. [S0031-9007(96)00064-6]

PACS numbers: 82.20.Mj, 05.40.+j, 05.45.+b
It is generally appreciated that—in accordance with the
second law of thermodynamics—usable work cannot be
extracted from equilibrium fluctuations. Devices and phe-
nomena that are only in apparent contradiction with this
second law have been discussed by Feynman, Leighton,
and Sands [1] and even much earlier in the heyday of
Brownian motion by Smoluchowski [2]. In the presence
of nonequilibrium forces the situation changes drastically.
Then, directed transport of Brownian particles in asym-
metric periodic potentials (ratchets) can be induced by the
application of nonthermal forces [3–8] or with the help
of deterministic, periodic coherent forces [4,9,10]. These
nonequilibrium models recently gained much interest in
view of their role in describing the physics of molecu-
lar motors [5,6] and their potential for novel technologi-
cal applications on nanoscales and microscales [11]. The
previous literature on these schemes is characterized by
the limitation of using an overdamped ratchet dynamics
throughout. A particular challenge thus presents the study
of finite inertia for the ratcheting mechanism in the absence
of thermal and nonthermal forces. With finite inertia, the
dynamics is allowed to become more complex, exhibiting
both regular and chaotic behavior. Using the model of a
periodically rocked ratchet, we shall investigate the mu-
tual interplay of regular and chaotic dynamics for directed
transport, in particular, to what extent deterministically in-
duced chaos mimics the role of noise. In doing so, we use
novel diagnostic tools, such as the behavior of cumulant
averages for the phase-space probability, whose time evo-
lution is governed in the deterministic limit by a dissipa-
tive, nonautonomous Liouvillian. Nonstationary effects,
such as the broadening of the phase-space probability—
a measure for the fluctuations of the net-flux (on a coarse
grained scale)—are taken into account by not applying pe-
riodic boundary conditions.
As a working model, we use an underdamped particle,

periodically driven in an asymmetric periodic potential,
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eẍstd 1 Ùxstd ­ 2
d

dx
Vmsxd 1 A sinsVtd , (1)

with the potential shown in Fig. 1 (see also [10])
Vmsxd ­ 2sinsxd 2 m sins2xd . (2)

All variables in (1) and (2) are scaled dimensionless andm

is set to m ­ 1y4 throughout this work.
We first briefly discuss the case of massless particles

(e ­ 0), i.e., overdamped motion. The motion is bound
for driving amplitudes A , A0sVd; i.e., the solution of
Eq. (1) approaches a function which is periodic in time for
large times. For A0sVd , A, the motion can become
unrestricted. The average velocity assumes an asymptotic
value (that is independent of the initial conditions) of the
form

ynm ­
xst 1 nT d 2 xstd

nT
­

m
n

V , (3)

with integers m and n. A direct consequence of the
overdamped motion is that the net flux is directed towards
the shallow side of the ratchet (positive current), i.e.,
m, n . 0 in Eq. (3). For finite mass e, the situation is

FIG. 1. The ratchet potential Vmsxd ­ 2 sinsxd 2 m sins2xd
for m ­ 1y4, as used in the text.
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different. The trajectories described by (1) can become
chaotic; i.e., the trajectories are erratic on a time scale large
against the largest Liapunov coefficient and the net flux can
go in both directions. This raises the key question studied
in this paper: How does intrinsic chaotic motion resemble
noise driven motion in ratchets?
Equation (1) has a variety of solutions which can be

obtained by numerical integration. We are using their
transport properties as a classification criterion. Reg-
ular trajectories are described by xst 1 nT d ­ xstd 1

2pmwith n [ N andm [ Z . Regular, nontransporting
trajectories are being characterized by tuples sn, m ­ 0d.
Regular, transporting solutions are characterized by the
tuples sn, m fi 0d. These trajectories are periodic with
period n (subharmonic for n . 1) on a toroidal phase
space obtained by using periodic boundary conditions;
i.e., x is identified with x 1 2p . In contrast to the
overdamped case the transport can now be due to the inertia
in either direction; i.e., the average velocity can assume the
values given in Eq. (3) with m ­ 0, 61, 62, . . . . Given
a fixed set of parameters, it is important to note that—
depending on the initial conditions—different classes of
trajectories have been observed by numerical simulation.
For example, at A ­ 0.624, V ­ 0.1, e ­ 20, asymptotic
trajectories are either periodic, (1,0), or current carrying,
s2, 21d. This situation calls for interesting technological
applications, since it allows for the separation of particles
starting with different initial conditions (a detailed discus-
sion will be published elsewhere [12]).
A third class is chaotic trajectories. Their behavior has

been studied by numerically simulating the time evolution
of an initial probability density in sx, Ùxd space (see below
for details). For V ­ 0.1, e ­ 20, and those values of A
in 0 , A , 10, where the system is living on a chaotic
attractor, there was always a net drift to the right or to
the left; i.e., particles move on average either to the left
or to the right. The chaotic attractor can be observed in
a stroboscopic plot in sx, Ùxd space after mapping the un-
bounded dynamics in space onto one period of the po-
tential, i.e., xstd ! xstd smod2pd. We did not observe
coexisting chaotic attractors in our working model (1). For
chaotic maps with periodic forces, the onset of diffusive
behavior caused by the memory loss due to chaotic dy-
namics has been studied some time ago [13].
By integrating Eq. (1) numerically, one realizes that

the drift of a single chaotic trajectory exhibits strong
fluctuations. An appropriate tool for describing transport
is therefore a time-dependent probability measure. Given
the initial probability density r0sx, Ùx, td, its time evolution
is given by

rsx, Ùx, td ­
Z

dx0
Z

d Ùx0 dsssx 2 xdsx0, Ùx0, tdddd

3dsss Ùx 2 Ùxdsx0, Ùx0, tdddd r0sx0, Ùx0d . (4)
Here xdsx0, Ùx0, td is the solution of (1) with initial con-
ditions xdst ­ 0d ­ x0 and Ùxdst ­ 0d ­ Ùx0. In contrast
to the conventional treatment, we do not apply periodic
boundary conditions. This allows us to study the broad-
ening of the probability density as a function of time [12].
As an example for the chaotic regime, we depict in

Fig. 2(a) the time evolution of the contracted probabil-
ity density r̄sx, td ­

R
d Ùx0 rsx, Ùx0, td for A ­ 0.79, V ­

0.1, e ­ 20 and m ­ 1y4. The x axis has been partitioned
so that one partition ranges over one period of the po-
tential. The initial probability density was chosen Gauss-
ian with a width of 1y2 in space and Ùxst ­ 0d ­ 0. On
a short time scale the probability density becomes more
complicated, but approaches asymptotically a Gaussian
shape; cf. Fig. 2(b). Because we are not interested in time
scales of a single period, where one observes the oscilla-
tory contribution of the driving force, we switch to a coarse
grained description by looking at the system stroboscopi-
cally st ­ nT ­ 2pnyVd. Time t will therefore denote
these stroboscopic times. In Fig. 3, we show the first and
second cumulants of the probability density as a function
of time. Apart from initial transients, we observe a linear
mean and a linear variance—typical for Brownian motion.
The third cumulant and higher cumulants contain more of
the detailed structure of the density, and are therefore more

FIG. 2. Snapshots of the probability density, obtained by
simulating 50 000 trajectories, are shown in (a) for A ­
0.79, V ­ 0.1, and e ­ 20. The universal, normalized scaling
function p̄sx̃, td, Eq. (7), obtained from the same densities is
shown in (b).
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FIG. 3. The first two cumulants C1std and C2std for A ­
0.79, V ­ 0.1, and e ­ 20 are shown stroboscopically as a
function of time (tn ­ nT).

complicated functions of time. As a common feature we
find that their modulus increases slower than t3y2.
Based on the observations above, we will show in

the following that the probability density will become
effectively Gaussian. Thus the first and second cumulants
are sufficient to describe the time evolution and transport.
The characteristic function Fssd ­ kexpf2isxstdgl of

the contracted probability density r̄sx, td is written in
terms of its cumulants Ckstd as

Fssd ­ exp

√
2isC1std 2

1
2

s2C2std 1
X̀
k­3

s2isdk

k!
Ckstd

!
.

(5)
Making use of the numerically observed behavior for
large times, i.e., C1std ­ yt, and C2std ­ s2t as t ! `,
we can analyze the long time behavior of the probability
density. First, we introduce the integration variable u ­
s
p

t, and define the relative position x̃ ­ x 2 yt. The
scaled probability density p̄sx̃, td ­ r̄sx, td can then be
written as

p̄sx̃, td ­
1

p
t

Z `

2`

exp

"
iu

x̃
p

t
2

1
2

s2u2

#

3 exp

"X̀
k­3

s2iudk

k!
t2ky2Ckstd

#
du . (6)

In the scaling limit t ! ` with x̃y
p

t kept constant, the
terms Ck$3std in the second exponential become irrelevant
(this, of course, relies on the observation that for k $ 3
Ckytky2 ! 0 as t ! `).
The first two terms, which are relevant in the scaling

limit, describe a Gaussian density with the scaling form
t21y2fsx̃y

p
td, while the other terms describe corrections

to it. With the knowledge of all coefficients, those
corrections to scaling can be obtained by expanding the
second exponential, leading to an asymptotic expansion
of p̄,

p̄sx̃, td ­
1

p
t

f

√
x̃
p

t

! "
1 1 t23y2C3stdh

µ
x̃
p

t

∂
1 · · ·

#
,

(7)
where h is an analytic function describing the leading cor-
rection to scaling, and fsyd ­ exps2y2y2s2d. Therefore,
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for large times, the probability density approaches a shape
which allows rescaling to a (universal) Gaussian distri-
bution; see Fig. 2(b). The long time evolution does not
depend on the choice of the initial probability. It is inter-
esting to compare p̄sx̃, td to the time-dependent probabil-
ity density of a Brownian particle in a symmetric periodic
potential (see, e.g., in [14]). For large times it shows,
apart from the vanishing drift, the scaling form (7).
In case of a single regular attractor, i.e., all trajecto-

ries are regular and obey xst 1 nT d ­ xstd 1 2pm with
the same tuple sn, md, the probability density for large
times approaches a positive normalized function of the
form r̄sx, t ! `d ­ fsx 2 ytd with y ­ mVyn. The
characteristic function of fsx 2 ytd, given by fsy, sd ­
exps2iytsdf0ssd, where f0ssd is time independent, im-
plies a first cumulant C1std ­ yt and constant higher cu-
mulants Ck$2 (see Fig. 4). For nontransporting regular
attractors, i.e., y ­ 0, all cumulants are time independent,
corresponding to a stationary probability density. We re-
mind the reader that the time scale t is actually a coarse
grained time scale, on which periodic variations of the
probability density within nT are not visible.
In the case of coexisting regular attractors differ-

ent trajectories, corresponding to different sets sn1, m1d
and sn2, m2d, are drifting with different average veloci-
ties y1 ­ m1Vyn1 and y2 ­ m2Vyn2, respectively. The
probability density consists of several moving peaks
with constant widths each (for large times), but gener-
ally different velocities, y2 fi y1. The cumulant generat-
ing function, gssd ­ lnfssd ­ lnfexps2iy1tsdfs1d

0 ssd 1

exps2iy2tsdfs2d
0 ssdg yields cumulants of the form Ckstd ~

tk . The first cumulant is again linear in time, i.e., C1std ­
at ­ sAy1 1 By2dt, where A and B are the relative
weights of the two coexisting attractors. The second cu-
mulant C2std is, in contrast to the cases above, quadratic
in time. Such a case is realized, for example, with the
parameter values A ­ 0.624, V ­ 0.1, and e ­ 20.
With the above developed tools, we will now analyze

the transport properties in the asymmetric periodic po-
tential. In Fig. 5, we depict the current y as a func-
tion of the driving amplitude at e ­ 20. In the range
0 , A , 1.00, where the overdamped system (e ­ 0)

FIG. 4. The first two cumulants C1std and C2std for A ­
1.1, V ­ 0.1, and e ­ 20 are shown stroboscopically as a
function of time (tn ­ nT ).
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always exhibits either zero or positive current, we ob-
serve a variety of transport phenomena: in situations with
zero transport, i.e., y ­ 0, the system has a single reg-
ular attractor with period n ­ 1. The transport in the
interval 0.61 , A , 0.64 is regular for most parts. In
this region we find a negative current. Applying our di-
agnostic tools above, we conclude from the dependence
C2std ~ t2 that there are coexisting regular attractors [15].
As a check, a stroboscopic plot yields a regular behavior
that does not match with any of the values ynm ­ mVyn,
because the transport is regular with contributions from
several coexisting regular attractors. For A . 0.7, the
motion is typically chaotic. As an example we show
Fig. 3 (A ­ 0.79). The linear dependence of the first two
cumulants as a function of time implies chaotic motion.
This is confirmed by a stroboscopic plot. The transport is
negative, which is towards the steep side of the potential
(cf. Fig. 1), for all trajectories. At some parameters (e.g.,
A ­ 0.615), we observe behavior which resembles regu-
lar transport for small times, with a clear-cut transition
to diffusive chaotic transport for large times (see [12] for
a detailed discussion). For larger amplitudes A . 1, one
finds regular regimes and chaotic regimes. The currents
in the chaotic regimes are directed in either the positive
or the negative direction. The linear time dependence of
the first and second cumulants, the observation that the
higher cumulants Cn$3std increase slower than t3y2, and
the resulting scaling laws, as presented above, apply in all
tested cases in A , 10.
In summary, we have presented novel results for an

inertia ratchet. The system can exhibit a current flow in
either direction (multiple current reversals). The direction
can be controlled by adjusting the amplitude of the
external, periodic driving (cf. Fig. 5); furthermore, it
depends sensitively on the strength of the inertia and

FIG. 5. The transport coefficient y ­ ÙC1st ! `d is shown as
a function of the driving amplitude A for e ­ 20 and V ­ 0.1.
friction [16]. This makes it especially interesting for
technological applications. The system’s dynamics is
characterized by the time dependence of cumulants of
the particle distribution. In the case of directed chaotic
transport, the second cumulant is a measure for the
intrinsic current fluctuations, and thus for the reliability
of the ratchet mechanism. Our diagnostic tools allow a
distinction between different forms of regular and chaotic
transport; these enable a systematic description of chaos-
induced currents in terms of a universal Gaussian scaling.
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